Spatially inhomogeneous phase transition in rotating gluon plasma

$\underline{A. A. Roenko}^1$,

in collaboration with

V. V. Braguta, M. N. Chernodub,

¹Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics roenko@theor.jinr.ru

The Scientific session of the Nuclear Physics section of the Russian Academy of Science Dubna, 2 April 2024

Artem Roenko (JINR, BLTP)

Inhomogeneous phases in rotating gluon plasma

2 April 2024

1/18

Introduction

• In non-central heavy ion collisions creation of QGP with angular momentum is expected.

프 > - * 프 >

Image: A matrix

2/18

ъ

Introduction

- In non-central heavy ion collisions creation of QGP with angular momentum is expected.
- The rotation occurs with relativistic velocities.

[L. Adamczyk et al. (STAR), Nature 548, 62–65 (2017), arXiv:1701.06657 [nucl-ex]] $\langle \omega \rangle \sim 6 \text{ MeV } (\sqrt{s_{NN}}\text{-averaged})$

Critical temperature in rotating QCD

All^{*} theoretical models assume rigid rotation, $\Omega \neq 0$. Mostly the global T_c is measured.

Our lattice results for gluodynamics show that the confinement critical temperature increases with rotation

- V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, JETP Lett. 112, 6-12 (2020)
- V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, Phys. Rev. D 103, 094515 (2021), arXiv:2102.05084 [hep-lat]
- V. Braguta, A. Y. Kotov, D. Kuznedelev, and A. Roenko, PoS LATTICE2021, 125 (2022), arXiv:2110.12302 [hep-lat]

Lattice results for QCD: the chiral and deconfinement critical temperatures both increase with rotation (decrease with imaginary rotation); fermions and gluons have opposite influence on T_c .

• V. V. Braguta, A. Kotov, A. Roenko, and D. Svchev, PoS LATTICE2022, 190 (2023), arXiv:2212.03224 [hep-lat]

Artem Boenko (JINB, BLTP)

Inhomogeneous phases in rotating gluon plasma

We study gluodynamics in the co-rotating reference frame (it rotates with angular velocity Ω around z-axis) → external gravitational field [A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013), arXiv:1303.6292 [hep-lat]

$$g_{\mu\nu}^{E} = \begin{pmatrix} 1 & 0 & 0 & y\Omega_{I} \\ 0 & 1 & 0 & -x\Omega_{I} \\ 0 & 0 & 1 & 0 \\ y\Omega_{I} & -x\Omega_{I} & 0 & 1 + r^{2}\Omega_{I}^{2} \end{pmatrix},$$
(1)

where $r^2 = x^2 + u^2$, and the angular velocity is put in the purely imaginary form $\Omega_I = -i\Omega$ to avoid the sign problem. Observables are calculated from first principles as follows

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int DA \mathcal{O}[A] \exp\left(-S_G[A]\right), \qquad Z = \int DA \exp\left(-S_G[A]\right).$$
 (2)

We use tree-level improved (Symanzik) lattice gauge action; the lattice size is $N_t \times N_z \times N_s^2$; The notations $R \equiv a(N_s - 1)/2$ and $v_I \equiv \Omega_I R$ are used.

Lattice formulation of rotating QCD

The gluon action has the following form:

$$S = \frac{1}{4g_0^2} \int d^4x \sqrt{g_E} \, g_E^{\mu\nu} g_E^{\alpha\beta} F^a_{\mu\alpha} F^a_{\nu\beta} \equiv S_0 + S_1 \Omega_I + S_2 \frac{\Omega_I^2}{2} \,, \tag{3}$$

where

$$S_0 = \frac{1}{4g_0^2} \int d^4 x F^a_{\mu\nu} F^a_{\mu\nu} \,, \tag{4}$$

$$S_{1} = \frac{1}{g_{0}^{2}} \int d^{4}x \left[y F_{xy}^{a} F_{y\tau}^{a} + y F_{xz}^{a} F_{z\tau}^{a} - x F_{yx}^{a} F_{x\tau}^{a} - x F_{yz}^{a} F_{z\tau}^{a} \right],$$
(5)

$$S_2 = \frac{1}{g_0^2} \int d^4x \left[r^2 (F_{xy}^a)^2 + y^2 (F_{xz}^a)^2 + x^2 (F_{yz}^a)^2 + 2xy F_{xz}^a F_{zy}^a \right],\tag{6}$$

ъ

5/18

A D F A D F A D F A D F

Lattice formulation of rotating QCD

The gluon action has the following form:

$$S = \frac{1}{4g_0^2} \int d^4x \sqrt{g_E} \, g_E^{\mu\nu} g_E^{\alpha\beta} F^a_{\mu\alpha} F^a_{\nu\beta} \equiv S_0 + S_1 \Omega_I + S_2 \frac{\Omega_I^2}{2} \,, \tag{3}$$

where

$$S_0 = \frac{1}{4g_0^2} \int d^4 x F^a_{\mu\nu} F^a_{\mu\nu} \,, \tag{4}$$

$$S_{1} = \frac{1}{g_{0}^{2}} \int d^{4}x \left[y F_{xy}^{a} F_{y\tau}^{a} + y F_{xz}^{a} F_{z\tau}^{a} - x F_{yx}^{a} F_{x\tau}^{a} - x F_{yz}^{a} F_{z\tau}^{a} \right], \tag{5}$$

$$S_{2} = \frac{1}{g_{0}^{2}} \int d^{4}x \left[r^{2} (F_{xy}^{a})^{2} + y^{2} (F_{xz}^{a})^{2} + x^{2} (F_{yz}^{a})^{2} + 2xy F_{xz}^{a} F_{zy}^{a} \right], \tag{6}$$

Sign problem

- The Euclidean action is complex-valued function with real rotation $(S_1 \neq 0)!$
- The Monte–Carlo simulations are conducted with imaginary angular velocity $\Omega_I = -i\Omega$.
- The results are analytically continued to the region of the real angular velocity $(\Omega_I^2 = -\Omega^2, v_I^2 = -v_R^2)$.

Artem Roenko (JINR, BLTP)

Rotating reference frame: temperature

• Tolman-Ehrenfest effect: In gravitational field the temperature isn't a constant in space at thermal equilibrium:

$$T(r)\sqrt{g_{00}} = T_0 = const$$

• For the rotating system one gets

$$T(r) = \frac{T_0}{\sqrt{1 - \Omega^2 r^2}} = \frac{T_0}{\sqrt{1 + \Omega_I^2 r^2}} \,. \tag{7}$$

where T_0 is the temperature at the rotation axis (r = 0). Below $T_0 \equiv T = 1/N_t a$.

• One could expect, that the rotation effectively warm up the periphery of the modeling volume

$$T(r) > T(r=0),$$

and as a result, from relativity, the critical temperature should decreases: $T_c^{TE}(r) = T_{c0}\sqrt{1-\Omega^2 r^2}$

= na0

Rotating reference frame: temperature

• Tolman-Ehrenfest effect: In gravitational field the temperature isn't a constant in space at thermal equilibrium:

$$T(r)\sqrt{g_{00}} = T_0 = const$$

• For the rotating system one gets

$$T(r) = \frac{T_0}{\sqrt{1 - \Omega^2 r^2}} = \frac{T_0}{\sqrt{1 + \Omega_I^2 r^2}} \,. \tag{7}$$

where T_0 is the temperature at the rotation axis (r=0). Below $T_0 \equiv T = 1/N_t a$.

• One could expect, that the rotation effectively warm up the periphery of the modeling volume

$$T(r) > T(r=0),$$

and as a result, from relativity, the critical temperature should decreases: $T_c^{TE}(r) = T_{c0}\sqrt{1-\Omega^2 r^2}$

• Inhomogeneous phases are predicted by some phenomenological models with $T_c(r) = T_c^{TE}(r)$: 2+1 cQED: M. N. Chernodub, Phys. Rev. D 103, 054027 (2021), arXiv:2012.04924 [hep-ph] Holography: N. R. F. Braga and O. C. Junqueira, (2023), arXiv:2306.08653 [hep-th]

Polyakov loop and critical temperature of deconfinement transition

The Polyakov loop is an order parameter in gluodynamics.

$$L(x,y) = \frac{1}{N_z} \sum_z \operatorname{Tr} \left[\prod_{\tau=0}^{N_t-1} U_4(\vec{r},\tau) \right], \qquad L = \frac{1}{N_s^2} \sum_{x,y} L(x,y).$$
(8)

In confinement $\langle L \rangle = 0$; in deconfinement $\langle L \rangle \neq 0$ (\mathbb{Z}_3 center symmetry is broken).

The critical temperature is associated with the peak of the Polyakov loop susceptibility

$$\chi_L = \langle |L|^2 \rangle - \langle |L| \rangle^2 \,. \tag{9}$$

★ 3 →

Polyakov loop and critical temperature of deconfinement transition

The Polyakov loop is an order parameter in gluodynamics.

$$L(x,y) = \frac{1}{N_z} \sum_{z} \operatorname{Tr} \left[\prod_{\tau=0}^{N_t-1} U_4(\vec{r},\tau) \right], \qquad L = \frac{1}{N_s^2} \sum_{x,y} L(x,y).$$
(8)

In confinement $\langle L \rangle = 0$; in deconfinement $\langle L \rangle \neq 0$ (\mathbb{Z}_3 center symmetry is broken).

The critical temperature is associated with the peak of the Polyakov loop susceptibility

$$\chi_L = \langle |L|^2 \rangle - \langle |L| \rangle^2 \,. \tag{9}$$

Causality restriction

- Minkowski metric: $g_{00} = 1 \Omega^2 r^2 \Rightarrow \Omega r < 1$, or $v_R = \Omega R < 1/\sqrt{2}$
- Euclidean metric: $g_{44} = 1 + \Omega_I^2 r^2 \Rightarrow$ no restriction (analytic continuation is allowed for $v_I < 1/\sqrt{2}$)
- Boundary conditions are important! (we check two different types of b.c.: open/periodic)

To investigate inhomogeneous phases the lattices of huge size is needed $(N_s/N_t \gtrsim 18)$!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Inhomogeneous phases for imaginary rotation

Figure: The distribution of the local Polyakov loop in x, y-plane for lattice of size $5 \times 30 \times 181^2$ with open boundary conditions at the fixed imaginary velocity at the boundary $v_I^2 \equiv (\Omega_I R)^2 = 0.16$ and different on-axis temperatures.

- As the (on-axis) temperature increases, the radius of the inner confining region shrinks.
- Boundary is screened.
- Local thermalization takes place; Phase transition occurs as a vortex evolution.

Artem Roenko (JINR, BLTP)

Inhomogeneous phases in rotating gluon plasma

Inhomogeneous phases for imaginary rotation

Figure: The distribution of the local Polyakov loop in x, y-plane for lattice of size $5 \times 30 \times 181^2$ with open boundary conditions at the fixed on-axis temperature $T = 0.95 T_{c0}$ and different imaginary angular frequencies; R = 13.5 fm.

- Imaginary rotation produces the deconfinement at the periphery while the central region stays in confinement phase (for $T < T_{c0}$).
- The deconfinement region approaches the rotation axis with the increase of Ω_I ; $_{\bigcirc}$,

Local critical temperature

We split the system into thin cylinders of width δr and measure local critical temperature

- Results for different width $\delta r \cdot T = 1, 2, 3, 4, 5$ are in agreement.
- Thin layer of width δb is skipped from boundary.
- There is minor difference on b.c. at $r/R\sim 1$

Local critical temperature

In the central region of lattice the local critical temperature does not depends on b.c.

For a moderate radius $r/R \lesssim$ 0.5, the fitting function is

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = \frac{T_c(\Omega_I)}{T_{c0}} - \kappa(\Omega_I) \left(\Omega_I r\right)^2, \quad (10)$$

- $T_c(0) \approx T_{c0}$ with few percent accuracy:
 - ▶ Finite correlation length and finite R.
 - Averaging over layer with δr .

Local critical temperature

In the central region of lattice the local critical temperature does not depends on b.c.

For a moderate radius $r/R \lesssim 0.5$, the fitting function is

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = \frac{T_c(\Omega_I)}{T_{c0}} - \kappa(\Omega_I) \left(\Omega_I r\right)^2, \quad (10)$$

- $T_c(0) \approx T_{c0}$ with few percent accuracy:
 - ▶ Finite correlation length and finite R.
 - ▶ Averaging over layer with δr .
- Vortical curvature in continuum limit

 $\kappa = 0.901(32)$.

It is not TE

Decomposition of rotating action

The action of rotating gluons has the following structure

$$S_G = S_0 + \lambda_1 S_1 \Omega_I + \lambda_2 S_2 \Omega_I^2, \tag{11}$$

where we introduce switching factors λ_1, λ_2 .

- The first operator S_1 is an angular momentum of gluons, constructed using the stress-energy tensor.
- The second operator S_2 is related to an average square of the chromomagnetic fields F_{ij}^2 .

[See Talk by V. Braguta]

The following regimes of the rotation are possible:

- i1) $\lambda_1 = 1$, $\lambda_2 = 0$: $v^2 < 0$ i2) $\lambda_1 = 0$, $\lambda_2 = 1$; $v^2 < 0$
- i3) $\lambda_1 = 1$, $\lambda_2 = 1$; $v^2 < 0$

Note that in case i2) there is, actually, no sign problem:

r2) $\lambda_1 = 0$, $\lambda_2 = 1$; $v^2 > 0$

Figure: The distribution of the local Polyakov loop in x, y-plane for lattice size $5 \times 30 \times 181^2$, open boundary conditions OBC at fixed velocity $|v^2| = 0.16$ and different values of switching factors λ_1, λ_2 .

- The radius of the inner region in regime i2) is slightly smaller, than in i3). Phase arrangement is the same.
- In regimes i1) and r2) rotation produces confinement phase in the outer region at $T > T_{c0}$.

Imaginary vs real rotation for decomposed action

The behaviour of the local critical temperature in these regimes is different.

- κ_{i1} takes small negative value
- κ_{i2} and κ_{i3} are positive, with $\kappa_{i2} > \kappa_{i3}$.
- Contribution from S_2 is predominant. The results resemble decomposition of I. [See Talk by V. Braguta]

Imaginary vs real rotation for decomposed action

The behaviour of the local critical temperature in these regimes is different.

- κ_{i1} takes small negative value
- κ_{i2} and κ_{i3} are positive, with $\kappa_{i2} > \kappa_{i3}$.
- Contribution from S_2 is predominant. The results resemble decomposition of I. [See Talk by V. Braguta]
- Real Ω results (r2) are in agreement with a.c. of imaginary Ω_I results (i2) for r/R ≤ 0.5 (where quadratic fit works).

The Polyakov loop distribution for real and imaginary rotation $(S_1 \text{ term is omitted})$

• (r2): $T = T_{c0} + \Delta T$ for real rotation $v^2 = 0.16$

• (i2):
$$T = T_{c0} - \Delta T$$

for imaginary rotation $v_I^2 = 0.16$

Confinement \leftrightarrow deconfinement with approximately the same boundary.

Phase diagram

Using continuum limit results one can plot a phase diagram in (Ω, r) plane (example for R = 13.5 fm).

The diagram has the same form for imaginary angular velocity (at $T = T_{c0} - \Delta T$)

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = \frac{T_c(\Omega_I)}{T_{c0}} - \kappa(\Omega_I) \left(\Omega_I r\right)^2,$$

and real angular velocity (at $T = T_{c0} + \Delta T$):

$$\frac{T_c(r,\Omega)}{T_{c0}} = \frac{T_c(\Omega)}{T_{c0}} + \kappa(\Omega) \left(\Omega r\right)^2.$$

The upper right corner of diagram will be slightly affected by $\mathcal{O}(\Omega^4)$ corrections.

Artem Roenko (JINR, BLTP)

Conclusions

- Using lattice simulation, we found the mixed confinement-deconfinement phase in rotating SU(3) gluodynamics at thermal equilibrium.
- The local critical temperature is determined mainly by the local linear velocity of rotational motion:

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = \frac{T_c(\Omega_I)}{T_{c0}} - \kappa(\Omega_I) \left(\Omega_I r\right)^2 + \mathcal{O}(\Omega^4), \qquad (12)$$

where $\kappa = 0.901 \pm 0.032$ in continuum limit (universal for any b.c.). The results $\mathcal{O}(\Omega^4)$ are on the way.

- The local critical temperature on the axis $T_c(0)$ is T_{c0} with few percent accuracy. It is not TE.
- This behaviour originates from chromomagnetic term S_2 (same as for I < 0 magnetic gluon condensate?? negative spin-vortical coupling??). [See Talk by V. Braguta]
- Local thermalization takes place; Phase transition occurs as a evolution of vortex of new phase.
- Inhomogeneous phases may appear even for a slow rotation (if R is large enough), and we expect similar picture for QCD.
- Previous results for T_c should be understood as bulk-averaged values.

V. V. Braguta, M. N. Chernodub, and A. A. Roenko, (2023), arXiv:2312.13994 [hep-lat] Another details coming soon: 2404.XXXXX

Artem Roenko (JINR, BLTP)

Inhomogeneous phases in rotating gluon plasma

Thank you for your attention!

ъ