Научная сессия секции ядерной физики ОФН РАН

Национальный исследовательский ядерный университет «МИФИ»

Нейтронный модуль твердотельного нейтринного детектора для регистрации антинейтрино по реакции обратного бета-распада

Д.М. Громушкин, А.Н. Дмитриева, А.А. Луковников, Е.С. Моргунов, А.А. Растимешин, И.А. Шульженко

1 – 5 апреля 2024 (ОИЯИ г. Дубна)

Работа ядерного реактора сопровождается испусканием потока антинейтрино, например, для реакторов ВВЭР-1000 он превышает 10²⁰ с⁻¹.

Для регистрации реакторных антинейтрино, можно использовать реакцию их взаимодействия с протоном (обратный бета-распад): $\bar{v}_e + p \rightarrow n + e^+$

Позитрон за несколько наносекунд теряет свою энергию и аннигилирует в веществе детектора с излучением двух гаммаквантов с общей энергией 1.022 МэВ. Нейтрон с энергией 5÷20 кэВ в течение ~10 мкс замедляется в веществе детектора, после чего может быть зарегистрирован.

Поскольку для термализации и регистрации нейтрона требуется некоторое время, используется задержанное совпадение сигнала от регистрации позитрона и сигнала от регистрации теплового нейтрона.

Разработка и создание модульного твердотельного нейтринного детектора

Схема измерительного модуля

Позитрон регистрируется пластиковым сцинтиллятором, который также участвует в термализации нейтронов.

Основной сложностью в данном случае является регистрация нейтронов.

Цель: создание нейтронного модуля для твердотельного нейтринного детектора.

Для регистрации нейтронов можно использовать неорганический сцинтиллятор ZnS(Ag) с добавкой ⁶LiF или B₂O₃

Выбор сцинтиллятора

Сцинтиллятор	Добавка	Световыход на нейтрон, фотонов	Т _{высв.} , нс
⁶ Li-glass	Ce	~ 6000	75
⁶ Lil	Eu	~ 50000	1400
⁶ LiF/ZnS	Ag	~ 160000	200/10000
⁶ LiBaF ₃	Ce,K	~ 3500	1/34/2100
⁶ Li ₆ Gd(BO ₃) ₃	Ce	~ 40000	200/800
Cs ₂ LiYCl ₆	Ce	~ 70000	1000
B ₂ O ₃ /ZnS	Ag	~ 80000	200/10000

Основными производителями сцинтилляторов с ⁶Li являются Eljen Technology и Saint-Gobain Crystals.

В России производство сцинтилляторов с ⁶Li ограничено.

Сцинтилляционная композиция ZnS(Ag)+B₂O₃ (ЛРБ-2) ЗАО "НПФ "Люминофор"

Размер гранул от 300 до 800 мкм.

Регистрация тепловых нейтронов изотопом ¹⁰В, который присутствует в естественном боре (19.8%):

 $\begin{array}{cc} n + {}^{10}\text{B} \rightarrow {}^{7}\text{Li}(1.0 \text{ MeV}) + \alpha(1.8 \text{ MeV}) & 7\% \\ \rightarrow {}^{7}\text{Li}{}^{*}\text{+} \alpha(1.47 \text{ MeV}) & 93\% \\ \downarrow \end{array}$

⁷Li(0.83 MeV) + γ(0.48 MeV)

 эффективность регистрации тепловых нейтронов 5-10%;

 эмиссионный спектр (450 нм) подходит для фотоумножителей;

 медленная компонента позволяет проводить отбор по форме импульса;

 возможность изготовления сцинтиллятора большой площади;

- > малое время восстановления;
- низкая чувствительность к заряженным частицам.

Выбор геометрии нейтронного модуля

Среднее число зарегистрированных фотоэлектронов в зависимости от расстояния до ФП

Длина	700 мм	
Ширина	50 мм	
Высота	7 мм	
Количество волокон	9 (18)	
Толщина слоя сцинтиллятора	50 мг/см ²	
Отражатель	<u>Тайвек</u>	

Выделение сигналов, вызванных захватом нейтронов

Амплитуда пика, мВ

Типовые сигналы

Для разделения сигналов n/γ,е безразмерный используется параметр D:

$$D = \ln\left(\sum_{n=t_{tail_1}}^{t_{tail_2}} x_n^2\right)$$

Physics of Atomic Nuclei, 2021, Vol. 84, No. 9,

Параметр отбора D для отбора нейтронов определяется как локальный минимум между пиком от шумов и пиком от нейтронов.

600

500

400

0

5

МΒ

Амплитуда,

Результаты тестирования

Распределения параметра D (источник по центру)

Результаты тестирования

		D1	D2	N ₁ , c ⁻¹	N ₂ , c ⁻¹	N, c ⁻¹	N _{noise} , c ⁻¹
S3	²⁵² Cf	6.4	6.6	1.27	1.26	1.24	0.17
	No source			0.04	0,04	0.03	0,14
S4	²⁵² Cf		6.8	3.69	3.72	3.63	0.24
	No source	6.7		0.07	0.08	0.06	0.18
S 5	²⁵² Cf			3.01	3.03	2.93	0.71
	No source	7	7	0.09	0.10	0.05	0.50

Выбрана конструкция модуля S5:

- хорошее разделение сигналов;
- высокая скорость счета нейтронов.

Исследование однородности модуля S5

Для проверки однородности регистрации нейтронов проведены измерения с различным расположениям источника.

Источник нейтронов в замедлителе и в кожухе из кадмия с окном в верхней грани 5 × 5 см².

Неоднородность по скорости счета нейтронов не более 10%.

Создание одинаковых четырех модулей

Этапы изготовления модулей

Универсальный разъем для подключения ФП

Фотографии готовых модулей

Результаты тестирования модулей

Распределение параметра D для измерений без источника.

		N₁, c⁻¹	N ₂ , c ⁻¹	N, c ⁻¹	N _{noise} , c ⁻¹	
S5_0	С	2.82	2.84	2.74	0.70	
	ns	0.09	0.10	0.04	0.56	
05.4	С	2.88	2.92	2.81	0.75	
55_1	ns	0.12	0.14	0.06	0.73	
S5_2	С	2.82	2.88	2.76	0.68	
	ns	0.09	0.12	0.05	0.56	
65 0	С	2.93	2.95	2.86	0.67	
55_3	ns	0.09	0.10	0.04	0.54	
0E 4	С	2.89	2.93	2.83	0.63	
85_4	ns	0.09	0.10	0.05	0.50	
<s></s>	С	2.87 ± 0.05	2.90 ± 0.04	2.80 ± 0.05	0.69 ± 0.04	
	ns	0.09 ± 0.01	0.11 ± 0.02	0.05 ± 0.01	0.58 ± 0.09	

Хорошее разделение сигналов.

Одинаковый параметр отбора нейтронов (D ≥ 7). Одинаковая скорость счета нейтронов.

Оценка эффективности захвата нейтронов

Nº	L, см	N ₁ , c ⁻¹	N ₂ , c ⁻¹	N, c ⁻¹	N _{noise} , c ⁻¹
S5_3	10	1.47	1.49	1.42	0.52
S5_3 + S5_1		0.91	0.97	0.86	0.62
S5_3	20	1.08	1.08	1.01	0.64
S5_3 + S5_1		0.67	0.73	0.63	0.55

Для оценки эффективности захвата нейтронов были проведены измерения с одним и двумя модулями.

$$\frac{N_{S5_3} - N_{S5_3 + S5_1}}{N_{S5_3}} \times 100\%$$

Эффективность захвата нейтронов составила: для 10 см - 39%; для 20 см - 37%.

Пример модуля для нейтринного детектора

Фотография торца нейтринного модуля

Фотография опытного образца нейтринного модуля

Заключение:

Разработан нейтронный модуль на основе сцинтилляционной композиции ZnS(Ag)+B₂O₃ с волоконно-оптическим светосбором для нейтринного детектора:

- Плоская конструкция;
- Высокая однородность;
- Подавление шумов за счет применения двух фотоприемников;
- Возможность выделения сигналов, вызванных захватом нейтронов.

Работа выполнена при поддержке гранта «Нейтринные детекторы для дистанционного контроля ядерных реакторов и астрофизических установок» (госзадание проект № FSWU-2022-0018

Спасибо за внимание.