Наблюдение эффекта "квантовой запутанности" при анализе спиновых корреляций в парном рождении топ и анти-топ кварков в эксперименте АТЛАС.

Нарышкин Ю.Г., ПИЯФ, НИЦ Курчатовский Институт

Научная сессия секции ядерной физики ОФН РАН, 3.04.2024

Квантовая запутанность

- Квантовая запутанность это явление, при котором квантовое состояние каждой частицы не может быть описано независимо от состояния другой.
- Если две (или более) частицы находятся в запутанном состоянии, то они останутся связаны, даже если они разделены огромными расстояниями.
- Квантовое состояние системы является запутанным, если его нельзя записать как состояние тензорного произведения ее подсистем.

Квантовая запутанность

• Если система находится в состояниях Φ_n с вероятностями p_n , то систему можно описать с помощью матрицы плотности:

 $\rho = \sum_{n} p_{n} |\Phi_{n}\rangle \langle \Phi_{n}|$

- Если сложная система может быть образована из независимых подсистем, то она является не запутанной, если ее можно представить в виде: ρ^{AB} = Σ_i p_iρ^A_i⊗ ρ^B_i,
- если нельзя т.е. матрица плотности объединенной системы не может быть получена, как сумма прямых произведений матриц р^A_i и р^B_i : ρ^{AB} ≠ ∑_i p_i ρ^A_i ⊗ ρ^B_i , и полную систему нельзя образовать простым соединением невзаимодействующих физических подсистем то такая система является запутанной.
- Фундаментальным объектом изучения квантовых наблюдаемых является спиновая матрица плотности.

Современный статус исследований квантовой запутанности

- Изучения квнтовой запутанности проводились в различных экспериментах, с использованием:
 - фотонов: A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).
 - атомов: E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 (1997).
 - мезонов: A. Go et al. (Belle), Phys. Rev. Lett. 99, 131802 (2007), arXiv:quant-ph/0702267 [QUANT-PH].
 - Нейтрино: J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016).
 - В 2022 году Ален Аспект, Джон Клаузер и Антон Цайлингер получили нобелевскую премию за эксперименты с запутанными фотонами, установление нарушения неравенств Белла и исследования в области квантовой информатики.
 - Никогда не измерялось для пары кварков !!!

Примеры запутанных состояний

- Примером запутанного состояния является система двух частиц со спином ½ (кубиты)
- В системе с двумя частицами со спином 1/2, измеренными по заданной оси, каждая частица может быть либо со спином вверх, либо со спином вниз, поэтому всего система имеет четыре базовых состояния:: ↑↑,↑↓,↓↑,↓↓

Триплет (полный угловой момент = 1)

|1,1⟩, |1,-1⟩ - спины параллельны (коррелируют) → состояния не запутаны

$$|0,0
angle = rac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow) iggree \quad s=0 \quad (ext{singlet})$$

Синглет (полный угловой момент = 0) |0,0> спины антипараллельны (анти коррелируют) → состояния <u>запутаны</u>

ТОП кварк в СМ: основные свойства

- > Открыт в экспериментах CDF/D0 на Тэватроне в 1995 при исследовании рождения пар tt
 > Топ кварк является самой тяжелой из всех открытых частиц: m_t = 172.52 ± 0. 14(stat.) ± 0.30(syst.) ГэВ
 > Имеет малое время жизни: τ_t = 5×10⁻²⁵ сек.
 > Распадается до процесса адронизации 5×10⁻²³ сек. и декорреляции спинов 10⁻²¹ сек., т.о. передает информацию о спине продуктам распада ⇒ направление вылета лептонов коррелирует с направлением спина топ кварка
- В pp-взаимодействиях топ кварк рождается, в основном парами (tt) в сильном взаимодействии или одиночно, за счет слабого взаимодействия.

Уникальные свойства топ-кварка позволяют проверить квантовую запутанность!!!

Механизмы рождения топ кварка

Доминирующим механизмом рождения рождения $tar{t}$ на БАК является gg синтез.

Полученная пара $t\bar{t}$ является запутанной только в двух областях фазового пространства:

- на пороге, где пара tt рождается в спин-синглетном состоянии (arXiv: 0812.0919), которое является "максимально запутанным".
- при высоких р_т, где tt пара рождается в спин-триплетном состоянии (частично запутанное состояние).

Область 1) является наиболее многообещающим кандидатом на обнаружение, поскольку сечения образования $t\bar{t}$ больше. $g_{QQQQ} = \bar{t} g = \bar{t} g$

Распад t-кварка

- С вероятностью 99,9% t-кварк распадается в канале $t \rightarrow Wb$
- Возможные конечные состояния будут определяться каналом распада W-бозона (лептонным или адронным)
- При распаде W-бозона в лептонном (≈ 33%) канале детектором регистрируется заряженный лептон и недостающая поперечная энергия (E^{miss}_T)
- При распаде W-бозона в адронном (≈ 67%) канале детектором регистрируются 2 струи, помимо этого детектором будет регистрироваться b-струя
- Дилептонный канал: конечные состояния 2 заряженных лептона (e/μ) + 2 b-струи + MET
- Имеет высокую анализирующую способность

$\frac{1}{d\Gamma_f} = \frac{1}{d} (1 + \omega_f \cos \theta_f)$		$l^+\!, \overline{d}$	b	$\overline{\nu}, u$
$\Gamma_f d\cos\theta_f = 2^{(1+\omega_f\cos\theta_f)}$	$\overline{\omega_f}$	1	-0.4	-0.3

- Реконструкция кинематики: 6 уравнений (фиксированы масса топ кварка и масса W) и 6 неизвестных.
 - Neutrino Weighting метод: η(ν) и η(ν̄) сканируются во всем интервале значений η что бы найти оптимальные значения.
 - Sonenshein метод: последовательное решение кинематических уравнений, для определения импульсов нейтрино.
 - Ellipse метод: это геометрический подход для аналитического расчета импульсов нейтрино.

Сечение рождения $t\bar{t}$

$$|M|^2 \propto A + B^+ \cdot s_1 + B^- \cdot s_2 + C_{ij} s_{1i} s_{2j}$$

 $\frac{1}{\sigma}\frac{d^2\sigma}{d\cos\theta_a^+d\cos\theta_b^-} = \frac{1}{4}\left(1 + B_a^+\cos\theta_a^+ + B_b^-\cos\theta_b^- - C(a,b)\cos\theta_a^+\cos\theta_b^-\right)$

В_а, В_b-поляризация (a,b = k,r,n) С(a,b)-коэффициенты корреляции (+) (-) обозначения для топ анти-топ кварков

θ_a θ_b - углы между импульсом лептона от распада W-бозона и осями базиса: (n,r,k) в системе покоя топ кварка

$$B_a = 3 \langle \cos \theta_a \rangle$$

$$C(a,b) = -9\langle \cos\theta_a^+ \cos\theta_b^- \rangle$$

Коэффициенты матрицы плотности

Дифференциальное сечение для двух-лептонного распада

 \hat{q}_{\pm} направление лептона в системе покоя родительского топ кварка

$$\Omega_{\pm}$$
 - углы вылета лептонов

В[±], С – поляризации и коэфф. корреляции топ и анти-топ кварков

Коэффициенты корреляции и поляризации можно получить измеряя угловые распределения продуктов распада. Этот процесс называется "квантовой томографией".

$$\frac{1}{\sigma_{\ell\bar\ell}} \frac{\mathrm{d}\sigma_{\ell\bar\ell}}{\mathrm{d}\cos\theta^i_\pm} = \frac{1}{2} (1\pm B^\pm_i\cos\theta^i_\pm)$$

 $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$

$$\frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}x_{ij}} = \frac{1}{2} \left[1 - C_{ij} x_{ij} \right] \ln \frac{1}{|x_{ij}|}$$

$$\frac{1}{\sigma_{\ell\bar\ell}}\frac{{\rm d}\sigma_{\ell\bar\ell}}{{\rm d}\cos\varphi}=\frac{1}{2}(1-D\cos\varphi),\ D=\frac{{\rm tr}[{\bf C}]}{3}$$

Компоненты поляризации B_i^{\pm} вычисляются с помощью распределений по косинусам углов между направлением импульса лептона от распада и осями базиса: $\cos \theta_+^i$

Коэффициенты корреляции $C_{i,j}$ вычисляются через произведение: $x_{i,j} = cos^i_+ cos^j_-$

Коэффициент корреляции D, (след матрицы спиновых корреляций) может быть получен с помощью измерения дифференциального сечения в зависимости от угла между направлениями лептонов в системе покоя соответствующего топ (анти-топ) кварка): соз $\varphi = \hat{l}_+ \hat{l}_-$

Критерий сепарабельности Переса-Городецкого

Критерий Переса-Городецкого

- Критерий Переса Городецкого устанавливает связь между запутанностью и наличием отрицательных собственных значений частично транспонированной матрицы плотности.
- Согласно критерию Переса-Городецкого, для того, чтобы между двумя системами была запутанность необходимо и достаточно, чтобы у частично транспонированной матрицы плотности системы существовало хотя бы одно отрицательное собственное значение:

$$\rho^{AB} = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B} \qquad \Rightarrow \qquad \rho^{T_{2}} = \sum_{n} p_{n} \rho_{n}^{a} \otimes (\rho_{n}^{b})^{T}$$

Однако наличие отрицательных собственных значений эквивалентно утверждению, что матрица ρ^{T2} уже не является матрицей плотности а для операции частичного транспонирования матрицы плотности запутанных состояний не существует конкретных физических реализаций (A. Peres, Phys. Rev. Lett. 77, 1413 (1996), P. Horodecki, Physics Letters A 232, 333 (1997)).

Экспериментальное исследование

 Эффект квантовой запутанности можно исследовать путем измерения дифференциального нормированного сечения как функции cos(φ), где φ угол между двумя лептонами в их соответствующей родительской системе покоя топ-кварка.

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos(\phi)} = \frac{1}{2}(1 - D\cos(\phi)) \qquad D = \frac{\operatorname{tr}[C]}{3} < -\frac{1}{3}$$

- Согласно критерию Переса-Городецкого при выполнении условия D < -1/3, кварки находятся в "запутанном" состоянии.
- Этот эффект наблюдается, когда пара топ-анти-топ рождается вблизи порога (gg-fusion).

Y. Afik and J. R. M. De Nova, EPJPlus (2021).

Event selection & background

- Exactly two opposite sign charge leptons (e and μ).
- At least one trigger-matched lepton.
- At least two jets.
- At least one b-tagged jet.
- Veto cut on dilepton inv mass

Main backgrounds:

- tW
- Z+jets
- WW, WZ, ZZ
- ttX
- Fakes

$\cos(\phi)$ distribution after the full selection

• Background contribution is very small !!!

Data/MC comparison

Process	Inclusive	340 – 380 GeV	380 – 500 GeV	> 500 GeV
tī	1030000 ± 40000	202000 ± 8000	408000 ± 16000	417000 ± 17000
tW	59800 ± 1100	10330 ± 200	23800 ± 500	25700 ± 500
Z+jets	38000 ± 4000	9300 ± 400	19000 ± 4000	9730 ± 270
WW/WZ/ZZ	9140 ± 340	1320 ± 50	3280 ± 120	4540 ± 170
$t\bar{t}X$	2959 ± 6	437.7 ± 2.1	1080.1 ± 3.4	1441 ± 4
fakes	17700 ± 8900	3600 ± 1900	7100 ± 3800	7000 ± 3700
Expectation	1150000 ± 40000	227000 ± 8000	462000 ± 17000	466000 ± 17000
Data	1105403	225056	441196	439151
data/MC	0.96 ± 0.03	0.99 ± 0.04	0.95 ± 0.04	0.94 ± 0.04

Хорошее согласие данных с предсказаниями СМ

Учет аксептанса детектора

- Прохождение частиц через детектор, реконструкция треков и отбор событий искажают форму распределения cos(φ).
- Данные корректируются с учетом эффектов детектора до уровня частиц с использованием калибровочной кривой как в области сигнала, так и в контрольных областях, после вычета ожидаемого фона.
- калибровочная кривая связывает любое значение на уровне реконструированных треков с соответствующим значением на уровне частиц.
- Различные значения D получают путем повторного взвешивания событий в соответствии с относительным изменением D.

 Данные корректируются с учетом эффектов детектора до уровня частиц с использованием калибровочной кривой как в области сигнала, так и в контрольных областях, после вычета ожидаемого фона.

Калибровочная кривая

- Калибровочная кривая строится по парам Reco-Truth в 5 различных точках (гипотезах) и линейно интерполируется между ними.
- Гипотезы соответствует SM и 4 различным перевзвешенным точкам (+20%, -20%, -40%, -60%).
- Наблюдаемые данные корректируются с использованием этой кривой для перехода от наблюдаемого Reco к скорректированному значению truth.
- Желтая полоса представляет статистическую ошибку, а серая полоса представляет общую ошибку, (стат. + сист.).
- Предел для квантовой запутанности (пунктирная линия) представляет собой преобразование значения D = -1/3 на партонном уровне в соответствующее значение на уровне частиц.

Исследуемые кинематические области

- В анализе использовалось одна сигнальная область и две проверочные области (validation region)
- Сигнальная область создается для выбора событий, в которых пара топ кварков образуются близко к порогу, поскольку именно здесь ожидается, что пары топ-антитоп будут в запутанном состоянии.
- Оптимальное окно для области сигнала было определено как 340 < mt t
 380 ГэВ. Эта область определялась путем изменения верхней границы области с шагом 5 ГэВ и оценки статистической и доминирующей систематической неопределенностей.

Три кинематические области по переменной $m(t\bar{t})$ были проанализированы: **SR**: 340< $m(t\bar{t})$ < 380 ГэВ (высокая степень квантовой запутанности) **VR1**: 380< $m(t\bar{t})$ < 500 ГэВ (степень квантовой запутанности меньше) **VR2**: $m(t\bar{t})$ > 500 ГэВ (нет квантовой запутанности)

 $D = \frac{\operatorname{tr}[C]}{3} < -\frac{1}{3}$

Это следствие критерия Переса-Городецкого

Y. Afik and J. R. M. De Nova, EPJPlus (2021).

научная сессия секции ядерной физики ОФН РАН, 3.04.2024

Результат

Анализ был сделан на particle level \rightarrow коэффициент D не важен, важно его отклонение от entanglement limit

- Предел D = -1/3 переносится с уровня партонов на уровень частиц (с учетом эффекты партонных ливней) с использованием генераторов: Powheg + Pythia 8 и, альтернативно, Powheg + Herwig 7 которые дают пределы: -0.322 ± 0.009 (ошибка - моделирование) and -0.27, соответственно.
- В проверочных областях данные совпадают с результатами моделирования, проведенными разными генераторами –> нет явного предпочтения конкретного МС генератора.
- Эффект наблюдается со значимостью более 5 о. Наблюдаемое: D = -0.537 ± 0.002 [стат.] ± 0.019 [систем.] Ожидаемое: D = -0.470 ± 0.002 [стат.] ± 0.017 [систем.]
- Отклонение от предсказаний СМ ~ 3

VR1: D = -0.265 \pm 0.001 [stat.] \pm 0.019 [syst.] (-0.258 \pm 0.001 [stat.] \pm 0.019 [syst.]) VR2: D = -0.093 \pm 0.001 [stat.] \pm 0.021 [syst.] (-0.103 \pm 0.001 [stat.] \pm 0.021 [syst.])

CMS

 Наблюдаемое: D = -0.478_-0.025

 CMS PAS TOP-23-001

19

Заключение

- В эксперименте АТЛАС наблюдался эффект квантовой запутанности для системы состоящей из двух кварков (ТОП кварков) при энергии pp
 столкновений √s = 13 ТэВ с полной светимостью 140 фб⁻¹.
- Это первое когда-либо сделанное измерение квантовой запутанности между парой кварков и первое наблюдение квантовой запутанности на для высоких энергий.
- Эффект наблюдается на уровне более чем пять стандартных отклонений!
- ТОП2023 ..., АТЛАС-CONF-2023-069 и в CERN courier, и отправлена в журнал «Nature».
- Исследуемая наблюдаемая чувствительна к моделированию партонного ливня → требуется дополнительная работа для проверки основных генераторов на предмет прецизионных измерений.

Квантовые системы

В квантовой механике различают два типа квантовых состояний: чистые и смешанные

Чистое состояние – это полностью известное квантовое состояние, если объект находится в чистом состоянии, значит про него вся информация. Чистые состояния полностью описываются волновыми функциями |ψ_i> Если система находится в состояниях Φ_n с вероятностями p_n, то систему можно описать с помощью матрицы плотности:

$$\rho = \sum_n p_n |\Phi_n \rangle \langle \Phi_n|$$

- Для чистого состояния $\rho^2 = \rho$, а для смешанного $\rho^2 < \rho$.
- Системы, состоящие из нескольких подсистем так же описываются матрицей плотности.
- Одним из требований к матрице плотности является то, что она должна быть положительно определенной, т.е. ее собственные значения не отрицательны (и в сумму равны 1, поэтому имеют смысл вероятностей).
- Диагональные элементы матрицы плотности можно интерпретировать как вероятности системы находится в определенном состоянии.

Pythia vs Herwig PS

Большое расхождение между генераторами Монте-Карло связано с разными алгоритмами, используемыми в Pythia и Herwig для упорядочивания партонного ливня.

Номинальный образец MC создается с помощью NLO ME, реализованного в PowhegBox (hvq) затем передается в Pythia 8.230, либо в Herwig 7.21 для моделирования партонных ливней, адронизации и сопутствующих событий.

На партонном уровне распределения по cos(φ) очень близки, а на уровне частиц сильно отличаются.

Два основных различия между Pythia и Herwig: модель адронизации и упорядочение ливней.

Pythia основана на модели струн Лунда и использует ливень с pT-упорядочением. Herwig основан на кластерной модели и по умолчанию использует ливень с угловым упорядочением.

Сравнение моделирования с различными моделями адронизации показало, что они оказывают незначительное влияние как инклюзивно, так и в сигнальной области анализа, с 340 < $m(t\bar{t})$ < 380 ГэВ.

Нет однозначного заключения для выбора МС генератора.

Критерии сепарабельности

<u>Критерий Шмидта</u>

Если квантовая система состоит из двух подсистем (два ортонормированных наборов векторов состояния $|\phi_i\rangle$ и $|\psi_j\rangle$ описывают две части системы) , то ее можно представить в виде разложения Шмидта:

 $|\Phi\rangle = \sum_{i,j} c_{i,j} |\phi_i\rangle |\psi_j\rangle \Rightarrow |\Phi\rangle = \sum_i^k \lambda_i |i_{\varphi}\rangle |i_{\psi}\rangle$ (ρ = $\sum p_i |i\rangle\langle i|$, ρ = $\sum p_j |j\rangle\langle j|$ - матрицы плотности подсистем)

Где λ_i - неотрицательные числа (коэффициенты Шмидта), удовлетворяющие условию $\sum_i \lambda_i^2$ =1, а наборы базисных состояний i_{Φ} , i_{Ψ} образуют ортонормированную систему.

Число **ненулевых** значений коэффициентов Шмидта λ_i называется числом Шмидта k для вектора состояния $|\Phi\rangle$ Чистое двухчастичное состояние считается запутанным тогда, когда число Шмидта k > 1.

Критерий Переса-Городецкого

Переса – Городецкого является необходимым условием для объединенной матрицы плотности двух квантовомеханических систем.

Согласно критерию Переса-Городецкого, для того, чтобы между двумя системами была запутанность необходимо и достаточно, чтобы у частично транспонированной матрицы плотности системы существовало хотя бы одно отрицательное собственное значение:

Научная сессия секции ядерной физики ОФН РАН, 3.04.2024

Systematic uncertainties

Systematic uncertainties include three categories: modelling uncertainties on the $t^{-}t$ production and decay, modelling uncertainties on the backgrounds, and detector-related uncertainties for both the $t^{-}t$ signal and the SM backgrounds. Each source of systematic uncertainty can result in a different calibration curve, as it changes the shape of cos φ either at particle level and / or at detector level.

Systematic source	$\Delta D_{\text{observed}}(D = -0.547)$	ΔD (%)	$\Delta D_{\text{expected}}(D = -0.470)$	ΔD (%)
Signal Modelling	0.017	3.2	0.015	3.2
Electrons	0.002	0.4	0.002	0.4
Muons	0.001	0.1	0.001	0.1
Jets	0.004	0.7	0.004	0.8
<i>b</i> -tagging	0.002	0.4	0.002	0.4
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.3	0.002	0.4
Backgrounds	0.010	1.8	0.009	1.8
Total Statistical Uncertainty	0.002	0.3	0.002	0.4
Total Systematic Uncertainty	0.021	3.8	0.018	3.9
Total Uncertainty	0.021	3.8	0.018	3.9

Матрица плотности $t\bar{t}$

 $g(p_1)+g(p_2) \rightarrow t(k_1, s_1)+\overline{t}(k_2, s_2)$

 $q(p_1) + \overline{q}(p_2) \rightarrow t(k_1, s_1) + \overline{t}(k_2, s_2)$

Матрица плотности для этих процессов может быть записана в виде:

$$\begin{split} R^{pr}_{\alpha_1\alpha_2,\beta_1\beta_2,} &= \overline{\Sigma} \langle t(k_1,\alpha_2), \overline{t}(k_2,\beta_2) | T | a(p_1), b(p_2) \rangle^* \\ &\times \langle t(k_1,\alpha_1), \overline{t}(k_2,\beta_1) | T | a(p_1), b(p_2) \rangle \end{split}$$

 $pr \equiv a, b = gg, q\bar{q}$ - механизмы рождения $t\bar{t}$ -*пар* $t(k_1, \alpha_2), \bar{t}(k_2, \beta_2)$ - волновые функции топ, анти-топ кварков α, β - helicity топ и анти-топ кварков. Усреднение проводится по всем спиновым и цветовым состояниям начальных глюонов (кварков).

Bernreuther, Heisler, Si, JHEP 1512, 026 (2015)

Матрица плотности $t\overline{t}$

 $R^{pr}_{\alpha_1\alpha_2,\beta_1\beta_2,} = \overline{\Sigma} \langle t(k_1,\alpha_2), \overline{t}(k_2,\beta_2) | T | a(p_1), b(p_2) \rangle^* \\ \times \langle t(k_1,\alpha_1), \overline{t}(k_2,\beta_1) | T | a(p_1), b(p_2) \rangle$

Матрицу R_I можно записать в виде:

$$R_{pr} = f_{pr} \left[A^{pr} \mathbf{I} \otimes \mathbf{I} + \widetilde{B}_{i}^{pr+} \sigma^{i} \otimes \mathbf{I} + \widetilde{B}_{i}^{pr-} \mathbf{I} \otimes \sigma^{i} + \widetilde{C}_{ij}^{pr} \sigma^{i} \otimes \sigma^{j} \right]$$
$$f_{gg} = \frac{(4\pi\alpha_{s})^{2}}{N_{c}(N_{c}^{2}-1)} \qquad f_{q\bar{q}} = \frac{(N_{c}^{2}-1)(4\pi\alpha_{s})^{2}}{N_{c}^{2}}$$

$$|M|^2 \propto \mathbf{A} + \mathbf{B}^+ \cdot \mathbf{s}_1 + \mathbf{B}^- \cdot \mathbf{s}_2 + \mathbf{C}_{ij} \, \mathbf{s}_{1i} \, \mathbf{s}_{2j}$$

где: σ^i - матрицы Паули N_c -число цветных состояний I – единичные матрицы A – неполяризованное сеченние $\tilde{B}_i^{I\pm}, \tilde{C}_{ij}^{I}$ - поляризация и коэффициенты корреляции

В_а, В_b- поляризация (a,b = k,r,n) С(a,b)- коэффициенты корреляции (+) (-) обозначения для топ анти-топ кварков

Bernreuther, Heisler, Si, JHEP 1512, 026 (2015)

Современный статус исследований квантовой запутанности

- Изучения квнтовой запутанности проводились в различных экспериментах, с использованием:
 - фотонов: A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).
 - атомов: E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 (1997).
 - мезонов: A. Go et al. (Belle), Phys. Rev. Lett. 99, 131802 (2007), arXiv:quant-ph/0702267 [QUANT-PH].
 - Нейтрино: J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, Phys. Rev. Lett. 117, 050402 (2016).
 - В 2022 году Ален Аспе, Джон Френсис Клаузер и Антон Цайлингер
 - •
 - Никогда не измерялось для пары кварков !!!

Triggers

Year	Trigger	
Electron triggers		
2015	e24_lhmedium_L1EM20VH, e60_lhmedium, e120_lhloose	
2016	e26_lhtight_nod0_ivarloose, 60_lhmedium_nod0, e140_lhloose_nod0	
2017	e26_lhtight_nod0_ivarloose, 60_lhmedium_nod0, e140_lhloose_nod0	
2018	e26_lhtight_nod0_ivarloose, 60_lhmedium_nod0, e140_lhloose_nod0	
Muon triggers		

2015	mu20_iloose_L1MU15, mu50
2016	mu26_ivarmedium, mu50
2017	mu26_ivarmedium, mu50
2016	mu26_ivarmedium, mu50

Helicity basis

Helicity basis: {k̂, r̂, n̂}:
k̂ - direction of the top in the tt̄ CM frame.
p̂ - direction of the beam.
cos Θ = k̂ · p̂.
r̂ = (p̂ - cos Θk̂)/sin Θ.
n̂ = r̂ × k̂.

Peres-Horodecki criterion

Пусть теперь микросистема состоит из двух подсистем "A" и "B". Тогда, если состояние микросистемы сепарабельно, то ее матрица плотности имеет вид:

$$\hat{\rho} = \sum_{l} W_{l} \left(\hat{\rho}_{l}^{(A)} \otimes \hat{\rho}_{l}^{(B)} \right)$$

Теперь транспонируем все матрицы плотности $\hat{\rho}_l^{(B)}$ "В". Тогда получим новую матрицу

$$(\hat{\rho})^{T_B} =_l W_l \left(\hat{\rho}_l^{(A)} \otimes \hat{R}_l^{(B)} \right)$$

Такая операция называется **частичным транспонированием** оператора $\hat{\rho}$. Можно проверить, что матрица $(\hat{\rho})^{T_B}$ удовлетворяет всем условиям, которые накладываются на матрицы плотности.

Лекции Никитина Н.В.:

Reweighting technique

• Each event is reweighed (at truth level):

$$w = \frac{1 - D(m_{t\bar{t}}) \cdot (\frac{D_{rew}}{D}) \cdot \cos \varphi_{\ell\ell}}{1 - D(m_{t\bar{t}}) \cdot \cos \varphi_{\ell\ell}}, \frac{D_{rew}}{D} = 0.0, 0.5, 0.7$$

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\varphi_{\ell\ell}} = \frac{1}{2}\cdot(1-D\cdot\cos\varphi_{\ell\ell})$$

- D is the trace of the correlation matrix.
- D is different for each value of mtt
- In order to calculate D, we take 10 GeV bins in mtt , using all of the truth events in our nominal sample.
- In each bin we calculate D by ftting the $cos(\phi)$ distribution

$$D_{\Omega}(x) = x_0 + x_1 \cdot x^{-1} + x_2 \cdot x^{-2} + x_3 \cdot x^{-3}$$

Квантовая запутанность

- Запутанными состояниями (англ. "entangled states") называются такие состояния, в которых определенные характеристики/наблюдаемые входящих в них микросистем связаны ("запутаны"или "сцеплены") между собой при помощи какого-либо закона сохранения, т.е. состояние одного объекта нельзя описать независимо от другого.

Перевзвеска

Чтобы проверить альтернативные гипотезы, мы должны изменить D. Альтернативный подход: каждое событие перевзвешивается (на партонном уровне). Для каждого интервала $m(t\bar{t})$ при этом сохраняется линейность по $\cos(\phi)$.

Почему интересно исследовать квантовую запутанность с помощью спиновых корреляций топ кварков

- так как время жизни мало, то топ распадается до процесса адронизации 5×10⁻²³ s и декорреляции спинов 10⁻²¹ s , т.о. передает информацию о спине продуктам распада ⇒ направление вылета лептонов коррелирует с направлением спина топ кварка
- Канал распада на лептон + струи имеет высокую анализирующую способность.
- При пороговом рождении пара топ-антитоп кварков рождается в синглетном состоянии (arXiv: 0812.0919), которое является "максимально запутанным".

$$\rho^{gg}(2m_t, \hat{k}) = |\Psi_0\rangle \langle \Psi_0|, \ |\Psi_0\rangle = \frac{|\uparrow \hat{n} \downarrow \hat{n} \rangle - |\downarrow \hat{n} \uparrow \hat{n} \rangle}{\sqrt{2}}$$

Метод калибровочной кривой

- Устанавливает связь между наблюдаемыми данными и значением на уровне частиц (до реконструкции но после адронизации).
- Измеряется значение D по данным (наблюдаемое D)
- Сопоставляется соответствующее значение уровня частиц (скорректированное D)
- Значимость это разница между результатом и нулевой гипотезой.
- Данные корректируются с учетом эффектов детектора до уровня частиц с использованием калибровочной кривой как в области сигнала, так и в контрольных областях, после вычета ожидаемого фона.

$t\bar{t}$ kinematic reconstruction

- Dilepton channel: 6 kinematical equations and 6 unknowns which are ν and $\overline{\nu}$ momenta components.
- Equation can be solved analytically
- Sonenshein method is perform a sequential solution of kinematic equations to solve for the neutrino momenta.
- Ellipse method is a geometric approach to analytically solving equations of constraint on the decay of top quarks involving leptons using linear algebra techniques.
- **NW method** $\eta(\nu)$ and $\eta(\overline{\nu})$ are scanned in full η range to find the optimal solution.

Квантовая запутанность

• Квантовая запутанность — это явление, при котором квантовое состояние каждой частицы не может быть описано независимо от состояния другой.

- Измерение параметра одной частицы сопровождается мгновенным прекращением запутанного состояния другой, что может находиться в логическом противоречии с принципом локальности, который говорит о том, что на объект влияет только его непосредственное окружение, но при этом информация не передаётся и теория относительности не нарушается.
- Исследования квантовой запутанности проводились в различных экспериментах, с использованием фотонов, атомов, мезонов, нейтрино, но она никогда не изучалась для пары кварков !!!
- В 2022 году Ален Аспект, Джон Клаузер и Антон Цайлингер получили нобелевскую премию за эксперименты с запутанными фотонами, установление нарушения неравенств Белла и исследования в области квантовой информатики.

Quantum Entanglement

• A quantum state of two subsystems A and B is separable when its density matrix ρ can be expressed as a convex sum

$$\rho = \sum_{i} p_i \rho_A^i \otimes \rho_B^i$$

If the state is not separable, it is named entangled

The Peres-Horodecki criterion provides a necessary and sufficient condition for entanglement in two-qubit systems:

Take the transpose of indices associated only to Bob (or Alice)

$$\rho^{T2} = \sum_i p_i \rho^i_A \otimes (\rho^i_B)^T$$

For a separable system, ρ^{T2} results in a non-negative operator

 \longrightarrow If ρ^{T2} displays at least one negative eigenvalue, the system is entangled