

Научная сессия секции ядерной физики ОФН РАН 1 – 5 апреля 2024

Поиск аксионов и аксионоподобных частиц в экспериментах с частицами Стандартной Модели

Александр Силенко

Объединенный институт ядерных исследований

3 апреля 2024

OUTLINE

- Dark matter axions: preliminary remarks
- Particle spin dynamics caused by generally accepted axion interactions
- New manifestations of axion-photon coupling
- Summary

Dark matter axions: preliminary remarks

CP-noninvariant interactions caused by dark matter axions are time-dependent. Like photons, moving axions form a wave which pseudoscalar field reads

$$a(r,t) = a_0 \cos \left(E_a t - p_a \cdot r + \phi_a \right).$$

Here $E_a = \sqrt{m_a^2 + p_a^2}$, p_a , and m_a are the energy, momentum, and mass of axions . The Earth motion through our galactic define its velocity relative to dark matter, $V \sim 10^{-3}c$. Therefore, $|p_a| \approx m_a V$ and axions and axion-like particles have momenta of the order of $|\nabla a| \sim 10^{-3} \dot{a}c$.

We suppose that axion-like dark matter interacts like the axion. The Peccei-Quinn theory introduces a new anomalous U(1) symmetry to the Standard Model along with a new pseudoscalar field which spontaneously breaks the symmetry at low energies, giving rise to an axion that suppresses the problematic CP violation.

Strong CP problem and dark matter

QCD Lagrangian: contains CP violating term:

$$\mathcal{L}_{CP} = -\frac{g^2}{32\pi^2} \Theta \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}$$
Neutron electric dipole moment
$$d_n \approx \Theta \, 10^{-16} \mathrm{e} \cdot \mathrm{cm} < 10^{-25} \mathrm{e} \cdot \mathrm{cm}$$
Problem: why so small?
$$\Theta < 10^{-9}$$

Peccei&Quinn'77, Wiczeck'78, Weinberg'78

The tilde denotes a dual tensor

Postulate new global U(1) symmetry - Peccei-Quinn symmetry Re-interpret Θ as a scalar field *a* - axion - Nambu-Goldstone boson

$$\mathcal{L}_{CP} = -\frac{g^2}{32\pi^2} \Theta \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu} \Longrightarrow \mathcal{L}_{CP} = -\frac{g^2}{32\pi^2} \frac{a(x)}{f_a} \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

General relativity effects in precision spin experimental tests of fundamental symmetries

S N Vergeles, N N Nikolaev, Yu N Obukhov, A Ya Silenko, O V Teryaev

First, we consider spin dynamics caused by generally accepted axion interactions and effects.

Eur. Phys. J. C (2022) 82:856 https://doi.org/10.1140/epjc/s10052-022-10827-7 **THE EUROPEAN PHYSICAL JOURNAL C**

Regular Article - Theoretical Physics

Relativistic spin dynamics conditioned by dark matter axions

A. J. Silenko^{1,2,3,a}

Second, we analyze new manifestations of axion-photon coupling.

A. J. Silenko, Fictitious oscillatory magnetic charges and electric dipole moments induced by axion-photon coupling, arXiv:2305.19703

The result of axion-gluon interactions is an oscillating EDM of a strongly interacting particle like a nucleon:

$$\mathcal{L}_{aEDM} = -\frac{i}{2}g_d a \sigma^{\mu\nu} \gamma^5 F_{\mu\nu}$$

where the EDM is equal to $d_a = g_d a$ and g_d is proportional to g_{agg}

The axion-photon interaction leads to mixing of electric and magnetic fields and results in the Lagrangian density

$$\mathcal{L}_{\gamma} = -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \widetilde{F}^{\mu\nu} = g_{a\gamma\gamma} a E \cdot B$$

Another contribution to the total Lagrangian density (Pospelov et al.) is defined by the gradient interaction (axion wind effect):

$$\mathcal{L}_N = g_{aNN} \gamma^\mu \gamma^5 \partial_\mu a$$

M. Pospelov, A. Ritz, and M. Voloshin, Phys. Rev. D 78, 115012 (2008); V. A. Dzuba, V. V. Flambaum, and M. Pospelov, Phys. Rev. D 81, 103520 (2010). 7

Particle spin dynamics caused by generally accepted axion interactions

The Lagrangian $L = \psi \mathcal{L} \psi$ describing electromagnetic interactions of a Dirac particle with allowance for a pseudoscalar axion field is defined by

$$\mathcal{L} = \gamma^{\mu} (i\hbar\partial_{\mu} - eA_{\mu}) - m + \frac{\mu'}{2} \sigma^{\mu\nu} F_{\mu\nu} - i\frac{d}{2} \sigma^{\mu\nu} \gamma^{5} F_{\mu\nu} + g_{aNN} \gamma^{\mu} \gamma^{5} \Lambda_{\mu},$$
$$\Lambda_{\mu} = \partial_{\mu} a, \qquad \gamma^{5} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix},$$

where μ' and d are the anomalous magnetic and electric dipole mo-

ments. In the last term, $a = a_0 \cos(m_a t - p_a \cdot r)$ is the axion field.

The corresponding Hamiltonian in the Dirac representation reads

$$\mathcal{H} = \beta m + \boldsymbol{\alpha} \cdot (\boldsymbol{p} - e\boldsymbol{A}) + e\Phi + \mu'(i\boldsymbol{\gamma} \cdot \boldsymbol{E} - \boldsymbol{\Pi} \cdot \boldsymbol{B})$$
$$-d(\boldsymbol{\Pi} \cdot \boldsymbol{E} + i\boldsymbol{\gamma} \cdot \boldsymbol{B}) - g_{aNN}(\boldsymbol{\gamma}^{5}\Lambda_{0} + \boldsymbol{\Sigma} \cdot \boldsymbol{\Lambda}).$$

9

The relativistic Foldy-Wouthuysen Hamiltonian has the form

$$\mathcal{H}_{FW} = \mathcal{H}_{1} + \mathcal{H}_{2} + \mathcal{H}_{3},$$

$$\mathcal{H}_{1} = \beta \epsilon' + e\Phi - \frac{1}{2} \left\{ \left(\frac{\mu_{0}m}{\epsilon'} + \mu' \right), \mathbf{\Pi} \cdot \mathbf{B} \right\}$$

$$+ \frac{1}{4} \left\{ \left(\frac{\mu_{0}m}{\epsilon' + m} + \mu' \right) \frac{1}{\epsilon'}, \left(\boldsymbol{\Sigma} \cdot [\boldsymbol{\pi} \times \mathbf{E}] - \boldsymbol{\Sigma} \cdot [\mathbf{E} \times \boldsymbol{\pi}] - \nabla \cdot \mathbf{E} \right) \right\}$$

$$+ \frac{\mu'}{4} \left\{ \frac{1}{\epsilon'(\epsilon' + m)}, \left[(\mathbf{B} \cdot \boldsymbol{\pi})(\mathbf{\Pi} \cdot \boldsymbol{\pi}) + (\mathbf{\Pi} \cdot \boldsymbol{\pi})(\boldsymbol{\pi} \cdot \mathbf{B}) + 2\pi(\boldsymbol{\pi} \cdot \boldsymbol{j} + \boldsymbol{j} \cdot \boldsymbol{\pi}) \right] \right\}$$
where \mathcal{H}_{1} defines the *CP*-conserving part of the total Hamiltonian $\mathcal{H}_{FW}, \ \mu_{0} = e\hbar/(2m)$ is the Dirac magnetic moment, $\epsilon' = \sqrt{m^{2} + \pi^{2}}, \text{ and } \ \mathbf{j} = \frac{1}{4\pi} \left(c \, \nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} \right)$ is the density of external electric current.

$$\begin{aligned} \mathcal{H}_2 &= -d\mathbf{\Pi} \cdot \mathbf{E} + \frac{d}{4} \left\{ \frac{1}{\epsilon'(\epsilon' + m)}, \left[(\mathbf{E} \cdot \boldsymbol{\pi})(\mathbf{\Pi} \cdot \boldsymbol{\pi}) + (\mathbf{\Pi} \cdot \boldsymbol{\pi})(\boldsymbol{\pi} \cdot \mathbf{E}) \right] \right\} \\ &- \frac{d}{4} \left\{ \frac{1}{\epsilon'}, \left(\mathbf{\Sigma} \cdot [\boldsymbol{\pi} \times \mathbf{B}] - \mathbf{\Sigma} \cdot [\mathbf{B} \times \boldsymbol{\pi}] \right) \right\}, \end{aligned}$$

The terms describing the direct interaction with the axion field are given by

$$\mathcal{H}_{3} = \frac{g_{aNN}}{2} \left\{ \frac{\mathbf{\Pi} \cdot \mathbf{p}}{\epsilon'}, \Lambda_{0} \right\} - \frac{g_{aNN}}{2} \left[\left\{ \frac{m}{\epsilon'}, \mathbf{\Sigma} \cdot \mathbf{\Lambda} \right\} + \frac{(\mathbf{\Sigma} \cdot \mathbf{p})}{\epsilon'(\epsilon' + m)} (\mathbf{p} \cdot \mathbf{\Lambda}) + (\mathbf{\Lambda} \cdot \mathbf{p}) \frac{(\mathbf{\Sigma} \cdot \mathbf{p})}{\epsilon'(\epsilon' + m)} \right].$$

-

In the semiclassical approximation, the angular velocity of the spin rotation has the form

$$\begin{split} \boldsymbol{\Omega} &= \boldsymbol{\Omega}_{TBMT} + \boldsymbol{\Omega}_{EDM} + \boldsymbol{\Omega}_{axion},\\ \boldsymbol{\Omega}_{TBMT} &= -\frac{e}{2m} \left\{ \left(g - 2 + \frac{2}{\gamma} \right) \boldsymbol{B} - \frac{(g - 2)\gamma}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \boldsymbol{B}) \right.\\ &\left. - \left(g - 2 + \frac{2}{\gamma + 1} \right) (\boldsymbol{\beta} \times \boldsymbol{E}) \right\},\\ \boldsymbol{\Omega}_{EDM} &= -\frac{e\eta}{2m} \left[\boldsymbol{E} - \frac{\gamma}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \boldsymbol{E}) + \boldsymbol{\beta} \times \boldsymbol{H} \right],\\ \boldsymbol{\Omega}_{axion} &= 2g_{aNN} \left(\Lambda_0 \boldsymbol{\beta} - \frac{\Lambda}{\gamma} - \frac{\gamma}{\gamma + 1} (\boldsymbol{\beta} \cdot \boldsymbol{\Lambda}) \boldsymbol{\beta} \right),\\ \text{where } \boldsymbol{\Omega}_{TBMT} \text{ is determined by the Thomas-Bargmann-Michel-}\\ \text{Telegdi equation and the factors } g &= 4(\mu_0 + \mu')m/e \text{ and } \eta = 4dm/e\\ \text{ are introduced.} \end{split}$$

The newly added first term in Ω_{axion} is three orders of magnitude larger than the second term. This fact significantly increases an importance of a search for a possible manifestation of the axion field in storage ring experiments.

A. J. Silenko, Relativistic spin dynamics conditioned by dark matter axions, Eur. Phys. J. C 82, 856 (2022).

New manifestations of axion-photon coupling

Witten effect

PHYSICS LETTERS

8 October 1979

Volume 86B, number 3,4 DYONS OF CHARGE $e\theta/2\pi$

E. WITTEN ¹

CERN, Geneva, Switzerland

If a non-zero vacuum angle θ is the only mechanism for *CP* violation, the electric charge of the monopole is exactly calculable and is $-\theta e/2\pi$, plus an integer: $q=ne - \theta e/2\pi$

It has been found much later

ChunJun Cao and A. Zhitnitsky, Axion detection via topological Casimir effect, Phys. Rev. D 96, 015013 (2017);

A. Zhitnitsky, A few thoughts on and the electric dipole moments, Phys. Rev. D 108, 076021 (2023).

that magnetic dipole moment μ of any microscopical onfiguration in the background of θ_{opp} generates the electric dipole moment d_{i}

configuration in the background of θ_{QED} generates the electric dipole moment $\langle d_{\text{ind}} \rangle$ proportional to θ_{QED} , i.e., $\langle d_{\text{ind}} \rangle = -\frac{\theta_{\text{QED}} \cdot \alpha}{\pi} \mu$. We also argue that many CP odd correlations such as $\langle \vec{B}_{\text{ext}} \cdot \vec{E} \rangle = -\frac{\alpha \theta_{\text{QED}}}{\pi} \vec{B}_{\text{ext}}^2$ will be generated in the background of an external magnetic field \vec{B}_{ext} as a result of the same physics.

- There is also the new idea to use electric-magnetic duality to motivate the possible existence of non-standard axion couplings, which can both violate the usual quantization rule and exchange the roles of electric and magnetic fields in axion electrodynamics.
- In this case, an electrically charged particle acquires also a magnetic charge and becomes a dyon.
- B. Heidenreich, J. McNamara, and M. Reece, Non-standard axion electrodynamics and the dual Witten effect, arXiv: 2309.07951 [hep-ph] (2023).
- We can use this idea and find equations of motion of a particle with electric and magnetic charges and dipole moments (dyon) in electromagnetic fields.
- A. J. Silenko, Equation of spin motion for a particle with electric and magnetic charges and dipole moments, arXiv: 2309.04985 [hep-ph] (2023).

The Lorentz force F acting on the electric charge e and the Lorentz-like force F* acting on the magnetic charge e* are given by

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F} + \boldsymbol{F}^* = e(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B}) + e^*(\boldsymbol{B} - \boldsymbol{\beta} \times \boldsymbol{E}).$$

Equation of motion:

$$m\frac{du^{\mu}}{d\tau} = eF^{\mu\nu}u_{\nu} + e^{*}\widetilde{F}^{\mu\nu}u_{\nu}$$

An appearance of *fictitious* oscillatory magnetic charges and EDMs induced by axion-photon coupling has been recently proven in A. J. Silenko, Fictitious oscillatory magnetic charges and electric dipole moments induced by axion-photon coupling, arXiv: 2305.19703 [hep-ph] (2023). The distorted Lagrangian density is given by

$$\mathcal{L}' = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} = \mathcal{L} + \mathcal{L}_{\gamma}, \qquad \mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \mathcal{L}_{\gamma} = -\frac{g_{a\gamma\gamma}}{4} a(x) F_{\mu\nu} \widetilde{F}^{\mu\nu} = g_{a\gamma\gamma} a(x) E \cdot B,$$

where \mathcal{L} , $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, and A_{μ} are the Lagrangian density, the electromagnetic field tensor, and the four-potential without the axion field.

Lagrangians should describe not only the light field but also electric and magnetic fields of other origin.

$$\begin{split} \mathbf{E}' &= \mathbf{E} + \frac{g_{a\gamma\gamma}}{2} a(x) \mathbf{B}, \qquad \mathbf{B}' = \mathbf{B} - \frac{g_{a\gamma\gamma}}{2} a(x) \mathbf{E}, \\ \frac{d\pi}{dt} &= e\mathbf{E}' + \frac{e}{4} \left\{ \frac{1}{\epsilon}, \left(\pi \times \mathbf{B}' - \mathbf{B}' \times \pi \right) \right\} \end{split}$$
18

The corresponding quantum-mechanical equation of spin motion has the form

$$\begin{aligned} \frac{d\mathbf{\Pi}}{dt} &= \frac{1}{2} \left\{ \left(\frac{\mu_0 m}{\epsilon + m} + \mu' \right) \frac{1}{\epsilon}, \left[\mathbf{\Pi} \times \left(\mathbf{E}' \times \boldsymbol{\pi} - \boldsymbol{\pi} \times \mathbf{E}' \right) \right] \right\} \\ &+ \left\{ \left(\frac{\mu_0 m}{\epsilon} + \mu' \right), \left[\mathbf{\Sigma} \times \mathbf{B}' \right] \right\} \\ - \frac{\mu'}{2} \left\{ \frac{1}{\epsilon(\epsilon + m)}, \left([\mathbf{\Sigma} \times \boldsymbol{\pi}] (\boldsymbol{\pi} \cdot \mathbf{B}') + (\mathbf{B}' \cdot \boldsymbol{\pi}) [\mathbf{\Sigma} \times \boldsymbol{\pi}] \right) \right\}, \end{aligned}$$

where $\mu_0 + \mu' = \mu = eg\hbar s/(2mc)$, μ_0 and μ' are the normal (Dirac) and anomalous magnetic moments, s is the spin number, and Π is the polarization operator.

$$\begin{aligned} \frac{d\pi}{dt} &= e\left(E + \frac{\pi \times B}{\epsilon}\right) + e^*\left(B - \frac{\pi \times E}{\epsilon}\right) \\ &e^* = \frac{g_{a\gamma\gamma}}{2}a(x)e. \\ \Omega &= -\frac{e}{m}\left[\left(G + \frac{1}{\gamma}\right)B - \frac{G\gamma}{\gamma+1}(\beta \cdot B)\beta\right. \\ &- \left(G + \frac{1}{\gamma+1}\right)\beta \times E\right] + \frac{e^*}{m}\left[\left(G^* + \frac{1}{\gamma}\right)E\right. \\ &- \frac{G^*\gamma}{\gamma+1}(\beta \cdot E)\beta + \left(G^* + \frac{1}{\gamma+1}\right)\beta \times B\right], \\ \end{aligned}$$
where $\beta &= \pi/\epsilon, \gamma = \epsilon/m, G = (g-2)/2, g = 2mc\mu/(es), G^* = (g^* - 2)/2, \text{ and } g^* = -2mcd/(e^*s). \end{aligned}$

We can propose to study a passage of strongly decelerated electrons or positrons through a solenoid.

Equation for the angular velocity of spin motion:

$$\Omega = -\frac{e}{m} \left[\left(G + \frac{1}{\gamma} \right) B - \frac{G\gamma}{\gamma+1} (\beta \cdot B) \beta - \left(G + \frac{1}{\gamma+1} \right) \beta \times E \right] + \frac{e^*}{m} \left[\left(G^* + \frac{1}{\gamma} \right) E - \frac{G^*\gamma}{\gamma+1} (\beta \cdot E) \beta + \left(G^* + \frac{1}{\gamma+1} \right) \beta \times B \right].$$

Here $C = (q - 2)/2$, $q = 2m c \mu/(c q) - C^* - (q^* - 2)/2$

Here G = (g - 2)/2, $g = 2mc\mu/(es)$, $G^* = (g^* - 2)/2$, $g^* = -2mcd/(e^*s)$.

Summary

- The relativistic spin dynamics caused by generally accepted axion interactions has been rigorously described
- The direct axion-particle coupling (axion wind effect) results in the spin rotation about the radial axis
- The distortion of any electromagnetic field by the axion field takes place. As a result, electric and magnetic fields acquire oscillating magnetic components, respectively. One can also use the equivalent approach based on introducing fictitious oscillating magnetic charges and EDMs in undistorted electromagnetic fields

Thank you for your attention