

Исследование радиационных распадов каонов в эксперименте ОКА

В.Ф. Образцов, ИФВЭ НИЦ "КИ" эксперимент «ОКА» (ИФВЭ,ИЯИ РАН,ОИЯИ) " Сессия-конференция СЯФ ОФН РАН", Дубна, 01.04-05.04 2024

- ОКА пучок, детектор, данные
- $K^+ \rightarrow \mu^+ \nu \gamma$, измерение $F_V F_A$;
- \sim K⁺ \rightarrow e⁺ $\nu \pi^{0} \gamma, \mu^{+} \nu \pi^{0} \gamma$ проверка χ PT O(p⁴) Т-четность
-
Ч $K^+ \rightarrow \pi^+ \pi^- \gamma$, $\pi^+ \pi^0 \pi^0 \gamma$ проверка χPT

ОССС ОКА: Эксперимент с ВЧ-сепарированным К[±] пучком на У-70 ИФВЭ-ИЯИ-ОИЯИ

ВЧ- сепарация по схеме Панофского. Использует дефлекторы Карсруе-ЦЕРН. В ИФВЭ создана криогенная система, обеспечивающая охлаждение резонаторов сверхтекучим Не.

Параметры сверхпроводящ	их дефлекторов
Рабочая частота,(S-band)	2865 MHz
Длина волны, λ	~10.5 см
Длина дефлектора	2.74 м
Число ячеек/дефлектор	104
Среднее поле	~1(0.6)МВ/м
Рабочая температура	1.8 K

Импульс протонного пучка	а 50-60 ГэВ
Интенсивность р пучка	$7 \times 10^{12} \text{ ppp}$
Энергия вторичного пучка	12.5, 17.7 ГэВ
Длина канала	~200 м
Интенсивность К ⁺ в конце кан	ала ~ 0.4×10 ⁶
К ⁺ в пучке	12.5 - 18 %

Установка ОКА

- 1. Пучковый спектрометр: 1мм ПК, ~1500 каналов; Сцинтилляционные и Черенковские счетчики
- 2. Распадный объем с охранной системой: 12м; Вето: 670 сэндвичей свинец-сцинтиллятор 20* (5мм Sc+1.5 мм Pb), светосбор- WLS
- 3. ПК, ST, ДТ основного магнитного спектрометра: ~5000 кан. ПК (2 mm) + 1300 ST и ДТ(1 и 3 cm)
- 4. Матричный годоскоп ~300 каналов, светосбор WLS+SiPM
- 5. Магнит: апертура 200*140 см²
- 6. Гамма-детекторы: ГАМС-2000, БГД всего ~ 4000 счетчиков из свинцового стекла.
- 7. Мюонная идентификация: адронный калориметр ГДА-100 + 4 мюонных счетчика

Основной триггер	$S_1 \cdot S_2 \cdot S_3 \cdot \overline{C_1} \cdot C_2 \cdot \overline{S_{bk}} \cdot (\Sigma_{GAMS} > 2.5 GeV) \cup (2 \leq MH \leq 4)$
Триггера с пересчетом	$S_{1} \cdot S_{2} \cdot S_{3} \cdot \overline{C}_{1} \cdot C_{2} \cdot \overline{S}_{bk} / 10 \qquad S_{1} \cdot S_{2} \cdot S_{3} \cdot \overline{C}_{\overline{1}} \cdot C_{2} \cdot \overline{S}_{bk} \cdot \mu C / 4$
	Сеансы 2010-2013, 2016, 2018 $N_{K} \sim 5 \ge 10^{10}$
	Основные результаты:

 $K^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} \nu \pi^{\scriptscriptstyle 0}, K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu_s, K^{\scriptscriptstyle +} Cu \rightarrow K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} Cu , K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} a, K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \gamma , K^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} \nu \pi^{\scriptscriptstyle 0} \gamma, K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \pi^{\scriptscriptstyle 0} \gamma, K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \gamma, K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0} \gamma)$

RF1 дефлектор в канале

"Хвост" канала

Охранная система распадного объема

Общий вид установки ОКА

Straw и ДТ камеры, матричный годоскоп, электромагнитный калориметр ГАМС-2000

Исследование распада $K^+ \rightarrow \mu^+ \nu \gamma$

Основные источники фона

$$A_{IB} = \frac{\alpha}{2\pi} \Gamma_{K\mu 2} \frac{1}{(1-r)^2}; \quad A_{SD} = \frac{\alpha}{2\pi} \Gamma_{K\mu 2} \frac{1}{4r(1-r)^2} \left(\frac{m_K}{f_K}\right)^2; \quad A_{INT} = \frac{\alpha}{2\pi} \Gamma_{K\mu 2} \frac{1}{(1-r)^2} \frac{m_K}{f_K}; \quad r = \frac{m_\mu}{m_K}$$

$$\chi PTO(p^{4}): F_{V} = \frac{\sqrt{2} M_{K}}{8 \pi^{2} F_{\pi}} = 0.096; F_{A} = \frac{4 \sqrt{2} M_{K}}{F_{\pi}} (L_{9}^{r} + L_{10}^{r}) = 0.042; F_{V} - F_{A} = 0.054$$

$$\chi PTO(p^{6}): F_{V} = F_{V}(0)(1 + \lambda(1 - x)); F_{V}(0) = 0.082; \lambda = 0.4; F_{A} = 0.034$$

VALUE	(CL%	EVTS	DOCUMENT ID	1	TECN	CHG
-0.21 ± 0.06			22K	DUK	2011	ISTR	-
•••We do n	ot use the	e following data	for averages, fits, lim	its, etc. • • •			
-0.24 to 0.04	4 9	90	2588	ADLER	2000B	B787	+
-2.2 to 0.6	9	90		DEMIDOV	1990	XEBC	
-2.5 to 0.3	9	90		AKIBA	1985	SPEC	
References:							
DUK	2011	PL B695 59	Extraction of Ka	on Formfactors from	$K^{-} ightarrow \mu u \gamma$ C	ecay at ISTRA	A+ Setup
ADLER	2000B	PRL 85 2256	Measurement of	of Structure-Depende	nt $K^+ o \mu^+ u$	$\gamma_\mu \gamma$ Decay	
DEMIDOV	1990	SJNP 52 1000	6 Measurement of	of the $K^+ o \mu^+ u \gamma$ Dec	cay Probabili	ty	
AKIBA	1985	PR D32 2911	A Study of the F	Radiative Decay K ⁺ -	$ ightarrow \mu^+ u_\mu \gamma$		

У

$K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \, \gamma \,$ отбор событий, анализ

1 пучковый К⁺ трек

0

- I вторичный трек µ in ГАМС, ГДА-100 и µС
- Вершина внутри DV
- 1 е.т. ливень в ГАМС Е >1 ГэВ не ассоциированный с треком
- $E_{GS} < 10 \text{ M} \Rightarrow B$; $E_{EGS} < 100 \text{ M} \Rightarrow B$

Процедура фитирования_

- Строим у-распределение; выбираем $\{y_{\min}, y_{\max}\}$; строим $\cos \theta_{\mu\gamma}^*$; выбираем \cos_{\min} ; строим M_{K}
- Одновремеррый фит 3 гистограм, параметры- N_{sig}, N_{bkg} форма сигнала(IB) и фона из МК
- Для корректного вычисления ошибок, фитируем только M_к plot с начальными параметрами одновременного фита.

 χ PT O(p⁶) fit: Fv=Fv(0)(1+ λ (1-x)); F_v(0)=0.082; λ =0.4 F_A=0.034 • Фит с фиксированными χ PT O(p⁶) параметрами: χ^2 /NDF=29.0/9 • F_v(0) и F_A из χ PT O(p⁶), λ -свободный параметр $\rightarrow \lambda$ =2.23±0.44; χ^2 /NDF=11.8/8 • F_v(0) из χ PT O(p⁶), λ , F_A-свободные параметры \rightarrow (корреляционный плот) ° DUMA

Систематика

G	Не идеальное описани сигнала и фона MK: $1.3 < \chi^2 / NDF < 1.7$ Стат ошибка в бинах N_{DATA} / N_{IB} множитс	ся на $\sqrt{(\chi^2/NDF)}$.
	Получаем Fv-Fa=0.138±0.026 (номинал 0.134±0.021)	$\rightarrow \sigma_{shape} = 0.012$
G	Ширина -х- полосы: Fv-Fa определяется для 2 значений ширины $\Delta x=0.035$, $\Delta x=0.07$ (номинал 0.05)	$\rightarrow \sigma_{\Delta x}$ =0.008
Q	Число -х- полос: убираем один крайний левый (правый) бин.	$\rightarrow \sigma_x = 0.005$
Q	Отбор по -у- в полосах: вместо максимума по $S/\sqrt{(S+B)}$ используем FWHM из сигнального МК	$\rightarrow \sigma_{y} = 0.005$
G	Учет INT+ : Добавляем в фит INT+ . Используем результат BNL E787 Fv+Fa = 0.165±0.013	$\rightarrow \sigma_{INT^+} = 0.018$
		$\sigma_{_{\rm SYS}}=0.024$

"OKA"	$F_v - F_A = 0.135 \pm 0.017_{stat} \pm 0.024_{syst}$
$\chi PT O(p^4)$	$F_{V} = \frac{\sqrt{2} M_{K}}{8 \pi^{2} F_{\pi}} = 0.096 \; ; F_{A} = \frac{4 \sqrt{2} M_{K}}{F_{\pi}} \left(L_{9}^{r} + L_{10}^{r} \right) = 0.042$
	$F_{v}-F_{A} = 0.054$ различие 2.8 о
$\chi PT O(p^6)$	эксп. точка вне 3σ-эллипса
Lattice calculations: $F_V - F_A = (0.083 \pm 0.000)$	013) - $(0.019 \pm 0.012) \cdot x_{\gamma}$ Phys. Rev. D 103, 014502 (2021) (2 σ)

ExA (gauge non-local effective chiral action) S.Shim et al.,
 F_v - $F_A = 0.08$ Phys.Lett. B795 (2019)438-445
(1.9 σ)Pезультат согласуется с ИСТРА+ :
И с (модельно-зависимым) результатом BNL E865 (K⁺ $\rightarrow \mu^+ \nu e^+ e^-$)Phys.Lett. B795 (2019)438-445
(1.9 σ)F_v-F_A = 0.021 \pm 0.04_{stat} \pm 0.04_{syst} (1.17 σ)
 F_v - $F_A = 0.077 \pm 0.026$ 1.17 σ)

Ожидается удвоение статистики к концу 2024

Исследование распада $K^+ \rightarrow \pi^0 \mu \nu \gamma (K \mu 3 \gamma)$

 Γ_{19}/Γ

Этот распад дополняет Ke3 γ , исследованный OKA и NA62 . OKA публикации: JETP Lett. v.116 No 9 (2022), EPJC(2021) 81. К⁺µ3 γ был обнаружен ИСТРА+ и KEK K470 в 2006 и исследовался BNL E787 в 2010. Аналогичный распад K⁰ обнаружен NA48 в 1998 и позже изучался KTeV в 2005 Имеются детальные вычисления Br и T-нечетной асимметрии: $\xi = \vec{p}_{\gamma} \cdot (\vec{p}_l \times \vec{p}_{\pi})/m_K^3$ $A_{\xi} = \frac{N_{\xi>0} - N_{\xi<0}}{N_{z>0} + N_{z<0}}$

$\Gamma(~K^+ o \pi^0 \mu^+ u_\mu \gamma ~) / \Gamma_{ m total}$

VALUE (10^{-5})		CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$\textbf{1.25} \pm \textbf{0.25}$	OUR AVERAGE							
$1.10 \pm 0.32 \pm 0.05$			23	¹ ADLER	2010	B787		$30 < E_\gamma < 60$ MeV
$1.46 \pm 0.22 \pm 0.32$			153	² TCHIKILEV	2007	ISTR	-	$30 < E_\gamma < 60~{ m MeV}$
 We do not use the following data for averages, fits, limits, etc. 								
$2.4 \pm 0.5 \pm 0.6$			125	SHIMIZU	2006	K470	+	$E_\gamma >$ 30 MeV; $\Theta_{\mu\gamma} > 20^\circ$
<6.1		90	0	LIUNG	1973	HLBC	+	$E(\gamma$) $>$ 30 MeV

¹ Value obtained from B($K^+ \rightarrow \pi^0 \mu^+ \nu_\mu \gamma$) = (2.51 ±0.74 ±0.12) × 10⁻⁵ obtained in the kinematic region $E_\gamma > 20$ MeV, and then theoretical $K_{\mu3\gamma}$ spectrum has been used. Also B($K^+ \rightarrow \pi^0 \mu^+ \nu_\mu \gamma$) = (1.58 ±0.46 ±0.08) × 10⁻⁵, for $E_\gamma > 30$ MeV and $\theta_{\mu\gamma} > 20^\circ$, was determined.

 2 Obtained from measuring B($K_{\mu3\gamma}$) / B($K_{\mu3\gamma}$) and using PDG 2002 value B($K_{\mu3}$) = 3.27%. B($K_{\mu3\gamma}$) = (8.82 ±0.94 ±0.86) ×10^{-5} is obtained for 5 MeV < E_{γ} < 30 MeV.

К13γ теория, эксперимент $E_{\gamma}^{*}>$ 30 MeV $\theta_{\mu\gamma}>$ 20 °	Br Kμ3γ x10 ⁵	Br Ke3γ x10 ⁴	Α _ξ Κμ3γ QED FSI	Aξ Ke3γ QED FSI
Bijnens et al. (1993) χPT O(p ⁶)	1.9	2.8		
Braguta et al. (2002) $\chi PT O(p^4)$	2.15	3.18	1.14x10 ⁻⁴	-0.59 x10 ⁻⁴
Khriplovich, Rudenko (2011)	1.81 ± 0.2	2.72 ± 0.1	2.38 x 10 ⁻⁴	-0.30 x 10 ⁻⁴
NA62(2023)		3.087 ± 0.037		< 8.6 x 10 ⁻³
OKA (2021), (2022)	2.0±0.1	2.98 ± 0.094	<0.1	< 13 x 10 ⁻³

Из Braguta et al. (2003) для НФ $K\mu 3\gamma$:

 $A_{\xi} = -(3.6 \cdot 10^{-3} \, Im(g_s) + 1.2 \cdot 10^{-2} \, Im(g_p) + 1.0 \cdot 10^{-2} \, Im(g_v + g_a))$

Чувствительность распада КеЗү к НФ заметно меньше :

 $A_{\xi} = -(2.9 \cdot 10^{-6} \, Im(g_s) + 3.7 \cdot 10^{-5} \, Im(g_p) + 3.0 \cdot 10^{-3} \, Im(g_v + g_a))$

Отбор событий

- 1 пучковый К+ трек
- 1 вторичный трек µ in ГАМС, ГДА-100 и µС
- Вершина распада внутри DV
- 3 е.т. ливня в ГАМС с E > 0.6 ГэВ не ассоц. с треком
- Выделение π^0 |m_{γγ} m_{π0} | < 15 MeV (лучшая комбинация)</p> \mathbf{G} E_{miss} > 0.5 ГэВ
 - Фотон в ГАМС (не на границах)
- \blacksquare E_{GS} < 10 МэВ ; E_{бгд} < 100 МэВ
- Нет дополнительных сегментов треков после магнита
- Miss-масса (P_K P_{π^+} P_{π^0})² < 0.014 GeV² (против K $\rightarrow \pi^+ \pi^0 \pi^0$)

9/14

Исследование распада $\mathrm{K}^{\scriptscriptstyle +} o \pi^0 \mu \nu \, \gamma\,$ Предварительные результаты

Br : Для нормировки используется $\mathbf{K} \rightarrow \boldsymbol{\mu}^+ \mathbf{v} \pi^0$

Br(K μ 3 γ)/Br(K μ 3) = (4.5 ± 0.25 (stat)) ·10⁻⁴, 30 MeV < E_{γ}^* < 60 MeV

Из PDG: Br(K μ 3) = 3.352%: Br(K μ 3 γ) = (1.49 ± 0.085 (stat)) · 10⁻⁵, 30 MeV < E_{γ}^{*} <60 MeV Согласуется с результатом ИСТРА+, стат. ошибка в 3 раза меньше.

Для сравнения с теорией :

Br(Kμ3γ) = (2.0 ± 0.1 (stat)) · 10⁻⁵ , $E_{\gamma}^* > 30 MeV$, $\theta_{\mu\gamma} > 20°$ Bijnens et al. χPT O(p⁶) 1.9 x 10⁻⁵ , Braguta et al. χPT O(p⁴) 2.15 x 10⁻⁵, Khriplovich et al. 1.8 x 10⁻⁵ T-нечетная асимметрия: $A_{\xi} = -0.006 \pm 0.069$

Распад $K^+ \to \pi^+ \pi^- \gamma$ Eur.Phys.J. C79 (2019) no.4, 296

G. D'Ambrosio, G. Ecker, G. Isidori, H. Neufeld "The present experimental status of K3pig decays is rather meager" χ PT O(p⁴) "generalized bremsstrahlung"

Распад К⁺ $\rightarrow \pi^+ \pi^- \gamma$ был обнаружен в ИТЭФ В.В. Бармин и др., ЯФ 50(1989)679-682 7 соб. Е^{*}_γ ~ 5-10 МэВ, измерен Вг.

Нормировка на $N(K \rightarrow 3\pi) \sim 20M$ Br(K⁺ $\rightarrow \pi^+\pi^+\pi^-\gamma$) = (7.1± 0.4_{стат}± 0.3_{сист}) · 10⁻⁶ E^{*}_γ > 30 MэB χ PT O(p⁴) 6.65 · 10⁻⁶

Исследование этого распада продолжается на ~20 раз большей статистике NA62

° and

Распад $K^+ \rightarrow \pi^+ \pi^0 \pi^0 \gamma$ Eur.Phys.J. принят к печати

Этот распад дополняет $K^+ \to \pi^+ \pi^- \gamma$, меньше заряженных частиц в конечном состоянии

К⁻ → $\pi^{-}\pi^{0}\pi^{0}\gamma$ искали на ИСТРА В.Н. Болотов и др., Письма в ЖЭТФ, 1985 т.42, вып.9, с.390-392 5 соб. Е^{*} >10 МэВ, оценен Вг.

Иллюстрация работы NN: при выборе порога RBFN>0.6 фон Подавляется в 1000 раз при эффективности к сигналу 0.2

В пике 53.8 ± 13 соб. Р-value для нулевой гипотезы- 9·10⁻⁵

Отбор событий (стартуем с 3.6·10⁹ событий) 1 пучковый K⁺ трек 1 вторичный трек, θ >2 мрад, # (µС),= (Е/р ГАМС) Вершина распада внутри DV, CDA < 1см. 5 э.м. ливней в ГАМС с E > 0.5 ГэВ не ассоц. с треком Выделение $\pi^0 \pi^0$: $(m_{y1y2} - m_{\pi 0})^2 + (m_{y3y4} - m_{\pi 0})^2$ (лучшая комбинация) 230К событий, основной фон - К $\to \pi^+ \pi^0 \pi^0$ (x 5000) Далее используем NN (Radial Basis Function Network RFBN) Входные параметры для NN: $\Delta E = E_{\pi+} + \Sigma E_{\gamma i} - E_{\pi \gamma \nu \nu \sigma \kappa}$ Еу5 энергия свободного(5-го) гамма d_{у5} расстояние от 5-го гамма до трека на плоскости ГАМС χ^2 фита по форме ливня "свободного" фотона χ^2 3С-фита $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ χ^2 3С-фита K⁺ $\rightarrow \pi^+ \pi^0 \pi^0 \gamma$ $M(\pi^{+}\pi^{0}\pi^{0})$

° and

Распад $K^+ \rightarrow \pi^+ \pi^0 \pi^0 \gamma$ Eur.Phys.J. принят к печати

Нормировка на $N(K^+ \to \pi^+ \pi^0 \pi^0) \sim 2M$ Br(K⁺ $\to \pi^+ \pi^0 \pi^0 \gamma$) = $(3.7 \pm 0.9_{ctat} \pm 0.3_{cuct}) \cdot 10^{-6}$ E^{*}_{γ} > 10 M₂B Br(χ PT O(p⁴)) = $3.76 \cdot 10^{-6}$

Получены также спектры по E^{*}_{γ} и $cos\theta_{\pi\gamma}$ в системе K^{+}

Заключение

✓ Радиационный распад K⁺ → µ⁺ v γ исследован на статистике ~144K событий для 25 MэB < E*_γ < 150 MэB.
 Наблюдается деструктивная интерференция IB и SD-. Измерена разность векторного и аксиального формфакторов Fv-Fa :

$$F_v - F_A = 0.135 \pm 0.017_{crar} \pm 0.024_{cuc}$$

Что отличается на 2.8 σ от χ PT O(p⁴) и на 1.5 σ от вычислений на решетках и Е χ A.

✓ Распад K⁺ → µ⁺ v π⁰ γ исследован на статистике ~1К событий в диапазоне $E_{\gamma} > 30$ MэB. Измерена относительная вероятность:

Вг(КµЗγ) = $(1.98 \pm 0.1_{cтат}) \cdot 10^{-5}$ Что можно сравнить с предсказаниями χРТ O(p⁴) 2.15 ·10⁻⁵ ; χРТ O(p⁶) 1.9 ·10⁻⁵ Получен верхний предел на Т-нечетную асимметрию:

 $A_{\xi} = -0.006 \pm 0.069$ ($A_{\xi} < 0.1$ 90% C.L.)

✓ Впервые зарегистрирован редкий распад К⁺ → $\pi^+\pi^0\pi^0\gamma$ наблюдается ~50 событий с E_γ > 10 МэВ. Измерена относительная вероятность:

Br(K⁺
$$\rightarrow \pi^{+}\pi^{0}\pi^{0}\gamma) = (3.7 \pm 0.9_{crat} \pm 0.3_{cHCT}) \cdot 10^{-6} E_{\gamma}^{*} > 10 \text{ M} \ni \text{B}$$

Что можно сравнить с предсказаниями $Br(\chi PT O(p^4)) = 3.76 \cdot 10^{-6}$

Работа выполнена при поддержке гранта РНФ № 22-12-0051