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Feynman (multiloop) integrals: Motivation

• High-precision theoretical description of Standard

Model processes is of crucial importance. In particular,

the New Physics — new particles and interactions — is

likely to appear as small deviations from SM and

therefore can be detected only with high precision of

theoretical predictions at hand.

• From the computational point of view, our ability to

obtain high-precision results depends crucially on

multiloop calculation techniques. Complexity grows

both qualitatively and quantitatively in an explosive

way with the number of loops and/or scales.

• Besides these practical purposes, multiloop calculations

provide a perfect polygon for trying the methods from

various mathematical fields: differential equations,

complex analysis, number theory, algebraic geometry

etc.
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Example: form factors

2 loops:

• Dispersion relation

• Feynman parametrization

• Mellin-Barnes parametrization

• pFq expansion in indices, HypExp

[Matsuura, van der Marck, and van Neerven, 1989;

Harlander, 2000]

[Gehrmann, Huber, and Maitre, 2005]
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Example: form factors

3 loops:

[Gehrmann, Heinrich, Huber, and Studerus, 2006; Heinrich, Huber, and Mâıtre, 2008; RL,

Smirnov, and Smirnov, 2010]

• Feynman parametrization

• Mellin-Barnes parametrization, MB, AMBRE [Czakon, 2006; Gluza et al., 2007]

• Recurrence+analyticity in d , [Tarasov, 1996; RL, 2010]

• PSLQ recognition [Ferguson et al., 1998]
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Example: form factors

4 loops:

[Henn, Smirnov, Smirnov, and Steinhauser, 2016; RL, Smirnov, Smirnov, and Steinhauser, 2019;

RL, von Manteuffel, Schabinger, Smirnov, Smirnov, and Steinhauser, 2021b]

• ∼ 100 big topologies.

• Linear reducibility, HyperInt [Panzer, 2013]

• Parallelization for IBP reduction,

finite fields reconstruction [von Manteuffel and Schabinger, 2015; Smirnov and

Chuharev, 2020]

• Differential equations, reduction to ϵ-form [Henn, 2013; RL, 2015], Libra [RL,

2021]

• PSLQ recognition
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NNLO cross sections

• Massless form factors represent a traditional topic of the multiloop calculations

where the “world records” are fixed. But from the experimental point of view less

loops and more scales are more important.

• In particular, only very recently multiloop methods have grown to NNLO

differential cross section calculations of 2 → 2 processes with massive particles.

NNLO corrections to differential cross sections are not even known for basic QED

process: e+e− → γγ, e+e− → µ+µ−, etc. Some results start to appear [Duhr,

Smirnov, and Tancredi, 2021; Banerjee et al., 2020; Fadin and RL, 2023].

• The complexity of NNLO calculations with massive internal lines is partly

connected with appearance of non-polylogarithmic integrals. Effective approach

to the calculation of such integrals is, probably, the most hot topic in multiloop

calculations.
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Example: process e+e− → γγ∗ at two loops.

• Diagrams: 37 distinct diagrams.

• IBP reduction

• m = 0: reduction is easy, leads to 60

masters.

• m ̸= 0: reduction is hardly doable,

leads to ≳ 400 masters.

• DE reduction

• m = 0: easily reducible to ϵ-form. All

masters are polylogarithmic.

• m ̸= 0: irreducible to ϵ-form, many

masters are non-polylogarithmic.

It is easy to calculate the amplitude at m = 0, but almost impossible for m ̸= 0.

How to account for small m ̸= 0?

1. Physical approach: use factorization formula [Fadin and RL, 2023]

relating massive to massless amplitude (Andrey Arbuzov’s talk) .

2. Perform IBP reduction exactly in m, solve DE via Frobenius expansion.

3. Use expansion by regions technique and IBP reduction in parametric

representation.
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Calculation path

1. Diagram generation

✓Generate diagrams contributing to the chosen order of perturbation theory.

Tools: qgraf [Nogueira, 1993], FeynArts [Hahn, 2001], tapir [Gerlach et al., 2022],. . .

2. IBP reduction

Setup IBP reduction, derive differential system for master integrals.

Tools: FIRE6 [Smirnov and Chuharev, 2020], Kira2 [Klappert et al., 2021], LiteRed [RL,

2012], . . .

3. DE Solution

Reduce the system to ϵ-form, write down solution in terms of polylogarithms.

Fix boundary conditions by auxiliary methods.

Tools: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa, 2017], Libra [RL, 2021]
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IBP identities [Chetyrkin and Tkachov, 1981]

Given a Feynman diagram, consider a family

j(n) =
ˆ

dµL

N∏
k=1

D
−nk
k , dµL =

L∏
k=i

dd li

D1, . . . ,DM — denominators of the diagram,

DM+1, . . . ,DN — irreducible numerators, such that

N = L(L+ 1)/2 + L · E .

p1p2

pE

-p1-p2...-pE

From 0 =
´
dµL

∂
∂li

· qm
∏N

k=1 D
−nk
k one obtains

IBP identities

[cklBkAl + clAl ] j(n) = 0.

Here ckl , cl are some coefficients.

Al j(nl ) = nl j(nl + 1),

B l j(nl ) = j(nl − 1)

IBP identities allow one to express any integral in the family via a finite number of

master integrals. They also allow to construct differential and difference equations for

the latter.
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Differential equations and dimensional recurrences

As a result of IBP reduction we express amplitudes via a finite set of master integrals

j = (j1, . . . , jK )
⊺. What is more important, we obtain equations for them:

Differential equations

[Kotikov, 1991; Remiddi, 1997]

∂x j = M(x , d)j

Dimensional recurrences

[Tarasov, 1996; Derkachov et al., 1990]

j (d − 2) = R(x , d)j (d)

Dimensional recurrence relations are especially useful for one-scale integrals, when the

differential equations can not help. Using the analytical properties wrt d , [RL, 2010]

to fix the arbitrary periodic functions, one can obtain the solution in the form of

convergent sums. High-precision evaluation of these sums can be done with

SummerTime package. Using PSLQ algorithm, one can turn the obtained numerical

results into analytical expressions. This is the approach which was successfully applied

to the calculation of the 3-loop form factors.

Recent application

Recently the four-loop HQET propagators have been calculated with this

method, [RL and Pikelner, 2023]. The required analytical properties (with

large abundance) have been fixed via the reduction of sets of integrals finite in

specific point of the basic stripe.
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Differential equations for master integrals

• Differential equations for master integrals have the form

∂x j = M(x , ϵ)j

• One can try to simplify the equation by transformation j = T j̃ , so that

∂x j̃ = M̃ j̃ , M̃ = T−1 [MT − ∂xT ]

• [Henn, 2013]: there is often a “canonical” basis J = T−1j such that

∂xJ = ϵS(x)J (ϵ-form)

• General solution is easily expanded in ϵ:

U(x , x0) = Pexp

ϵ xˆ

x0

dxS(x)

 =
∑
n

ϵn
˚

x>xn>...>x0

dxn . . . dx1S(xn) . . . S(x1)

• We usually want to send the lower limit x0 to a singular point (say, to 0), so we

have to consider the regularized operator U(x , 0) = limx0→0 U(x , x0)x
ϵS0
0 .

• Algorithm of finding transformation to ϵ-form: [RL, 2015]. Implemented in 3

publicly available codes: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa,

2017], and recently in Libra [RL, 2021].
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Some “new” ideas



Frobenius method

Path-ordered exponent

U(x , 0) = Pexp

 xˆ

x0

M(x)dx

 xM0
0 , M0 = resx=0M(x)

can also be expanded in generalized power series when x is small enough.

U(x , 0) =
∑
λ∈S

xλ
∞∑
n=0

Kλ∑
k=0

1

k!
C (n + λ, k) xn lnk x .

Note that for expansion around singular point (which we usually want) non-integer

powers xλ and log x might appear.

The convergence radius is the distance to the nearest singularity. However, it is easy

to perform analytical continuation to the whole complex plane by matching expansions

at different points. Let x = 1 is also the singular point, then the continuation of

U(x , 0) beyond x = 1 is simply

U(x > 1, 0) = U(x , 1)U−1(1/2, 1)U(1/2, 0)

Frobenius expansion provides a systematic way to obtain numerical results
for any family of multiloop integrals, including non-polylogarithmic ones.
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ϵ-regular basis

The coefficients of Frobenius expansion are functions of ϵ, therefore the ϵ-expansion

leads to double series. The typical problems of this is the loss of numerical precision

and also of orders of ϵ-expansion. Despite of these complications, this approach

allowed the authors of Ref. [Fael et al., 2022] to calculate numerically the massive

quark and lepton form factors.

A much better approach is to pass to ϵ-regular basis introduced in Ref. [RL and

Onishchenko, 2019].

Properties of ϵ-regular basis

• Expansion of each “master-integral” starts from ϵ0.

• Leading terms constitute a basis, i.e., there is no vanishing linear

combination of these terms with nonzero rational (in kinematic

invariants) coefficients.

Once the ϵ-regular basis is found one can simply put ϵ = 0.

• Total Born cross section of Z + e− → Z + e− + e− + e+, [RL et al., 2024].

• Two-loop contributions to LS and HFS in hydrogen [Krachkov and RL, 2023].
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IBP reduction in parametric representation

Motivation: Note that N = L(L+ 1)/2 + L · E grows quadratically with L, while M,

the # of lines in the diagram, grows only linearly. Parametric representation: only M

indices. Besides, IBP reduction in parametric representation extends the applicability

of the method (non-standard propagators, reduction after asymptotic expansion).

Parametric representation [RL and Pomeransky, 2013]

j̃(d)(n1, . . . nM) =

ˆ ∏M
k=1 dxkx

nk−1
k

G(x)d/2

G = U+F , where U and

F are Feynman graph

polynomials.

IBP identities relating integrals with the same d require constructing syzygy module

for ideal generated by ⟨G , ∂1G , . . . , ∂MG⟩.

IBP identities from syzygies [RL, 2014]. Baikov rep.: [Zhang, 2014]

Syzygy QG + Q1∂1G + . . .+ QM∂MG = 0 leads to IBP identity

ˆ M∏
k=1

dxk
∂

∂xn

(
Qn

∏M
k=1 x

nk−1
k

G(x)d/2

)
= [ d

2
Q(A) + Qk (A)Bk ]j̃(n) = 0
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Simplifications with symbol map

There is a standard approach to the simplification of the polylogarithmic expressions

using symbol map. One might think of symbols as a cleaner way to represent iterated

(or path-ordered) integrals with logarithmic weights (with some reservations, though):

I =

˙

1>τn>...>τ1>0

d ln pn(τn) . . . d ln p1(τ1)
S

−−−−−−−−−−−−→ pn⊗ . . .⊗p1

Formal symbol manipulation rules then easily follow, e.g.

d ln(pq) = d ln p + d ln q =⇒ (. . .⊗pq⊗ . . .) = (. . .⊗p⊗ . . .) + (. . .⊗q⊗ . . .)

Similarly, by ordering the integration variables in the product of integrals, we get

S(I1I2) = S(I1)� S(I2), where � denotes a shuffle product, e.g.

(a⊗b)�(c⊗d) = a⊗b⊗c⊗d+a⊗c⊗b⊗d+a⊗c⊗d⊗b+c⊗a⊗b⊗d+c⊗a⊗d⊗b+c⊗d⊗a⊗b

We have, in particular, symbols for classical polylogarithms

S(Lin(x)) = x⊗ . . .⊗x︸ ︷︷ ︸
n−1

⊗(x − 1)
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Simplifications with symbol map

Symbols are good for checking the identities, e.g., using S it is easy to establish1

7Li2
(

1+ε/z
1−iε

)
−7Li2

(
1+ε̄/z
1+i ε̄

)
+7Li2

(
z+ε̄
ε̄−i

)
−7Li2

(
z+ε
ε+i

)
+11Li2

(
z+ε
ε−i

)
−11Li2

(
z+ε̄
ε̄+i

)
+4Li2(1+zε)−4Li2(1 + z ε̄)+18Li2(−iz)−18Li2(iz)+11Li2

(
1+ε̄/z
1−i ε̄

)
−11Li2

(
1+ε/z
1+iε

)
= 2iπ2

5
√
3
− 23

3
iπ ln z + 6iπ ln

(
2−

√
3
)
− iψ′( 1

6 )
5
√
3

− 24iG , where ε = 1/ε̄ = e2πi/3.

However, strictly speaking, they are much less powerful in simplifying expressions.

E.g., if we omit in the left-hand side a couple of dilogs with not so simple arguments,

we could have failed to recognize in the symbol of the resulting expression that of the

sum of the omitted dilogs.

Simplification algorithm idea

For a given expression:

1. find all possible arguments of Lin which might enter the simplified form.

2. find equivalent form with the minimal number of polylogs.

1NB: This identity was used in real life (as well as some yet more complicated identities) for the simplification of

the total cross section of Compton scattering @NLO [RL, Schwartz, and Zhang, 2021a].
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Summary

• Each step towards increasing the # of loops and/or # of scales
requires new methods. Those involve both technological advances
(e.g. massive parallelization) and new algorithms coming various
fields of mathematics.

• IBP reduction still remains a bottleneck for some calculations. IBP
reduction in parametric representation can extend the applicability of
method.

• Differential equations method is already in a very good shape.
However, there is still no regular approach to the computation of
non-polylogarithmic integrals.

• From the practical point of view, there is always a method based on
Frobenius expansion and ϵ-regular basis which might be used to
obtain numerical high-precision results.

• Simplification of the results is notoriously difficult. The use of symbol
map may help, but need to be augmented by additional algorithms.

Thank you!
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