Large N_{f} and $\{\beta\}$－decomposed representations for the Adler function in QCD

A．L．Kataev

Institute for Nuclear Research of RAS，Moscow

Nuclear Physics Section Session of Physics Division of RAS
 ＂Physics of Fundamental Interactions＂
 In honour of 300 Anniversary of RAS

Dubna， 3 April 2024

- Large N_{f} expansion and leading renormalon chains naive nonabelianization $O\left(1 / N_{f}^{k}\right)$ effects ; generalization of BLM and study of high order PT QCD effects
- $\{\beta\}$ decomposed represntations of coefficients generalization of BLM (PMC); diagrammatic and non-diagrammatic realizations
- relation of large N_{f} and β-expansion and ambiguities (model dependence)
- Comments on the PMC disfavouring by the phenomenological $e^{+} e^{-}$D-function "data" and (not yet checked) Bjorken poalized sum rule preliminary study
- Comment on analogy with Adler (1972) clarification on status of Finite QED Program Johnson, Baker, Willey et al (63 up to 70 s)

The basic definitions

$$
\begin{gathered}
D\left(L, a_{s}\right)=-\frac{d \Pi\left(L, a_{s}\right)}{d \ln Q^{2}}=Q^{2} \int_{0}^{\infty} d s \frac{R_{e^{+} e^{-}}^{t h}\left(l, a_{s}\right)}{\left(s+Q^{2}\right)^{2}}, \\
R_{e^{+} e^{-}}^{t h}\left(l, a_{s}\right)=\sigma_{t o t}\left(l, a_{s}\right) / \sigma_{0}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \\
\left(\frac{\partial}{\partial \ln \mu^{2}}+\beta\left(a_{s}\right) \frac{\partial}{\partial a_{s}}\right) D\left(L, a_{s}\right)=0, \\
\frac{\partial a_{s}}{\partial \ln \mu^{2}}=\beta\left(a_{s}\right)=-\sum_{n \geq 0} \beta_{n} a_{s}^{n+2} . \\
D\left(a_{s}\left(Q^{2}\right)\right)=\left(\sum_{i} q_{i}^{2}\right) D^{n s}\left(a_{s}\left(Q^{2}\right)\right)+\left(\sum_{i} q_{i}\right)^{2} D^{s i}\left(a_{s}\left(Q^{2}\right)\right)
\end{gathered}
$$

The a_{s}^{4}-result Baikov,Chetyrkin, Kuhn $(2010)=\mathrm{BChK}$ group $;_{\equiv}$

The $\overline{M S}$-scheme large N_{f}

In the $\overline{M S}$-scheme the expansions read:

$$
\begin{aligned}
D^{n s}\left(a_{s}\right)=1+ & d_{10} a_{s}+\left(d_{20}+d_{21} N_{f}\right) a_{s}^{2}+\left(d_{30}+d_{31} N_{f}+d_{32} N_{f}^{2}\right) a_{s}^{3} \\
& +\left(d_{40}+d_{41} N_{f}+d_{42} N_{f}^{2}+d_{43} N_{f}^{3}\right) a_{s}^{4}
\end{aligned}
$$

Grunberg,Kataev (91); Grunberg (92); Kataev (92); Beneke, Braun (95) ; Brodsky,Wu (2012) $d_{n 0^{-}}$scale-invariant contribution $d_{10}=+1$ Grunberg, K generalized BLM machinery $d_{20}=\frac{1}{12} \approx 0.085 ; d_{30} \approx=-23.227 ; d_{40}=+82.344$ (sign ! ; order of magnitude !)l; In agreement with β-expanded model (see next page) and R_{δ} Brodsky, Wu et al (12)
$a\left(\mu^{2}\right)=a\left(\mu_{\delta}\right)+\sum_{n \geq 1} \frac{1}{n} \frac{d^{n} a\left(\mu_{\delta}^{2}\right)}{d \ln \left(\mu_{\delta}^{2}\right)}(-\delta)^{n}$ (Goriachuk, K,
Molokoedov (22)) Renormalon chain $\overline{M S}$ QED result
Broadhurst (92) ; QCD Broadhurst, $\mathrm{K}(93) d_{n k}$ at $k=n-1$ assymptotic QCD series study by e.g. Laenen et al (23); Ayala, Cvetic (23, 24); Caprini (24)

The $\{\beta\}$-expansion PT approach for the RG-invariant quantities Mikhailov (04-07) up to now

Consider the PT expansion

$$
D^{n s}\left(a_{s}\right)=1+d_{1} a_{s}+d_{2} a_{s}^{2}+d_{3} a_{s}^{3}+d_{4} a_{s}^{4}+O\left(a_{s}^{5}\right)
$$

In the MS-like schemes β-expansion prescription is:

$$
\begin{gathered}
d_{1}=d_{1}[0] \\
d_{2}=\beta_{0} d_{2}[1]+\mathbf{d}_{\mathbf{2}}[\mathbf{0}]-\text { the Basis of BLM procedure } \\
d_{3}=\beta_{0}^{2} d_{3}[2]+\beta_{1} d_{3}[0,1]+\beta_{0} d_{3}[1]+\mathbf{d}_{\mathbf{3}}[\mathbf{0}] \\
d_{4}=\beta_{0}^{3} d_{4}[3]+\beta_{2} d_{4}[0,0,1]+\beta_{1} \beta_{0} d_{4}[1,1]+\beta_{0}^{2} d_{4}[2]+\beta_{1} d_{4}[0,1] \\
+\beta_{0} d_{4}[1]+\mathbf{d}_{4}[\mathbf{0}]
\end{gathered}
$$

$\{\beta\}$-expansions suggested by Mikhailov (Quarks2004, JHEP(07)) Further on Bakulev, Mikhailov, Stefanis(10) ; Kataev, Mikhalov M(12-16); Kataev,Molokoedov (23) ;
Cvetic,Kataev(16); Brodsky,Wu, Mojaza et al(12-23)

The procedures of finding terms of the $\{\beta\}$-expansion; diagrammatic; Mikhailov (04-07; up to now) but may have "theory" ambiguity

The problem appears at the $N^{2} L O$ QCD:
$d_{3}=d_{32} n_{f}^{2}+d_{31} n_{f}+d_{30} \rightarrow \beta_{0}^{2} d_{3}[2]+\beta_{1} d_{3}[0,1]+\beta_{0} d_{3}[1,0]+d_{3}[0]$,
where $\beta_{0}=\beta_{00}+\beta_{10} n_{f}, \beta_{1}=\beta_{10}+\beta_{11} n_{f}$. How to get from single n_{f} - term two terms $\beta_{1} d_{3}[0,1]+\beta_{0} d_{3}[1]$. $\operatorname{Mikhailov}(07)$: Apply additional degree of freedom, i.e. $n_{\tilde{g}}$ flavour number of multiplet of MSSM gluino. In this case $\beta_{0}=\beta_{0}\left(n_{f}, n_{\tilde{g}}\right), \beta_{1}=\beta_{0}\left(n_{f}, n_{\tilde{g}}\right)$ are known analytically (Clavelli,Surguladze(97) and $d_{3}\left(n_{f}, n_{\tilde{g}}\right) ; \mathrm{eQCD}$ D-function evaluated analytically by Chetyrkin(97); Chetyrkin (2023) ; Zoller (2016)- β-function. The procedure has unique solutions (Mikhailov(07)): Model dependence may exist Kataev, Molokoedov (23-24), Miklhailov (24-in progress) Bednyakov (2015 and 2024 now in progress)) $d_{20}=\frac{1}{12} \approx 0.085$; $d_{30} \approx=-35.87$ (notmodel - independent); $d_{40} \approx-98$ (sign !; order of magnitude ! DIFFER BY SIGN FROM model built));

Non-diagrammatic representations not only for the $D^{n s}$ in not only QCD

Whether expansion in powers of conformal anomaly $\beta\left(a_{s}\right) / a_{s}$, where $\beta\left(a_{s}\right)=-\sum_{j \geq 0} \beta_{j} a_{s}^{j+2}$ is valid for the $D^{n s}$? Cvetic, Kataev (16); K,Mikhailov (09-12) motivated

$$
\begin{gathered}
D^{n s}\left(a_{s}\right)=1+\sum_{n \geq 0}\left(\frac{\beta\left(a_{s}\right)}{a_{s}}\right)^{n} D_{n}\left(a_{s}\right) \\
D_{n}\left(a_{s}\right)=\sum_{r=1}^{r-n} a_{s}^{r} \sum_{k=1}^{r} D_{n}^{(r)}[k, r-k] C_{F}^{k} C_{A}^{r-k}+a_{s}^{4} \delta_{n 0} \times \\
\left(D_{0}^{(4)}[F, A] \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}+D_{0}^{(4)}[F, F] \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{d_{R}} n_{f}\right)
\end{gathered}
$$

Why not to subdivide this $a_{s}^{4} n_{f}$-dependent term as

$$
\delta_{n 0} D_{0}^{(4)}[F, F] n_{f}=\left(\delta_{n 0} \frac{11 C_{A}}{4 T_{F}} D_{0}^{(4)}[F, F]+\delta_{n 1} \frac{3}{T_{F}} D_{1}^{(4)}[F, F]\right)
$$

with $D_{0}^{(4)}[F, F]=D_{1}^{(4)}[F, F]$? This contradicts QED limit- there is no such $\delta_{n 1}$ contribution from light-by-light-type subgraph.

The $\{\beta\}$ expanded QCD terms for $D^{n s}$ in $S U\left(N_{c}\right)$

 non-diagrammatic and diagarammatic (!) differencesUsing the $M S$-scheme factorized representation,
Cvetic,Kataev(16). The results differ in part from obtained in QCD+gluino theory (Mikhailov (07))

$$
\begin{aligned}
& d_{1}[0]= \frac{3}{4} C_{F} d_{2}[0]=\left(-\frac{3}{32} C_{F}^{2}+\frac{1}{16} C_{F} C_{A}\right) d_{2}[1]=\left(\frac{33}{8}-3 \zeta_{3}\right) C_{F} \\
& d_{3}[0]=-\frac{69}{128} C_{F}^{3}-\left(\frac{101}{256}-\frac{33}{16} \zeta_{3}\right) C_{F}^{2} C_{A} \neq+\frac{\mathbf{7 1}}{\mathbf{6 4}} \mathbf{C}_{\mathbf{F}}^{2} \mathbf{C}_{\mathbf{A}} \\
&-\left(\frac{53}{192}+\frac{33}{16} \zeta_{3}\right) C_{F} C_{A}^{2} \neq+\left(\frac{\mathbf{5 2 3}}{\mathbf{7 6 8}}-\frac{\mathbf{2 7}}{\mathbf{8}} \zeta_{\mathbf{3}}\right) \mathbf{C}_{\mathbf{F}} \mathbf{C}_{\mathbf{A}}^{2} \\
& d_{3}[1]=\left(-\frac{111}{64}-12 \zeta_{3}+15 \zeta_{5}\right) C_{F}^{2} \neq\left(-\frac{\mathbf{2 7}}{\mathbf{8}}-\frac{\mathbf{3 9}}{\mathbf{4}} \zeta_{\mathbf{3}}+\underline{\mathbf{1 5} \zeta_{5}}\right) \mathbf{C}_{\mathbf{F}}^{\mathbf{2}} \\
&+\left(\frac{83}{32}+\frac{5}{4} \zeta_{3}-\frac{5}{2} \zeta_{5}\right) C_{F} C_{A} \neq\left(-\frac{\mathbf{9}}{\mathbf{6 4}}+\mathbf{5} \zeta_{\mathbf{5}}-\underline{\mathbf{5}} \zeta_{\mathbf{5}}\right) \mathbf{C}_{\mathbf{F}} \mathbf{C}_{\mathbf{A}} \\
& d_{3}[0,1]=\left(\frac{33}{8}-3 \zeta_{3}\right) C_{F} \neq\left(\frac{\mathbf{1 0 1}}{\mathbf{1 6}}-\mathbf{6} \zeta_{\mathbf{3}}\right) \mathbf{C}_{\mathbf{F}} d_{3}[2]=\left(\frac{151}{6}-19 \zeta_{3}\right) C_{F}
\end{aligned}
$$

The underlined contributions are the same- they are

The $\{\beta\}$ expansion QCD expression for d_{4} was also obtained

We present model dependent one from Cvetic, Kataev (2016)

$$
\begin{aligned}
& d_{4}[0]=\left[\left(\frac{4157}{2048}+\frac{3}{8} \zeta_{3}\right) C_{F}^{4}-\left(\frac{3509}{1536}+\frac{73}{128} \zeta_{3}+\frac{165}{32} \zeta_{5}\right) C_{F}^{3} C_{A}\right. \\
& +\left(\frac{9181}{4608}+\frac{299}{128} \zeta_{3}+\frac{165}{64} \zeta_{5}\right) C_{F}^{2} C_{A}^{2}-\left(\frac{30863}{36864}+\frac{147}{128} \zeta_{3}-\frac{165}{64} \zeta_{5}\right) C_{F} C_{A}^{3} \\
& +\left(\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}\right) \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}+\left(-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}\right) \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{d_{R}} n_{f}
\end{aligned}
$$

Where the difference from diagrammatic related expression is ?
In three structures $C_{F}^{3} C_{A}, C_{F}^{2} C_{A}^{2}$ and $C_{F} C_{A}^{3}$ (main by sign!) (based on discussions by AK with Molokoedov (@23) and Mikhailov (@23-24)

PMC vs massless $\overline{M S}$: Adler function at $n_{f}=3$ Kataev-Molokoedov PRD (23)

Figure: (1a) The dependence of the PT Adler function $D\left(Q^{2}\right)$ on $\sqrt{Q^{2}}$ at $n_{f}=3$ in the massless limit. (1b) The dependence of the factor $\exp (-\Delta / 2)$ on $\sqrt{Q^{2}}$ at $n_{f}=3$.

PMC vs massless $\overline{M S}$: Bjorken polarized SR at $n_{f}=3$ (preliminary) $S_{B j p}\left(Q^{2}\right)=\frac{1}{6}\left(g_{A} / g_{V}\right) C_{B j p}\left(Q^{2}\right)$ by Kataev-Molokoedov or vise versa (demonstrated @ 2024)

Effects of conformal
symmetry violation by both PT and non-PT effects ARE NOT SEEN in PMC but ARE SEEN in NATURE (!) PMC essentail problem (not explained by HO PT masless effects)

Conclusions

- Analogy with Finite QED Program treatment by Adler. Analogy with trouble of PMC (to be checked and considered with care)
- Is it possible to understand better the existing essential model difference in coefficients of β-expanded terms of PT series ? May give the hint to clarifying effects of subleading renormalon chains
- Leading renormalon chains desribe nicely effects ofv growth of PT coefficvients of Eucledian PT series
- Claim of α_{s} CERN Working group gided with participation of Michelangelo Mangano (2024). We should take into account in α_{s} extraction "scale systematics" or "missing higher order systematics" or ... (up to possible todays discussions)
- Questions, Comments are Wellcomed

