Large N_f and $\{\beta\}$ -decomposed representations for the Adler function in QCD

A. L. Kataev

Institute for Nuclear Research of RAS, Moscow

Nuclear Physics Section Session of Physics Division of RAS "Physics of Fundamental Interactions" In honour of 300 Anniversary of RAS

> Dubna, 3 April 2024

Plan

- Large N_f expansion and leading renormalon chains naive nonabelianization $O(1/N_f^k)$ effects; generalization of BLM and study of high order PT QCD effects
- {β} decomposed representations of coefficients generalization of BLM (PMC); diagrammatic and non-diagrammatic realizations
- relation of large N_f and β -expansion and ambiguities (model dependence)
- Comments on the PMC disfavouring by the phenomenological e⁺e⁻ D-function "data" and (not yet checked) Bjorken poalized sum rule preliminary study
- Comment on analogy with Adler (1972) clarification on status of Finite QED Program Johnson, Baker, Willey et al (63 up to 70s)

The basic definitions

$$D(L, a_s) = -\frac{d\Pi(L, a_s)}{d \ln Q^2} = Q^2 \int_0^\infty ds \frac{R_{e^+e^-}^{th}(l, a_s)}{(s+Q^2)^2},$$

$$R_{e^+e^-}^{th}(l, a_s) = \sigma_{tot}(l, a_s) / \sigma_0(e^+e^- \to \mu^+\mu^-)$$

$$\left(\frac{\partial}{\partial \ln \mu^2} + \beta(a_s)\frac{\partial}{\partial a_s}\right) D(L, a_s) = 0,$$

$$\frac{\partial a_s}{\partial \ln \mu^2} = \beta(a_s) = -\sum_{n \ge 0} \beta_n a_s^{n+2}.$$

$$D\left(a_s(Q^2)\right) = \left(\sum_i q_i^2\right) D^{ns}\left(a_s(Q^2)\right) + \left(\sum_i q_i\right)^2 D^{si}\left(a_s(Q^2)\right)$$

The a_s^4 -result Baikov, Chetyrkin, Kuhn (2010)=BChK group ;

The \overline{MS} -scheme large N_f

In the \overline{MS} -scheme the expansions read:

$$D^{ns}(a_s) = 1 + d_{10}a_s + (d_{20} + d_{21}N_f)a_s^2 + (d_{30} + d_{31}N_f + d_{32}N_f^2)a_s^3 + (d_{40} + d_{41}N_f + d_{42}N_f^2 + d_{43}N_f^3)a_s^4$$

Grunberg, Kataev (91); Grunberg (92); Kataev (92); Beneke, Braun (95); Brodsky, Wu (2012) d_{n0} - scale-invariant contribution $d_{10} = +1$ Grunberg, K generalized BLM machinery $d_{20} = \frac{1}{12} \approx 0.085; d_{30} \approx -23.227; d_{40} = +82.344 \text{ (sign !; order)}$ of magnitude !) I; In agreement with β -expanded model (see next page) and R_{δ} Brodsky, Wu et al (12) $a(\mu^2) = a(\mu_{\delta}) + \sum_{n \ge 1} \frac{1}{n} \frac{d^n a(\mu_{\delta}^2)}{dln(\mu_{\delta}^2)} (-\delta)^n$ (Goriachuk, K, Molokoedov (22)) Renormalon chain \overline{MS} QED result Broadhurst (92); QCD Broadhurst, K(93) d_{nk} at k = n - 1assymptotic QCD series study by e.g. Laenen et al (23); Ayala, Cvetic (23, 24); Caprini (24)▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The $\{\beta\}$ -expansion PT approach for the RG-invariant quantities Mikhailov (04-07) up to now

Consider the PT expansion

$$D^{ns}(a_s) = 1 + d_1 a_s + d_2 a_s^2 + d_3 a_s^3 + d_4 a_s^4 + O(a_s^5)$$

In the MS-like schemes β -expansion prescription is:

 $\begin{aligned} d_1 &= d_1[0] \\ d_2 &= \beta_0 d_2[1] + \mathbf{d_2}[\mathbf{0}] - \text{ the Basis of BLM procedure} \\ d_3 &= \beta_0^2 d_3[2] + \beta_1 d_3[0, 1] + \beta_0 d_3[1] + \mathbf{d_3}[\mathbf{0}], \\ d_4 &= \beta_0^3 d_4[3] + \beta_2 d_4[0, 0, 1] + \beta_1 \beta_0 d_4[1, 1] + \beta_0^2 d_4[2] + \beta_1 d_4[0, 1] \\ &+ \beta_0 d_4[1] + \mathbf{d_4}[\mathbf{0}] \end{aligned}$

{β}-expansions suggested by Mikhailov (Quarks2004, JHEP(07)) Further on Bakulev,Mikhailov, Stefanis(10);
Kataev, Mikhalov M(12-16); Kataev,Molokoedov (23);
Cvetic,Kataev(16); Brodsky,Wu, Mojaza et al(12-23) The procedures of finding terms of the $\{\beta\}$ -expansion; diagrammatic; Mikhailov (04-07; up to now) but may have "theory" ambiguity

The problem appears at the N^2LO QCD:

 $d_3 = d_{32}n_f^2 + d_{31}n_f + d_{30} \rightarrow \beta_0^2 \ d_3[2] + \beta_1 d_3[0,1] + \beta_0 d_3[1,0] + d_3[0],$

where $\beta_0 = \beta_{00} + \beta_{10}n_f$, $\beta_1 = \beta_{10} + \beta_{11}n_f$. How to get from single n_f - term two terms $\beta_1 d_3[0, 1] + \beta_0 d_3[1]$. Mikhailov(07): Apply **additional degree of freedom**, i.e. $n_{\tilde{g}}$ flavour number of multiplet of *MSSM gluino*.

In this case $\beta_0 = \beta_0(n_f, n_{\tilde{g}}), \beta_1 = \beta_0(n_f, n_{\tilde{g}})$ are known analytically (Clavelli,Surguladze(97) and $d_3(n_f, n_{\tilde{g}})$; eQCD *D*-function evaluated analytically by Chetyrkin(97); Chetyrkin (2023); Zoller (2016)- β -function. The procedure has unique solutions (Mikhailov(07)): Model dependence may exist Kataev, Molokoedov (23-24), Mikhailov (24-in progress) Bednyakov (2015 and 2024 now in progress)) $d_{20} = \frac{1}{12} \approx 0.085$; $d_{30} \approx -35.87($ notmodel - independent); $d_{40} \approx -98$ (sign !; order of magnitude ! DIFFER BY SIGN FROM model built)];

200

Non-diagrammatic representations not only for the D^{ns} in not only QCD

Whether expansion in powers of conformal anomaly $\beta(a_s)/a_s$, where $\beta(a_s) = -\sum_{j\geq 0} \beta_j a_s^{j+2}$ is valid for the D^{ns} ? Cvetic, Kataev (16); K,Mikhailov (09-12) motivated

$$D^{ns}(a_s) = 1 + \sum_{n \ge 0} \left(\frac{\beta(a_s)}{a_s}\right)^n D_n(a_s)$$

$$D_n(a_s) = \sum_{r=1}^{r-n} a_s^r \sum_{k=1}^r D_n^{(r)}[k, r-k] C_F^k C_A^{r-k} + a_s^4 \delta_{n0} \times \left(D_0^{(4)}[F, A] \frac{d_F^{abcd} d_A^{abcd}}{d_R} + D_0^{(4)}[F, F] \frac{d_F^{abcd} d_F^{abcd}}{d_R} n_f \right)$$

Why not to subdivide this $a_s^4 n_f$ -dependent term as

$$\delta_{n0}D_0^{(4)}[F,F]n_f = \left(\delta_{n0}\frac{11C_A}{4T_F}D_0^{(4)}[F,F] + \delta_{n1}\frac{3}{T_F}D_1^{(4)}[F,F]\right)$$

with $D_0^{(4)}[F,F] = D_1^{(4)}[F,F]$? This contradicts QED limit- there is no such δ_{n1} contribution from light-by-light-type subgraph.

The $\{\beta\}$ expanded QCD terms for D^{ns} in $SU(N_c)$ non-diagrammatic and diagarammatic (!) differences Using the \overline{MS} -scheme factorized representation, Cvetic,Kataev(16). The results differ in part from obtained in QCD+gluino theory (Mikhailov (07))

$$d_{1}[0] = \frac{3}{4}C_{F} \ d_{2}[0] = \left(-\frac{3}{32}C_{F}^{2} + \frac{1}{16}C_{F}C_{A}\right) \ d_{2}[1] = \left(\frac{33}{8} - 3\zeta_{3}\right)C_{F}$$

$$d_{3}[0] = -\frac{69}{128}C_{F}^{3} - \left(\frac{101}{256} - \frac{33}{16}\zeta_{3}\right)C_{F}^{2}C_{A} \neq +\frac{71}{64}\mathbf{C}_{F}^{2}\mathbf{C}_{A}$$

$$-\left(\frac{53}{192} + \frac{33}{16}\zeta_{3}\right)C_{F}C_{A}^{2} \neq +\left(\frac{523}{768} - \frac{27}{8}\zeta_{3}\right)\mathbf{C}_{F}\mathbf{C}_{A}^{2}$$

$$d_{3}[1] = \left(-\frac{111}{64} - 12\zeta_{3} + 15\zeta_{5}\right)C_{F}^{2} \neq \left(-\frac{27}{8} - \frac{39}{4}\zeta_{3} + \frac{15\zeta_{5}}{5}\right)\mathbf{C}_{F}^{2}$$

$$+\left(\frac{83}{32} + \frac{5}{4}\zeta_{3} - \frac{5}{2}\zeta_{5}\right)C_{F}C_{A} \neq \left(-\frac{9}{64} + 5\zeta_{5} - \frac{5}{2}\zeta_{5}\right)\mathbf{C}_{F}\mathbf{C}_{A}$$

$$d_{3}[0, 1] = \left(\frac{33}{8} - 3\zeta_{3}\right)C_{F} \neq \left(\frac{101}{16} - 6\zeta_{3}\right)\mathbf{C}_{F}d_{3}[2] = \left(\frac{151}{6} - 19\zeta_{3}\right)C_{F}d_{3}[2]$$

The underlined contributions are the same- they are

The $\{\beta\}$ expansion QCD expression for d_4 was also obtained

We present model dependent one from Cvetic, Kataev (2016)

$$d_{4}[0] = \left[\left(\frac{4157}{2048} + \frac{3}{8}\zeta_{3} \right) C_{F}^{4} - \left(\frac{3509}{1536} + \frac{73}{128}\zeta_{3} + \frac{165}{32}\zeta_{5} \right) C_{F}^{3}C_{A} + \left(\frac{9181}{4608} + \frac{299}{128}\zeta_{3} + \frac{165}{64}\zeta_{5} \right) C_{F}^{2}C_{A}^{2} - \left(\frac{30863}{36864} + \frac{147}{128}\zeta_{3} - \frac{165}{64}\zeta_{5} \right) C_{F}C_{A}^{3} + \left(\frac{3}{16} - \frac{1}{4}\zeta_{3} - \frac{5}{4}\zeta_{5} \right) \frac{d_{F}^{abcd}d_{A}^{abcd}}{d_{R}} + \left(-\frac{13}{16} - \zeta_{3} + \frac{5}{2}\zeta_{5} \right) \frac{d_{F}^{abcd}d_{F}^{abcd}}{d_{R}} n_{f}$$

Where the difference from diagrammatic related expression is ? In **three** structures $C_F^3 C_A$, $C_F^2 C_A^2$ and $C_F C_A^3$ (main by sign!) (based on discussions by AK with Molokoedov (@23) and Mikhailov (@23-24)

PMC vs massless \overline{MS} : Adler function at $n_f=3$ Kataev-Molokoedov PRD (23)

Figure: (1a) The dependence of the PT Adler function $D(Q^2)$ on $\sqrt{Q^2}$ at $n_f = 3$ in the massless limit. (1b) The dependence of the factor $\exp(-\Delta/2)$ on $\sqrt{Q^2}$ at $n_f = 3$.

PMC vs massless \overline{MS} : Bjorken polarized SR at $n_f=3$ (preliminary) $S_{Bjp}(Q^2) = \frac{1}{6}(g_A/g_V)C_{Bjp}(Q^2)$ by Kataev-Molokoedov or vise versa (demonstrated @ 2024)

symmetry violation by both PT and non-PT effects ARE NOT SEEN in PMC but ARE SEEN in NATURE (!) PMC essentail problem (not explained by HO PT masless effects)

Conclusions

- Analogy with Finite QED Program treatment by Adler. Analogy with trouble of PMC (to be checked and considered with care)
- Is it possible to understand better the existing essential model difference in coefficients of β-expanded terms of PT series ? May give the hint to clarifying effects of subleading renormalon chains
- Leading renormalon chains desribe nicely effects of y growth of PT coefficients of Eucledian PT series
- Claim of α_s CERN Working group gided with participation of Michelangelo Mangano (2024). We should take into account in α_s extraction "scale systematics" or "missing higher order systematics" or ... (up to possible todays discussions)

• Questions, Comments are Wellcomed