Измерение вероятности распада $J/\psi o \pi^+\pi^-\gamma$ и резонансного вклада $f_2(1270)$

Резанова Ольга, коллаборация КЕДР

Институт ядерной физики им. Г. И. Будкера СО РАН, Новосибирск

Научная сессия секции ядерной физики ОФН РАН Дубна, 3 апреля 2024

План

- Обзор опубликованных результатов
- 🕽 Применявшиеся методы обработки
- Одетектор КЕДР на коллайдере ВЭПП-4М
 - 🕽 Моделирование
 - 🗿 Процедура обработки
- 6 Предварительные результаты $J/\psi \to \pi^+\pi^-\gamma$, $J/\psi \to f_2(1270)\gamma \to \pi^+\pi^-\gamma$

Эаключение

Обзор опубликованных результатов

- Основной интерес к радиационным распадам J/ψ связан с поиском глюболов
- Ни один из наблюдаемых в распаде резонансов как несомненный глюбол идентифицирован не был
- Экспериментальная ситуация неоднозначна
- Цель нашей работы прояснить ситуацию. насколько позволяет набранная статистика

 $Br(I/\psi \rightarrow \gamma X) \times Br(X \rightarrow \pi^+\pi^-) \times 10^5$

 $M(\pi^+\pi^-)$ (GeV/c

Macc (BES II)						
Резонанс	Mark III ¹⁾	DM2 ²⁾	BES ³⁾	on CLEO data ⁴⁾		
$f_2(1270)$	$115\pm7\pm19$	$74.4 \pm 2.4 \pm 11.2$	$91.4 \pm 0.7 \pm 14.8$	$108.8 \pm 3.9 \pm 8.1$		
$f_2(1430)$	—	$7.9\pm2.4\pm1.2$	—	+		
$f_2'(1525)$	—	$2.5\pm1.\pm0.4$	—	+		
$f_0(1500)$	—	—	$6.7\pm0.2\pm3.0$	$11.0\pm2.4\pm1.6$		
$f_2(1720)$	$16\pm4\pm3$	$10.3\pm1.6\pm1.5$	—	—		
$f_0(1710)$	—	—	$26.4\pm0.4\pm7.5$	$27.9\pm2.5\pm2.9$		
f ₄ (2030)	—	$16.3\pm2.4\pm2.4$	+	—		
$f_0(2100)$	$30\pm5\pm6$	—	—	$44.3\pm3.3\pm5.8$		
$f_2(1810)$	—	—	+	—		
$f_0(2020)$	—	—	+	—		
$f_2(2150)$	—	—	+	—		
¹ R.M.Baltrusaitis <i>et al.</i> , Phys.Rev.D 35 (1987) 2077 ³⁾ M. Ablikim <i>et al.</i> , Phys.Lett. B642 (2006) 441						

²⁾J.E. Augustin et al., Z.Phys.C 36 (1987) 369

⁺/Dobbs *et al.*,Phys.Rev.D 91 (2015), 052006

Резанова Ольга

3/11

Методы обработки

- Mark III (13М J/ψ): Подгонка области 0.9-2.5 ГэВ тремя не интерферирующими Брейт-Виггнеровскими формами плюс плавный фон от $J/\psi \to \rho \pi$. Подгонка 4 интерферирующими амплитудами для обнаружения сигнала $f'_2(1525) \to \pi^+\pi^-$. Дополнительно рассматривается мода $J/\psi \to K^+K^-\gamma$. Спиновый анализ в окрестностях резонансов
- DM2 (8.6М J/ψ): Подгонка аналогично Mark III. Дополнительно вводится резонанс M_{\times} ($f_2(1430)$). Учет интерференции $f_2(1270)$ и $f_2'(1525)$
- BES (58М J/ψ): Парциально-волновой анализ с необычным выбором рассматриваемых резонансов (нет $f_2'(1525)$, $f_2(1430)$, $f_0(2100)$, рассматриваются $f_2(1810)$ либо $f_2(1950)$, $f_0(2020)$, $f_2(2150)$). Функции Брейта-Виггнера с постоянной $\Gamma(W)$. Систематические ошибки до 45%. Независимо рассматривается мода $J/\psi \to \pi^0 \pi^0 \gamma$
- Dobbs at al на данных CLEO (5.1М J/ψ): Подгонка Брейт-Виггнеровскими формами с зависимостью Г(W) для двухчастичного распада без учета интерференции. Дополнительно рассматриваются моды $J/\psi \to \pi^0 \pi^0 \gamma$, $J/\psi \to K \overline{K} \gamma$
- КЕДР (4.3М J/ψ): Учет интерференции резонансов с одинаковыми квантовыми числами, подгонка формами Брейт-Виггнера с зависимостью Г(W) для двухчастичных и многочастичных распадов. В отличие от других анализов, значения масс и ширин резонансов фиксированные, неопределенности включены в систематические ошибки

Коллайдер ВЭПП-4М

• Тушековский поляриметр (внутрисгустковое рассеяние), E<2ГэВ Мгновенная точность измерений $\simeq 1\times 10^{-6}$ Точность интерполяции энергии (5 \div 15) \times 10^{-6} (10 \div 60 keV)

Лазерный поляриметр (асимметрия рассеяния поляризованного света). При 4.73 ГэВ статистическая точность 2 3 × 10⁻⁶ / 15 минут корректируемая систематическая неопределенность 3 × 10⁻⁶ (30 кэВ)

Детектор КЕДР

- Вакуумная камера Вершинный детектор Дрейфовая камера Аэрогелевые счетчики Сцинтилляционные счетчики Калориметр на жидком криптоне Сверхпроводящая катушка Ярмо магнита Мюонная система Csl калориметр Компенсационный соленоид Линза ВЭПП-4м
 - Монитор светимости по ОТИ в направлениях e⁺ и e⁻
 - Система регистрации рассеянных электронов для изучения двухфотонной физики

Обзор результатов на низких энергиях Physics of Particles and Nuclei. Volume 54, pp. 185-226

Моделирование

- Моделирование $J/\psi \to \pi^+\pi^-\pi^0$ делалось в согласии с работой V.V. Anashin et al. [KEDR], JHEP 06 (2023) 196. Рассматривались вклады $\rho(770)$, $\rho(1450)$, $\rho(1700)$, нерезонансный $J/\psi \to \pi^+\pi^-\pi^0$, $J/\psi \to \omega\pi$ с учетом интерференции
- Для моделирования резонансов f₂ отношение спиральных амплитуд бралось из работы BES. Эффективность регистрации слабо зависит от выбора спиральных амплитуд и определяется инвариантной массой пары π⁺π⁻. При моделировании резонансов f₀ распад в системе отсчета резонанса производился изотропно

Процедура обработки

Условия отбора $J/\psi o \pi^+\pi^-\gamma$:

- Два противоположно заряженных трека из места встречи, допускается наличие дополнительного трека не из места встречи
- \bullet Требуется фотон с энергией 200 $< E_{\gamma} < 1700$ МэВ
- Допускается наличие дополнительных фотонов с энергией < 50 МэВ
- ullet Угол между направлением вылета фотона и системы $\pi^+\pi^-$ больше 168°
- $lacebox{OT6}$ Отбраковываются события $J/\psi
 ightarrow e^+e^-\gamma$, $J/\psi
 ightarrow \mu^+\mu^-\gamma$
- После кинематической реконструкции (к.р.) $\chi^2_{\pi\pi} < 100$, $\chi^2_{\pi\pi} < \chi^2_{KK}$

Использовано 4.3 млн событий J/ψ отобранных из данных 2015 года

 $J/\psi \to \pi^+\pi^-\pi^0$ изучается в работе V.V. Anashin et al. [KEDR], JHEP 06 (2023) 196, имеется хорошее согласие моделирования (красный) с экспериментом (черный)

 $J/\psi \to \pi^+\pi^-\gamma$ События моделирования $J/\psi \to \pi^+\pi^-\pi^0$ (красный), прошедшие через условия отбора $\pi^+\pi^-\gamma$, вычитаются из данных (3907 событий, черный) с нормировкой по области 650 — 850 МэВ

8/11

Предварительные результаты $J/\psi o \pi^+\pi^-\gamma$, $J/\psi o f_2(1270)\gamma o \pi^+\pi^-\gamma$

Подгонка сигнала $J/\psi \to \pi^+\pi^-\gamma$ с интерференцией резонансов с одинаковыми квантовыми числами. Массы и ширины резонансов фиксированы

Мы представляем 2 результата:

- $Br(J/\psi \to \pi^+\pi^-\gamma) =$ (223.1 ± 7.6 ± 16.7) × 10⁻⁵
- $Br(J/\psi \to f_2(1270)\gamma \to \pi^+\pi^-\gamma) =$ (96.3 ± 5.5 ± 7.32) × 10⁻⁵,

поскольку набор резонансов выше $f_2(1270)$ не однозначен, и статистические ошибки велики

Источник неопределенности	$J/\psi \to \pi^+\pi^-\gamma$	$J/\psi \to f_2 \gamma \to \pi^+ \pi^- \gamma$
Вычитание $J/\psi o ho \pi$	6.9%	6.7%
Фон от не З π распадов J/ψ	1.5%	0.5%
Число J/ψ	1.1%	1.1%
Условие на χ^2 к.р.	2%	2%
Модель Г(<i>W</i>)		<0.9%
Реконструкция треков	0.8%	0.8%
Фиксация ширин резонансов		0.8%
Фиксация масс резонансов		0.3%
Идентификация π/K по к.р.	0.3%	0.2%
Квадратичная сумма	7.5%	7.6%

Заключение

- $\bullet\,$ Проведена обработка процесса $J/\psi\to\pi^+\pi^-\gamma$ с использованием 4.3 млн событий распада J/ψ
- Впервые получен результат (предварительный) по полной вероятности распада $Br(J/\psi \to \pi^+\pi^-\gamma) = (223.1 \pm 7.6 \pm 16.7) \times 10^{-5}$, который согласуется с результатом BES III: $Br(J/\psi \to \pi^0\pi^0\gamma) = (115.\pm 50.) \times 10^{-5}$
- Получен предварительный результат $Br(J/\psi \rightarrow f_2(1270)\gamma \rightarrow \pi^+\pi^-\gamma) =$ (96.3 ± 5.5 ± 7.32) × 10⁻⁵ с учетом интерференции резонансов с одинаковыми квантовыми числами
- Используя табличное значение вероятности распада $Br(f_2(1270) \rightarrow \pi\pi) = 0.843^{+0.029}_{-0.009}$, мы получили вероятность распада $Br(J/\psi \rightarrow \gamma f_2) = (1.71 \pm 0.01^{+0.13}_{-0.12}) \times 10^{-3}$

Планы:

- ullet Мы надеемся уменьшить систематики, связанные с вычитанием сигнала $J/\psi o 3\pi$
 - подавлением фона от слившихся π⁰, используя информацию от стрипов жидкокриптонового калориметра
 - ullet лучшей подстройкой моделирования сигнала $J/\psi
 ightarrow 3\pi$
- Мы надеемся прояснить природу пика в районе инвариантной массы 2100 МэВ за счет использования угловых распределений

Fitted value of branching fractions $J/\psi ightarrow R ightarrow \pi^+\pi^-\gamma$ (10⁻⁵)

$f_2(1270)$	96.3 ± 5.5	5.7%
$f_0(1710)$	22.1 ± 5.2	23.4%
$f_0(1500)$	12.1 ± 6.4	53.0%
$f_0(2100)$	57.5 ± 6.7	11.6%