

Заряженные адроны в p+Al, ³He+Au, Cu+Au при энергии $\sqrt{s_{NN}}$ = 200 ГэВ и в столкновениях U+U при энергии $\sqrt{s_{NN}}$ = 193 ГэВ

Ларионова Дарья, Бердников Я.А., Котов Д.О.

Санкт-Петербургский политехнический университет Петра Великого «СПбПУ»

Кварк-глюонная плазма (КГП)

Кварк-глюонная плазма (КГП)

Геометрия столкновений

Π

- *p+p* Референсная система столкновений
- Легкие системы столкновений р+Al, d+Au, ³He+Au Эффекты холодной ядерной материи
- Тяжелые системы столкновений

Cu+Au, U+U Эффекты холодной ядерной материи Эффекты КГП

Геометрия столкновений

• *p+p* Референсная система

столкновений

Легкие системы столкновений

p+Al, *d*+Au, ³He+Au Эффекты холодной ядерной материи Эффекты КГП?

Тяжелые системы столкновений

Cu+Au, U+U Эффекты холодной ядерной материи Эффекты КГП LETTERS nature physics

Creation of quark-gluon plasma droplets with three distinct geometries

PHENIX Collaboration

Поиск КГП в легких системах

Геометрия столкновений

- Центральность мера перекрытия ядер.
- (N_{part}) количество нуклонов участников, рассчитывается с помощью модели Глаубера

0 % - наиболее центральные соударения, максимальная степень перекрытия ядер

100% - наиболее перефирические соударения, минимальная степень перекрытия ядер

Кварк-глюонная плазма (КГП)

Признаки образования КГП:

- Увеличенный выход странности
- Анизотропные потоки
- Гашение струй
- Увеличенный выход барионов

• • • •

Кварк-глюонная плазма (КГП)

Признаки образования КГП:

- Увеличенный выход странности
- Анизотропные потоки
- Гашение струй
- Увеличенный выход барионов
- • •

Заряженные адроны

 $(\pi^{\pm}, K^{\pm}, p, \bar{p})$ позволяют изучать:

- 1. Процессы адронизации
- 2. Стадия «вымораживания»

Увеличенный выход барионов

Π

- Увеличение значений р/т при р_T > 1.5 ГэВ/с
 Значения р/т достигают значения 0.8 (в ~2.5 раза больше, чем в р + р)
- *p*/*π* зависимость от центральности
- К/π слабо зависят от центральности

Фрагментация

- Степенное убывание инвариантных *р*_т спектров;
- \cdot $p_T\gtrsim$ 3 ГэВ/с

Рекомбинация

- Экспоненциальное убывание инвариантных *p_T* спектров;
- $\cdot p_{\mathrm{T}} \lesssim$ 3 ГэВ/с
- КГП

Увеличенный выход барионов

Согласно модели рекомбинации:

- импульс бариона: $p_B = p_{q1} + p_{q2} + p_{q3}$
- импульс мезона:

 $p_M = p_{q1} + p_{q2}$

 экспоненциальное убывание спектров

→ инвариантный p_T спектр барионов смещается относительно инвариантного p_T спектра мезонов в сторону больших p_T → при 1.5 $\lesssim p_T \lesssim$ 5 ГэВ/с наблюдается увеличение значений p/π

Признак образования КГП

Исследование процессов рождения заряженных адронов позволяет изучать свойства КГП

Систематическое изучение процессов рождения заряженных адронов в легких и тяжелых системах столкновений позволяют изучать минимальные условия образования КГП

arXiv:2312.09827

Сравнение измеренных значений p/π с расчетами моделей РҮТНІА и АМРТ в Си+Au и U+U столкновениях

АМРТ – модель рекомбинации

РҮТНІА – модель фрагментации

Сравнение измеренных значений p/π с расчетами моделей РҮТНІА и АМРТ в p+Al и $^3{\rm He}{+}{\rm Au}$ столкновениях

- КГП не образуется
- Объем КГП недостаточен для наблюдаемого увеличения выхода барионов.

Сравнение измеренных значений p/π с расчетами моделей РҮТНІА и АМРТ в p+Al и $^3{\rm He}{+}{\rm Au}$ столкновениях

- КГП не образуется? **PHENIX 2022г.** ψ(2S) в *p*+Al, *p*+Au
- Объем КГП недостаточен для наблюдаемого увеличения выхода барионов

Интегральные значения p/π

можно интерпретировать как усиление роли процессов рекомбинации с увеличением количества нуклонов-участников (*N_{part}*).

Модель радиально расширяющейся термализованной системы

$$\begin{split} \langle E_{\rm kinetic} \rangle &= \langle E_{\rm thermal} \rangle + \langle E_{\rm collective} \rangle \\ T &= T_0 + m_h \left\langle u_t \right\rangle^2 \end{split}$$

Научная сессия секции ядерной физики ОФН РАН

Температура вымораживания T_0 и средние скорости коллективного потока $\langle u_t \rangle$

где
$$p_1 = 0.0345 \pm 0.0003$$
, $p_2 = 3196 \pm 342$

- 1. Получены температуры вымораживания *T*₀ и средней скорости коллективного потока частиц (*u*_t) как функций от количества нуклонов-участников (*u*_t).
- В центральных столкновениях ³Не+Аu, Cu+Au, U+U наблюдается эффект увеличенного выхода протонов и антипротонов, что может быть объяснено доминированием вклада процессов рекомбинации в образовние π[±], K[±], p, p̄ в диапазоне p_T < 4 ГэВ/с.

Спасибо за внимание!

Адронизация

- Рекомбинация *p*_T ≤ 3 ГэВ/*с*
- Фрагментация *p*_T ≥ 3 ГэВ/*с*

• Инвариантные p_T спектры

$$\frac{1}{2\pi p_{T}}\frac{d^{2}N}{dp_{T}dy} = \frac{N_{h}}{2\pi p_{T}N_{evt}\varepsilon_{rec}\Delta p_{T}\Delta y}$$

• Факторы ядерной модификации

$$R_{AB}(p_T) = \frac{1}{N_{coll}} \frac{d^2 N_{AB}(p_T)/dydp_T}{d^2 N_{pp}(p_T)/dydp_T}$$

 Величины отношений адронов *π*⁻/*π*⁺, *K*⁻/*K*⁺, *p̄*/*p*, *K*⁺/*π*⁺, *K*⁻/*π*⁻, *p*/*π*⁺, *p̄*/*π*⁻ Вычисляются как отношения инвариантных *p*_T спектров соответствующих частиц

Сравнение R_{AB} заряженных адронов в Cu+Au, Au+Au и U+U при одинаковых значениях $\langle N_{part} \rangle$

Сравнение R_{AB} заряженных адронов в Cu+Au, Au+Au и U+U при одинаковых значениях $\langle N_{part} \rangle$

Значения *R_{AB}* определяются областью перекрытия сталкивающихся ядер и количеством нуклонов-участников и не зависят от геометрии столкновения.

Сравнение R_{AB} заряженных адронов в p+Al, d+Au и ³He+Au при одинаковых значениях $\langle N_{part} \rangle$

p+Al, π^{\pm} , K^{\pm} – наклон $R_{AB}(p_T)$ p+Al, протоны – $R_{AB} \approx 1$

Сравнение R_{AB} заряженных адронов в p+Al, d+Au и ³He+Au при одинаковых значениях $\langle N_{part} \rangle$

p+Al, π^{\pm} , K^{\pm} – наклон $R_{AB}(p_T)$ p+Al, протоны – $R_{AB} \approx 1$

Инвариантные *р*_т спектры

Факторы ядерной модификации *R_{AB}* легких адронов в Cu+Au и U+U столкновениях

Факторы ядерной модификации *R_{AB}* легких адронов в Cu+Au и U+U столкновениях

Факторы ядерной модификации *R_{AB}* легких адронов в *p*+Al и ³He+Au столкновениях

Факторы ядерной модификации *R_{AB}* легких адронов в *p*+Al и ³He+Au столкновениях

