Возможность измерения коллективных потоков инклюзивных фотонов и π⁰ в столкновениях Bi+Bi@9.2 ГэВ на установке MPD

Олег Голосов Дмитрий Пересунько Евгения Некрасова Дмитрий Блау

НИЦ "Курчатовский институт" НИЯУ МИФИ

Научная сессия секции ядерной физики ОФН РАН Дубна, 04/04/2024

Анизотропные коллективные потоки

Азимутальная асимметрия в координатном пространстве в результате взаимодействия преобразуется в асимметрию импульсного пространства

$$\rho(\phi) = \frac{1}{2\pi} [1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_s))]$$
$$v_n = \langle \cos(n[\phi - \Psi_s]) \rangle$$

ν_n = ν_n (p_т, *y*, центральность, тип адрона) ψ_s - плоскость симметрии

Коллективные потоки прямых фотонов

Прямые фотоны

- рождаются в результате электромагнитных процессов в ходе столкновений тяжелых ядер
- не взаимодействуют с другими частицами в зоне столкновения.

Коллективные потоки прямых фотонов

- изучение позволит прояснить механизмы формирования анизотропных потоков, в том числе на ранних этапах столкновения
- для численной оценки необходимо измерение величины коллективных потоков инклюзивных фотонов и нейтральных пионов

Эксперимент MPD @ NICA

- Цель изучение фазовой диаграммы сильновзаимодействующей материи в области высокого барионного химического потенциала
- Регистрация продуктов столкновений тяжелых ионов при энергиях 4-11 ГэВ.

Основные подсистемы

- Время-проекционная камера (ТРС)
- Время-пролетная система (TOF)
- Электромагнитный калориметр (ECal)
- Передние адронные калориметры (FHCal)

Описание анализа

- Данные: реконструкция симулированного отклика детектора MPD на частицы из генератора UrQMD, столкновения Bi+Bi @ 9.2 GeV.
- Отбор событий:
 - успешно восстановленная первичная вершина в пределах 40 см от центра детектора.
 - ~20М событий после отбора.
- Плоскость симметрии события из асимметрии распределения энергии, зарегистрированной передними адронными калориметрами FHCal
- Разрешение плоскости симметрии метод двух подсобытий.

Методы реконструкции фотонов и π^{0}

Два метода реконструкции фотонов

- Калориметрический сигнал в электромагнитном калориметре ECal
- Конверсионный комбинация е⁺е⁻ из ТРС

Три метода реконструкции π⁰ из пары фотонов:

- Калориметрический (оба фотона зарегистрированы ECal)
- Гибридный (ECal + конвертировавший фотон)
- Конверсионный (два конвертировавших фотона)

Конверсионный метод обладает наибольшим разрешением по импульсу, однако наименьшей эффективностью реконструкции.

Отбор кластеров и пар е+е-

- Отбор кластеров в Ecal:
 - $E_{core} > 50 \text{ MeV}$
 - минимум 2 ячейки
 - расстояние до ближайшего трека > 1 см
 - максимальное время пролета фотона до калориметра
- Отбор треков для реконструкции конверсионных фотонов:
 - > 10 хитов в ТРС
 - |η| > 1
 - p_T > 0.05 GeV/c
 - значение dE/dx в пределах 5 от ожидаемого для электрона
- Отбор пар е⁺е⁻
 - треки частиц разных зарядов
 - $M_{inv} < 50 \text{ MeV/c}^2$
 - минимальное расстояние между треками < 1.2 см
 - отбор по распределению Арментерос-Подолянского
 - качество аппроксимации вторичной вершины

Эффективность регистрации первичных* фотонов

* рожденных не далее 1 см от первичной вершины столкновения **в модели UrQMD бо́льшая часть фотонов происходит из распадов π^0

Эффективность регистрации первичных фотонов

- Эффективность регистрации в ECal резко падает в области центральных быстрот и низких рт. Требуется оптимизация по энергии кластеров.
- Низкая эффективность конверсионного метода в целом.
- Поправка на эффективность регистрации путем взвешивания при корреляции частиц с плоскостью симметрии

Направленный поток инклюзивных фотонов

- Хорошее согласие со значениями из генератора столкновений для обоих методов
- Конверсионный метод требует более высокой статистики

Эллиптический поток инклюзивных фотонов

- Ограниченное согласие со значениями из генератора столкновений в области средних поперечных импульсов
- Конверсионный метод требует более высокой статистики

Вычисление потоков нейтральных пионов

- Фитируется зависимость vn от инвариантной массы пары фотонов представленной ниже функцией
- V_{sig} и V_{bg} свободные параметры, n_{sig} и n_{bg} определяются путем фитирования распределений пар фотонов по инвариантной массе
- Использование конверсионного метода в рамках имеющейся статистики не представляется возможным

Направленный поток нейтральных пионов

- Для обоих методов зависимости качественно согласуются с генератоными значениями
- Систематическое отклонение для калориметрического метода влияние аксептанса ECal?
- Гибридный метод требует более высокой статистики

Эллиптический поток нейтральных пионов

- Качественное согласие со значениями из генератора
- Низкая амплитуда эллиптического потока требует более высокой статистики для обоих методов

Заключение

- Измерения направленного и эллиптического потоков инклюзивных фотонов и нейтральных пионов в столкновениях Bi+Bi @ 9.2 GeV в эксперименте MPD принципиально возможно с относительно высокой точностью
- При наличии достаточной статистики возможна независимая проверка результатов с использованием гибридного и конверсионного методов
- Калориметрический метод дает систематические отклонения, требующие дополнительного изучения
- Для получения более точной оценки исследование необходимо провести с использованием генератора с реалистичными потоками прямых фотонов и нейтральных пионов.