Изучение процессов $e^+e^- \rightarrow \eta \gamma$ и $\eta' \gamma$ при энергии \sqrt{s} от 1.075 до 2 ГэВ на детекторе СНД

Бердюгин А.В.

СНД – ВЭПП-2000

Комплекс ВЭПП-2000

- ≻ е+е- коллайдер
- ≻ Энергия 160 1000 МэВ
- ≻ Светимость 4·10³¹см⁻²с⁻¹
- > Детекторы: СНД и КМД-3

Детектор СНД на ВЭПП-2000

IL = 746 пб⁻¹ при $2E_{\text{beam}}$ = 1.075 – 2.00 ГэВ

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

Детектор СНД на ВЭПП-2000

Изучаемый процесс е+е- > $\eta\gamma$

Канал распада: $\eta \rightarrow 3\pi^0$, $\pi^0 \rightarrow \gamma\gamma$

Фоновые процессы:

 $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ \checkmark изменились сечения процессов $e^+e^- \rightarrow \eta \pi^0 \gamma$ (по сравнению с 2014 г.) $e^+e^- \rightarrow \eta \eta \gamma$ \checkmark вклад ранее не учитывался $e^+e^- \rightarrow \omega \pi^0 \pi^0$ (в статье 2014 г.) $e^+e^- \rightarrow w_S K_L c$ распадом $K_S \rightarrow \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K_L \pi^0 c$ распадом $K_S \rightarrow \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$ с распадом $K_S \rightarrow \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K_L \eta$ с распадом $K_S \rightarrow \pi^0 \pi^0$

Условия отбора

Предварительные:

N_{ch} = 0 ; N_γ > 6
 ▶ Не сработала мюонная система
 > 0.7< E_{tot}/E_{cm} <1.2 ; P_{cal}/E_{cm} < 0.3
 > E_{tot}/E_{cm} - P_{cal}/E_{cm} >0.7

Кинематическая реконструкция:

 $ightarrow e^+e^-
ightarrow \pi^0\pi^0\gamma$

 $e^+e^- \rightarrow 3\pi^0\gamma$, где γ не входящий в π^0 мезоны — фотон с максимальной энергией

Число событий

Аппроксимация распределения $M_{rec \gamma}$:

- ≻ моделирование $e^+e^- \rightarrow \eta\gamma$ (без r.c. γ)
- ≻ моделирование е⁺е⁻ → үүү (события с М_{rec r.c. γ} < 1030 МэВ)</p>
- ожидаемый вклад всех фоновых процессов, определенный по моделированию

 $P_{\phi\gamma}$ – расчетный вклад свободные параметры: $N_{\eta\gamma}$ и $\alpha_{
m bkg}$ $P(M_{\rm rec}) = N_{\eta\gamma} P_{\eta\gamma}(M_{\rm rec}) + \alpha_{\rm bkg} P_{\rm bkg}(M_{\rm rec}) + P_{\phi\gamma}(M_{\rm rec})$

Число событий

Аппроксимация данных

$$\sigma_{vis}(\sqrt{s_i}) = N_{\eta\gamma,i}/IL_i$$

$$\sigma_{vis}(\sqrt{s}) = \int_{0}^{x_{max}} \varepsilon \left(\sqrt{s}, \frac{x\sqrt{s}}{2}\right) F\left(x, \sqrt{s}\right) \sigma \left(\sqrt{s(1-x)}\right) dx$$
$$\sqrt{s'} = \sqrt{s(1-x_{max})} < 1.03 \text{ }\Gamma \text{>B}$$

 $\sigma_{vis}(\sqrt{s}) = \varepsilon_0(\sqrt{s})\,\sigma(\sqrt{s})\,(1 + \delta(\sqrt{s}))$

 $\varepsilon_0(\sqrt{s}) \equiv \varepsilon(\sqrt{s}, 0)$

$$\delta(\sqrt{s}) = \frac{\int_{0}^{x_{max}} \varepsilon\left(\sqrt{s}, \frac{x\sqrt{s}}{2}\right) F(x, \sqrt{s}) \sigma\left(\sqrt{(1-x)s}\right) dx}{\varepsilon_r(\sqrt{s}, 0)\sigma(\sqrt{s})} - 1$$

Эффективность регистрации

 \sqrt{s} = 1.15 ГэВ (а), 1.6 ГэВ (b) и 1.9 ГэВ (c)

Борновское сечение

Борновское сечение

\sqrt{s} (ГэВ)	$L \; (\Pi 6^{-1})$	$N_{\phi\gamma}$	$N_{\rm bkg}(\alpha_{\rm bkg})$	$\varepsilon_0 \ (\%)$	$N_{\eta\gamma}$	$\delta + 1$	σ (пб)
1.075	1.10	28	$2.9~(1.36 \pm 0.27)$	8.1	$2.0^{+7.0}_{-2.0}$	1.26 ± 0.04	$18^{+63}_{-18} \pm 1$
1.100	3.38	51	$6.4~(1.36\pm 0.27)$	8.0	$7.0^{+8.1}_{-6.5}$	1.43 ± 0.12	$18^{+21}_{-17} \pm 1$
1.125	1.32	11	$1.4~(1.36\pm0.27)$	8.2	$1.5^{+3.7}_{-1.5}$	1.48 ± 0.19	$9^{+23}_{-9} \pm 1$
1.150	3.21	15	$2.8~(1.36\pm0.27)$	8.1	$0.0^{+3.8}$	1.44 ± 0.22	$0^{+10} \pm 0.1$
1.175	1.73	4	$1.1~(1.36\pm0.27)$	7.9	$3.6^{+3.5}_{-2.2}$	1.35 ± 0.20	$20^{+19}_{-12} \pm 2$
1.200	4.30	4	$2.2~(1.36\pm 0.27)$	7.7	$5.3^{+4.2}_{-2.9}$	1.25 ± 0.16	$13^{+10}_{-7} \pm 1$
1.225 - 1.300	21.0	5	$20~(1.35\pm0.15)$	7.0	$5.9^{+5.4}_{-3.9}$	1.01 ± 0.01	$4^{+4}_{-3} \pm 0.2$
1.325 - 1.400	10.0	1	$16 (1.35 \pm 0.15)$	6.6	$6.9^{+5.1}_{-3.7}$	0.90 ± 0.08	$12^{+9}_{-6} \pm 1$
1.425 - 1.500	11.0	0	$22 (1.01 \pm 0.11)$	6.3	$13.0^{+6.6}_{-5.2}$	0.91 ± 0.07	$21^{+10}_{-8}\pm 2$
1.520 - 1.600	11.3	0	$34~(1.12\pm0.08)$	6.0	$6.8^{+5.9}_{-4.4}$	0.95 ± 0.03	$11^{+9}_{-7}\pm 0.4$
1.625 - 1.700	12.4	0	$58 (1.28 \pm 0.07)$	5.6	$0.0^{+4.9}$	1.18 ± 0.20	$0^{+6}\pm0.3$
1.720 - 1.800	15.0	0	$25~(1.13\pm0.08)$	5.4	$0.0^{+3.8}$	2.94 ± 1.94	$0^{+1.5} \pm 0.2$
1.820 - 1.902	63.5	0	43 (1.01 ± 0.05)	4.9	$1.9_{-1.9}^{+4.6}$	0.92 ± 0.06	$0.7^{+1.6}_{-0.7}\pm0.1$
1.910 - 2.000	83.2	0	$38~(0.97\pm0.05)$	4.6	$6.7^{+6.3}_{-4.7}$	0.94 ± 0.05	$1.9^{+1.8}_{-1.3} \pm 0.1$

Вклады в систематическую ошибку:

эффективность регистрации (3%)
конверсия фотона перед трековой системой (1.3%)

≻ светимость (2.2 %)

вычисление радиационной
 поправки (приведены в
 таблице)

Изучаемый процесс $e^+e^- \rightarrow \eta' \gamma$

Канал распада: $\eta' \rightarrow \eta \pi^0 \pi^0$, $\eta \rightarrow \gamma \gamma$, $\pi^0 \rightarrow \gamma \gamma$

Фоновые процессы:

 $e^+e^- \rightarrow \eta \gamma$ $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ $e^+e^- \rightarrow \eta \pi^0 \gamma$ $e^+e^- \rightarrow \eta\eta\gamma$ $e^+e^- \rightarrow \omega \pi^0 \pi^0$ $e^+e^- \rightarrow \omega \eta \pi^0$ $e^+e^- \rightarrow K_S K_I$ с распадом $K_S \rightarrow \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K_L \pi^0$ с распадом $K_S \rightarrow \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K_I \pi^0 \pi^0$ с распадом $K_S \rightarrow \pi^0 \pi^0$ $e^+e^- \rightarrow K_S K_I \eta$ с распадом $K_S \rightarrow \pi^0 \pi^0$

Условия отбора

Предварительные:

- $\succ N_{ch} = 0$; $N_{\gamma} = 7$
- ≻ Не сработала мюонная система

$$\geq 0.7 < E_{tot}/E_{cm} < 1.2$$
; $P_{cal}/E_{cm} < 0.3$

 $\geq E_{tot}/E_{cm} - P_{cal}/E_{cm} > 0.7$

Кинематическая реконструкция:

 $\geq e^+e^- \rightarrow \eta \pi^0 \pi^0 \gamma$ $\geq e^+e^- \rightarrow 7\gamma$

Окончательные:

 $\succ \chi^2(\eta \pi^0 \pi^0 \gamma) < 50$

Для гипотезы $e^+e^- \rightarrow 7\gamma$ не нашлись комбинации трех пар фотонов для которых:

 $|M_{\gamma\gamma} - M_{\pi^0}| < 35 \text{ M} \cdot \text{B}$

Для гипотезы $e^+e^- \rightarrow 7\gamma$ не нашлись комбинации трех фотонов для которых:

$$|M_{3\gamma} - M_{\omega}| < 35$$
 МэВ и $|M_{\gamma\gamma} - M_{\pi^0}| < 35$ МэВ

Число событий

Аппроксимация распределения М_{гес у}:

- ≻ моделирование e⁺e⁻ → η'γ (без r.c.γ)
- ожидаемый вклад всех фоновых процессов, определенный по моделированию

свободные параметры: $N_{\eta'\gamma}$ и $N_{
m bkg}$

Эффективность регистрации

 \sqrt{s} = 1.5 ГэВ (а), 1.72 ГэВ (b) и 1.878 ГэВ (c)

Изучаемый процесс $e^+e^- \rightarrow \eta' \gamma$

Канал распада:
$$\eta' \rightarrow \eta \pi^0 \pi^0$$
, $\eta \rightarrow 3\pi^0$, $\pi^0 \rightarrow \gamma \gamma$

Условия отбора

Предварительные:

Кинематический фит:

 $\sqrt{S} > 1.4 \Gamma_{2}B$

 $ightarrow e^+e^-
ightarrow 11\gamma$

Окончательные:

- $\succ \chi^2(11\gamma) < 50$
- Для гипотезы $e^+e^- \rightarrow 11\gamma$ не нашлись комбинации трех фотонов для которых:

 $|M_{3\gamma}-M_{\omega}|~<~35$ МэВ
и $|M_{\gamma\gamma}-M_{\pi^0}|~<~35$ МэВ

- > N_{ch} = 0 ; N_y = 7
- ≻ Не сработала мюонная система
- $> 0.7 < E_{tot}/E_{cm} < 1.2$; $P_{cal}/E_{cm} < 0.3$
- $\geq E_{tot}/E_{cm} P_{cal}/E_{cm} > 0.7$

Число событий

Распределение $M_{rec \gamma}$:

- ≻ моделирование e⁺e⁻ → η'γ (без r.c.γ)
- ожидаемый вклад всех фоновых процессов, определенный по моделированию

Борновское сечение

Заключение

- Э Для семифотонного конечного состояния были измерено сечение процесса е⁺е⁻ → ηγ.
- ≻ Новые результаты лежат значительно ниже предыдущих при √s > 1.25 ГэВ. Отличие объясняется существенной недооценкой фона в предыдущей работе. Новое измерение замещает сечение, приведенное в статье 2014 года.
- В результате аппроксимации сечения в модели векторной доминантности получены значения сечений в максимумах резонансов:

$$\sigma_{\rho' \to \eta\gamma} = 16^{+15}_{-10} \pm 2$$
 пб,

$$\sigma_{\phi' \to \eta\gamma} = 14^{+14}_{-10} \pm 2$$
 пб,

которые согласуются с оценками $\sigma_{\rho'\eta\gamma} \approx 15$ пб, $\sigma_{\phi'\eta\gamma} \approx 10$ пб,

сделанными на основе предсказаний кварковой модели $\Gamma_{\rho' \to \eta\gamma} \approx \Gamma_{\phi' \to \eta\gamma} \approx 100$ кэВ

Заключение

- ▶ В одинадцатифотонном конечном состоянии событий процесса e⁺e⁻ → η'γ не обнаружено.
- Для семифотонного конечного состояния есть порядка 17 кандидатов в события процесса e⁺e⁻ → η'γ из которых 8 наблюдаются в диапазоне энергий в системе центра масс выше 1.8 ГэВ.