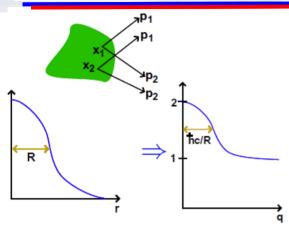


Scientific session of the nuclear physics section of the Division of Physical Sciences of the Russian Academy of Sciences Dubna, Russia, April 1-5, 2024


Charged kaon femtoscopy with ALICE at the LHC

Konstantin Mikhaylov^{1,2} on behalf of the ALICE Collaboration

¹NRC Kurchatov Institute, Moscow, Russia, ²Joint Institute for Nuclear Research, Dubna, Russia

- Femtoscopy
- ALICE setup
- Kaon and pion in pp 13 TeV
- Kaon in p-Pb 5.02 TeV
- Non-identical kaons in Pb–Pb 2.76 TeV
- Summary

Femtoscopy

Correlation femtoscopy:

Measurement of space–time characteristics \mathbf{R} , $\mathbf{c\tau}$ of particle production using particle correlations due to the effects of quantum statistics (QS) and final–state interactions (FSI)

Two-particle correlation function:

theory:

$$C(q) = \frac{N_{2}(p_{1}, p_{2})}{N_{1}(p_{1}) \cdot N_{2}(p_{1})}, C(\infty) = 1$$

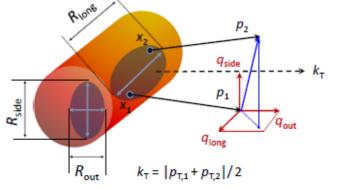
experiment: $C(q) = \frac{S(q)}{B(q)}, q = p_1 - p_2$ S(q) – distribution of pair momentum difference from same event, B(q) – reference distribution built by mixing

different events

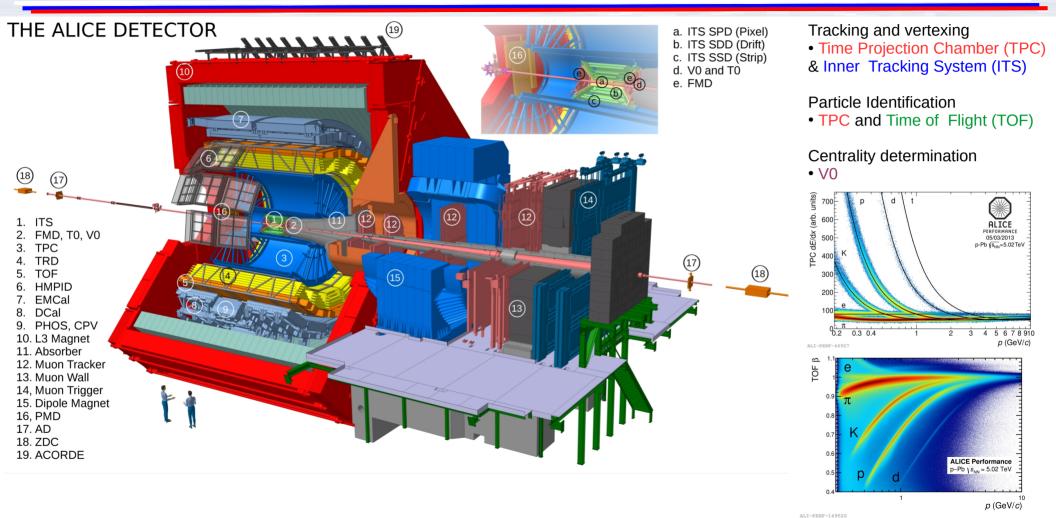
 $C(q_{inv})=1+\lambda e^{-R^2 q_{inv}^2}$

Parametrizations used:

1D CF:

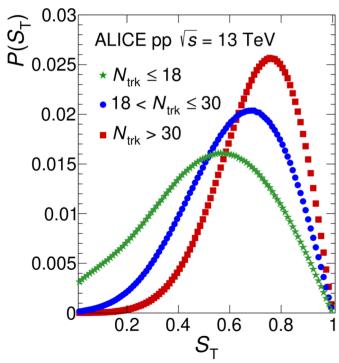

R – Gaussian radius in PRF,

 λ – correlation strength parameter


3D CF: $C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$ *R* and *q* are in Longitudinally Co-Moving Frame (LCMS) long || beam; out || transverse pair velocity v_T ; side normal to out, long

LCMS decomposition:

S. Pratt. Phys. Rev. D 33 (1986) 1314 G. Bertsch. Phys. Rev. C 37 (1988) 1896



ALICE setup

π and K femtoscopy with event-shape selection

Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection ALICE Collaboration, arXiv:2310.07509

Select jetty or spherical events

S_T transverse sphericity

$$S_{\mathrm{T}} = \frac{2\min(\lambda_1, \lambda_2)}{\lambda_1 + \lambda_2}$$

 $\lambda_{\scriptscriptstyle 1}$ and $\lambda_{\scriptscriptstyle 2}$ are the eigenvalues of the matrix of $\rho_{\scriptscriptstyle T}$

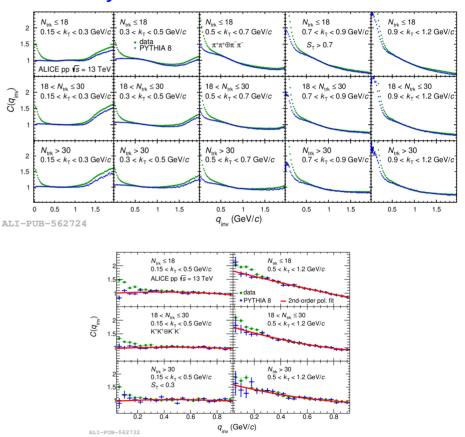
$$S_{\rm T} = \frac{1}{\sum_i p_{\rm T}^i} \sum_i \frac{1}{p_{\rm T}^i} \begin{pmatrix} (p_{\rm x}^i)^2 & p_{\rm x}^i p_{\rm y}^i \\ p_{\rm x}^i p_{\rm y}^i & (p_{\rm y}^i)^2 \end{pmatrix}$$

• $S_T \rightarrow 0$: a strongly elongated ellipse

• $S_T \rightarrow 1$: an isotropic source

ALI-PUB-562712

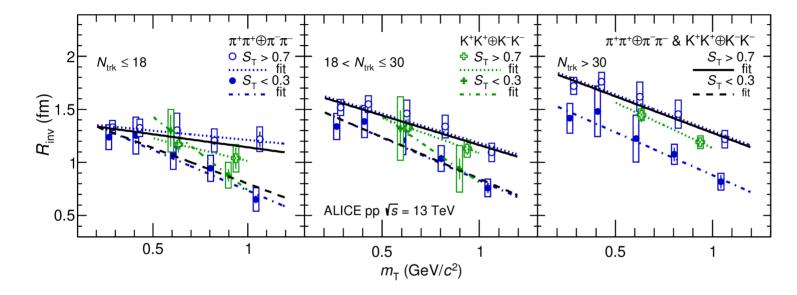
π and K correlation function


Spherical events

2 $N_{trk} \leq 18$ $\overline{N}_{trk} \leq 18$ $N_{\rm trk} \le 18$ $N_{\rm trk} \leq 18$ $N_{\rm trk} \leq 18$ $1.5 = 0.15 < k_T < 0.3 \text{ GeV}/c = 0.3 < k_T < 0.5 \text{ GeV}/c$ L0.5 < k₊ < 0.7 GeV/c . 20.7 < k₊ < 0.9 GeV/c 1.2 GeV/*c* • data $\pi^+\pi^+\oplus\pi^-\pi^ S_{\tau} > 0.7$ PYTHIA 8 ALICE pp 1/s = 13 TeV . 18 < N_{in} ≤ 30 $18 < N_{trk} \le 30$ ππ $C(q_{inv})$.0.15 < k_T < 0.3 GeV/c ± 0.3 < k_T < 0.5 GeV/c $10.5 < k_{T} < 0.7 \text{ GeV/}c$ ↓0.7 < k_T < 0.9 GeV/c 0.9 < k_T < 1.2 GeV/c $N_{\rm trk} > 30$ $1.5 \begin{bmatrix} 0.15 < k_T < 0.3 \text{ GeV}/c \end{bmatrix} 0.3 < k_T < 0.5 \text{ GeV}/c$ 0.5 < k_T < 0.7 GeV/c $0.7 < k_{\tau} < 0.9 \text{ GeV}/c$ $10.9 < k_{\tau} < 1.2 \text{ GeV/}c$ 0.5 1 1.5 0.5 1 1.5 0.5 1.5 0.5 1 1.5 0.5 1.5 0 1 1 q_{inv} (GeV/c) ALI-PUB-562720

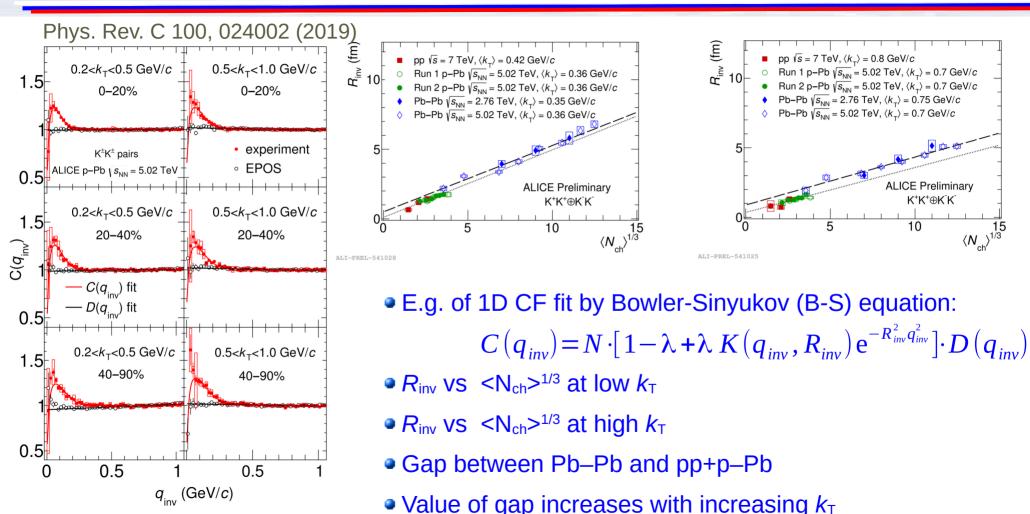
 $N_{wk} \leq 18$ $N_{\rm trb} \leq 18$ 0.15 < k_T < 0.5 GeV/c $0.5 < k_{\tau} < 1.2 \text{ GeV/c}$ • data ALICE pp Vs = 13 TeV +PYTHIA 8 — 2nd-order pol. fit $18 < N_{trk} \le 30$ $18 < N_{trk} \le 30$ $C(q_{inv})$ 0.15 < k_T < 0.5 GeV/c $0.5 < k_T < 1.2 \text{ GeV/}c$ K+K+⊕K_K ****** ____ $N_{trk} > 30$ $N_{trk} > 30$ 0.15 < k_T < 0.5 GeV/c 0.5 < k_T < 1.2 GeV/c $S_{\tau} > 0.7$ 06 q_{inv} (GeV/c) ALI-PUB-562728

KK


Jetty events

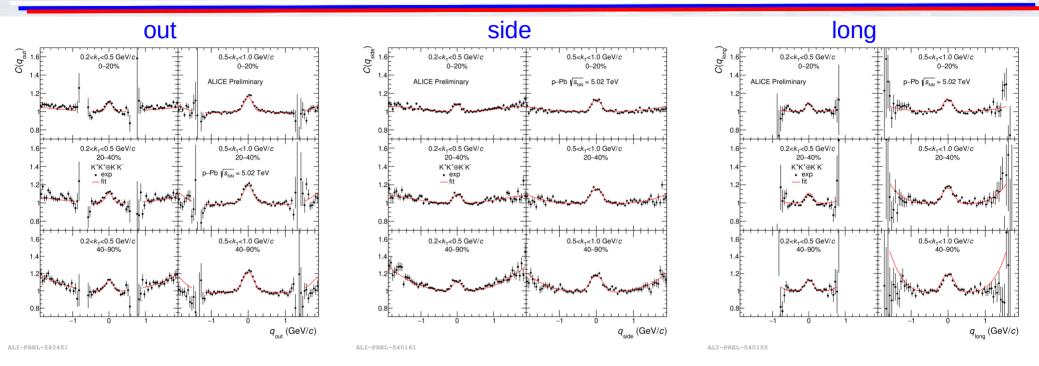
Kaon femtoscopy with ALICE

RAS 2024, JINR


π and K spherical and jetty radii

ALI-PUB-562752

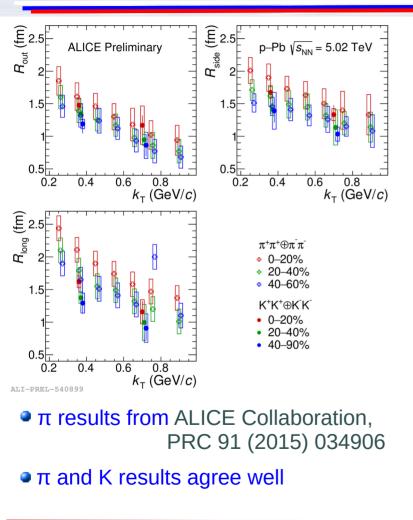
- π radii extracted for spherical events > those for jet-like events
- Both π and K R_{inv} demonstrate a decreasing trend with increasing m_T
- Spherical and jetty events m_{T} dependence is different


p–Pb $\sqrt{s_{NN}}$ =5.02 TeV: 1D KK results

Kaon femtoscopy with ALICE

RAS 2024, JINR

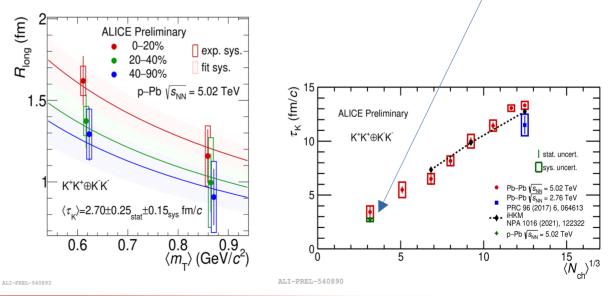
p–Pb $\sqrt{s_{NN}}$ =5.02 TeV: 3D KK CF projections



• E.g. of CF projection onto out-side-long axis in LCMS with fit B-S:

 $C(q_{out}, q_{side}, q_{long}) = N[\lambda - 1 + \lambda K(R, q_{inv})e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}]D(q_{out}, q_{side}, q_{long})$

• Fit function gives a good description for centrality(top to bottom) and k_{T} (let to right) bins


p–Pb $\sqrt{s_{NN}}$ =5.02 TeV: 3D KK CF results

- Extract time of maximal emission τ
- m_T dependence of *R*²_{long} as NPA 1016(2021)122322

$$R_{long}^2 = \tau^2 \lambda^2 (1 + \frac{3}{2} \lambda^2), \ \lambda^2 = T / m_T \sqrt{1 - \overline{v}_T^2}$$

 \bullet p–Pb and very peripheral Pb–Pb results for τ are similar

Kaon femtoscopy with ALICE

RAS 2024, JINR

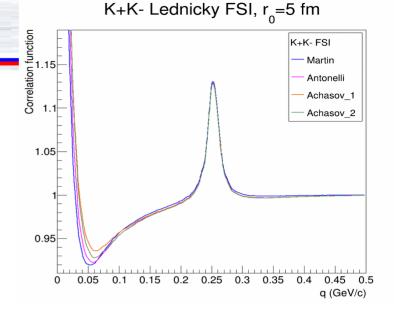
K⁺K⁻ theoretical correlation function (formalism)

[R.Lednicky,V.Lyuboshitz Sov. J. Nucl. Phys. 35, 770 (1982), R.Lednicky Phys. Part. Nucl.40, pp.307(2009)] The K⁺K⁻ correlation function(CF) at given **k*** and 3-momentum **P**:

$$C_{sFSI}(\mathbf{k}^*, \mathbf{P}) = \int d^3 \mathbf{r}^* S^{\alpha}(\mathbf{r}^*, \mathbf{P}) \sum_{\alpha'} \left| \psi_{-\mathbf{k}^*}^{\alpha'\alpha}(\mathbf{r}^*) \right|^2 \quad (1) \qquad \text{Spatial separation:} \quad S(\mathbf{r}^*) \sim exp(-\mathbf{r}^{*2}/4R^2)$$

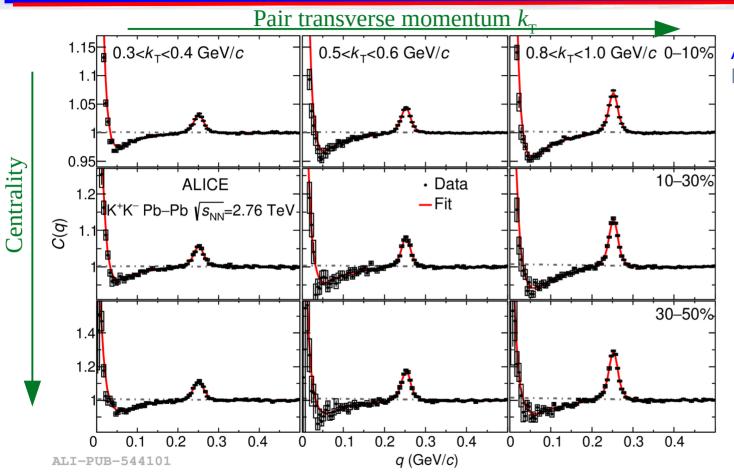
The s-wave scattering amplitude $f(k^*)$:

$$f_0(k^*) = \frac{\gamma_{f_0 \to K+K-}}{m_{f_0}^2 - s - i(\gamma_{f_0 \to K+K-}k^* + \gamma_{f_0 \to \pi\pi}k_{\pi\pi})} \text{ and } f_1(k^*) = \frac{\gamma_{a_0 \to K+K-}}{m_{a_0}^2 - s - i(\gamma_{a_0 \to K+K-}k^* + \gamma_{a_0 \to \pi\eta}k_{\pi\eta})}$$
(2)


The p-wave strong interaction through **\ophi** meson resonance [R.Lednicky Part. Nucl. Letters 8(2011)965]:

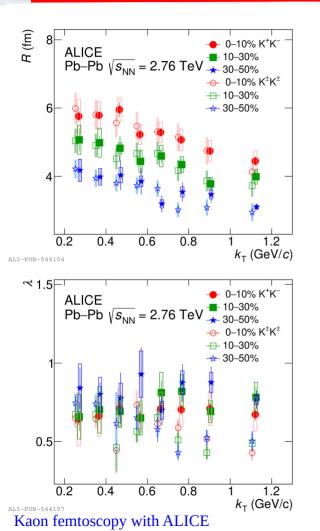
$$C_{\phi}(p_1, p_2) = N^{-1}(p_1, p_2) \int d^3 \mathbf{r} W_P(\mathbf{r}, \mathbf{k}) \sum_{\alpha' m'} |\psi_{-\mathbf{k}}^{\alpha' m'; \alpha}(\mathbf{r})|^2$$
(3)

The total correlation function : $C_{\text{FSI}}(p_1,p_2) = 1 + C_{\text{sFSI}}(p_1,p_2) + N_1 C_{\phi\text{-direct}}(p_1,p_2) + N_2 C_{\phi}(p_1,p_2)$ (4) $C_{\phi\text{-direct}}(p_1,p_2)$ is a non-relativistic Breit-Wigner function.


Pb–Pb $\sqrt{s_{NN}}$ =2.76 TeV: K+K- fit

- $C(q) = Norm \cdot [1 + \lambda \cdot C_{sFSI}(q,R) + \lambda_{\phi} \cdot C_{\phi}(q,M,\sigma))]$ $C_{sFSI}(q,R)$ - Lednicky model $C_{\phi}(q,M,\sigma)$ - Breit-Wigner Γ_{ϕ} =4.25MeV
- *a*₀ parameters fixed from Achasov² [ALICE PLB774 (2017) 64, PLB 790 (2019) 22]
- *f*₀ mass and coupling parameters are free

Model	m_{f0}^{2}	m_{a0}^2	$\gamma_{f0 \rightarrow K^+K^-}$	$\gamma_{f0 \to \pi\pi}$	$\gamma_{a0 \rightarrow K^+K^-}$	$\gamma_{a0 \to \pi\eta}$	
Martin	.9565	.9487	.792	.199	.333	.222	NPB 121 (1977) 514
Antonelli	.9467	.9698	2.763	.5283	.4038	.3711	hep-ex/0209069
Achasov ¹	.9920	.9841	1.305	.2684	.5555	.4401	PRD 63(2001) 094007
Achasov ²	.9920	1.0060	1.305	.2684	.8365	.4580	PRD 68(2003) 014006


Pb–Pb $\sqrt{s_{NN}}$ =2.76 TeV: K+K- CF

ALICE Collaboration, Phys. Rev. C107 (2023) 054904

Fit function gives a good description for centrality(top to bottom) and k_{T} (let to right) bins

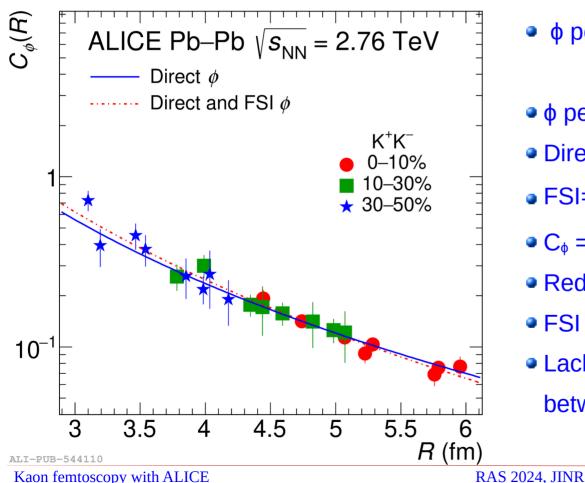
Pb–Pb $\sqrt{s_{NN}}$ =2.76 TeV: results

f₀(980) ^[j]

$I^{G}(J^{PC}) = 0^{+}(0^{+})$

Mass $m = 990 \pm 20$ MeV Full width $\Gamma = 10$ to 100 MeV

Particle Data Group


f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	dominant	476
$\overline{K}\overline{K}$	seen	36
$\gamma \gamma$	seen	495

Radii are in agreement within errors

- λ of K⁺K⁻ tend to be larger than for λ of K[±]K[±]
 ALICE Collaboration, Phys. Rev. C107 (2023) 054904
- $f_0(980)$ mass, width and couplings parameters:
- $M_{f0} = 967 \pm 3 \pm 7 \text{ MeV}/c^2$
- Γ_{f0} = 43.81 ± 8.76 ± 6.90 MeV/ c^2
- $\gamma_{f_{0} \to \pi\pi} = 0.089 \pm 0.0178 \pm 0.026 \text{ GeV}$
- $\gamma_{f_{0 \rightarrow K+K-}} = 0.34 \pm 0.068 \pm 0.101 \text{ GeV}$

Pb–Pb $\sqrt{s_{NN}}$ =2.76 TeV: ϕ peak value

ALICE Collaboration, Phys. Rev. C107 (2023) 054904

• ϕ peak height (corrected for λ and MR):

$$C_{\phi} = CF(q = \sqrt{M_{\phi}^2 - 4m_K^2}) - 1$$

- φ peak: direct production and FSI K⁺K⁻
- Direct=const/R³
- FSI=const·exp(- $\mathbf{b}^2 k_0^2 R^2$)/R³ , k_0 =126 MeV/c
- $C_{\phi} = a_{dir} \cdot C_{dir} + a_{FSI} \cdot C_{FSI}$
- Red curve fit $\rightarrow a_{dir} = 0.75, a_{FSI} = 0.25$
- FSI fraction could be estimated
- Lack of statistic → difficult to distinguish between direct and FSI contribution

Summary

• CF $\pi^{\pm}\pi^{\pm}$ and K[±]K[±] in pp at \sqrt{s} = 13 TeV were measured;

- CF classified via global event-shape variable, S_T ;
- Spherical CF cleared of mini-jets; Jet CF shows significant mini-jet effects;
- The $\pi^{\pm}\pi^{\pm}$ radii for spherical events are larger than for jet events;

• CF K[±]K[±] 1D+3D in p–Pb at $\sqrt{s_{NN}}$ =5.02 TeV were measured;

- 1D R vs N_{ch} for p–Pb and pp are in agreement and different from Pb–Pb;
- 3D out-side-long K[±]K[±] and $\pi^{\pm}\pi^{\pm}$ radii coincide within errors;
- maximal emission time τ_{κ} was extracted and is close to one at very peripheral Pb–Pb;

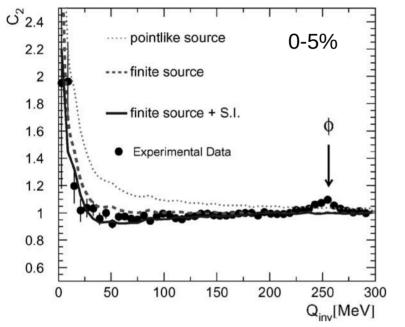
• CF K+K- Pb–Pb at $\sqrt{s_{NN}}$ =2.76 TeV were measured;

• For the first time the K⁺K⁻ correlation functions were fitted with free $f_0(980)$ mass, width with restriction on radii to be close to the corresponding identical K[±]K[±];

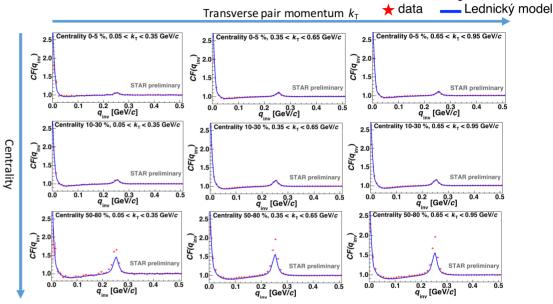
• The measured width of the $f_0(980)$ is $43.81 \pm 8.76(\text{stat}) \pm 6.90(\text{sys}) \text{ MeV/}c^2$ and mass is $967 \pm 3(\text{stat}) \pm 7(\text{sys}) \text{ MeV/}c^2$ which do not contradict the PDG data.

Thank you for your attention!

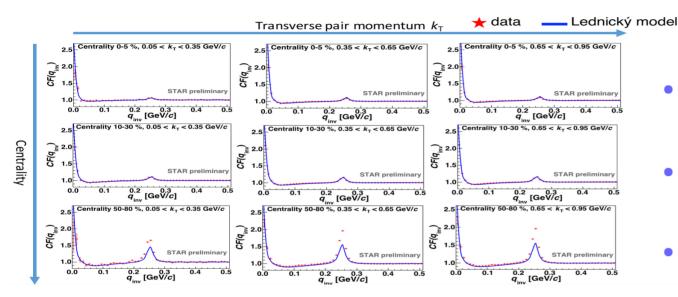
Slides in trunk



K⁺K⁻ existing results



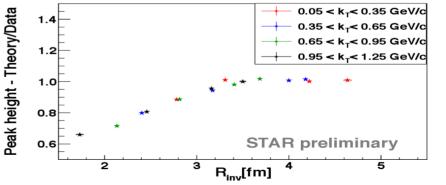
STAR AuAu 200 GeV [WPCF 2017, J. Lidrych]



- Coulomb stays above data
- Dip at $Q_{inv} \sim 50-150$ due to strong interaction
- Strong and Coulomb FSI does good job

- No fit, comparison with Lednický model
- Data is described qualitatively for large source
- Phi production mechanism is not taken into account

K⁺K⁻ existing results: STAR


K⁺K⁻ in AuAu at √s_{NN}=200 GeV [WPCF 2017, Jindřich Lidrych]

- CF=(CF^{theor}-1)·λ+1 (no fit) CF^{theor} → Lednický model
- Data is described qualitatively for large source

Observations:

- The model underpredicts the strength of the correlation functions in the region of resonance with decreasing *R*_{inv}
- Model *fails* for smaller system (~3fm and smaller)
- Does not take into account production mechanism

Kaon femtoscopy with ALICE

