Исследование фотон-фотонных и фотон-ядерных взаимодействий в ультрапериферических столкновениях ядер на коллайдере LHC

Назар Бурмасов

Петербургский Институт Ядерной Физики им. Б.П. Константинова НИЦ «Курчатовский институт»

Научная сессия секции ядерной физики ОФН РАН 1-5 апреля 2024, г. Дубна

LHC как фотон-фотонный и фотон-адронный коллайдер

Ультрапериферические столкновения (УПС): b > R₁+R₂

→ адронные взаимодействия подавлены

Поток фотонов:

→ можно описать в приближении эквивалентных фотонов
→ Q < 1/R ~ 30 МэВ</p>

 \rightarrow пропорционален Z²

Ультрапериферические столкновения на LHC можно использовать для исследования үү, үр и үРb взаимодействий при высоких энергиях

Обзоры по физике УПС: A.J. Baltz et al, Phys. Rept. 458 (2008) 1 J.G. Contreras, J.D. Tapia Takaki. Int.J.Mod.Phys. A30 (2015) 1542012 S.Klein and P. Steinberg, Ann. Rev. Nuclear Part. Sci. 70 (2020) 323

Центральное ядро-ядерное столкновение

Ультрапериферическое ядро-ядерное столкновение

Фотон-фотонные взаимодействия*

090

*в представлении Kandinski 2.2

 Расхождения между экспериментом и моделями при измерениях димюонного континуума

 Расхождения между экспериментом и моделями при измерениях димюонного континуума

- Расхождения между экспериментом и моделями при измерениях димюонного континуума
- Приближение эквивалентных фотонов
 - STARlight: жесткий кат на прицельные параметры фотонов
 - SuperChic, Upcgen: форм-фактор ядра

- Расхождения между экспериментом и моделями при измерениях димюонного континуума
- Приближение эквивалентных фотонов
 - STARlight: жесткий кат на прицельные параметры фотонов
 - SuperChic, Upcgen: форм-фактор ядра
- Поправки более высоких порядков?
 - Обмен фотонами между ядрами и лептонами в конечном состоянии
 - Унитарность взаимодействий

Унитарность

Hencken et al. PRC 75 (2007) 034903 Zha et al. JHEP 08 (2021) 083

Аномальный магнитный момент мюона → отклонение на ~4σ от СМ

Аномальный магнитный момент мюона → отклонение на ~4σ от СМ

Предсказание: $a_{ au}^{
m SM} = 0.00117721(5)$

Эксперимент: –0.052 < a_т < 0.013 (95% CL) | DELPHI, EPJC, 35, 159, 2004

Аномальный магнитный момент мюона → отклонение на ~4σ от СМ

Предсказание: $a_{\tau}^{SM} = 0.00117721(5)$ Эксперимент: -0.052 < a_{τ} < 0.013 (95% CL) DELPHI, EPJC, 35, 159, 2004

- Тау-лептон короткоживущая частица → стандартные методы не работают, можно проводить измерение сечений γγ → ττ, чувствительных к a_τ
- F.del Aguila et al., PLB, 271, 256-260, 1991: Рb-Pb УПС для измерения a_т

- Аномальный магнитный момент мюона → отклонение на ~4σ от СМ Предсказание: aSM_τ = 0.00117721(5)
 Эксперимент: -0.052 < a_τ < 0.013 (95% CL) DELPHI, EPJC, 35, 159, 2004
- Тау-лептон короткоживущая частица → стандартные методы не работают, можно проводить измерение сечений γγ → ττ, чувствительных к a_τ
- F.del Aguila et al., PLB, 271, 256-260, 1991: Рb-Pb УПС для измерения а_т

Burmasov et al., CPC 277 (2022) 108388

Аномальный магнитный момент мюона → отклонение на ~4σ от СМ

Предсказание: $a_{\tau}^{SM} = 0.00117721(5)$ Эксперимент: -0.052 < a_{τ} < 0.013 (95% CL) DELPHI, EPJC, 35, 159, 2004

- Тау-лептон короткоживущая частица → стандартные методы не работают, можно проводить измерение сечений γγ → ττ, чувствительных к a_τ
- F.del Aguila et al., PLB, 271, 256-260, 1991: Рb-Pb УПС для измерения a_т

Аномальный магнитный момент мюона → отклонение на ~4σ от СМ

Предсказание: $a_{ au}^{
m SM} = 0.00117721(5)$ Эксперимент: **–0.052 < а_т < 0.013 (95% CL)** DELPHI, EPJC, 35, 159, 2004

- Тау-лептон короткоживущая частица → стандартные методы не работают, можно проводить измерение сечений γγ → ττ, чувствительных к a_τ
- F.del Aguila et al., PLB, 271, 256-260, 1991: Рb-Pb УПС для измерения а_т

Аномальный магнитный момент мюона → отклонение на ~4σ от СМ

Предсказание: $a_{\tau}^{SM} = 0.00117721(5)$ Эксперимент: -0.052 < a_{τ} < 0.013 (95% CL) DELPHI, EPJC, 35, 159, 2004

- Тау-лептон короткоживущая частица → стандартные методы не работают, можно проводить измерение сечений үү → *тт*, чувствительных к *a*_τ
- F.del Aguila et al., PLB, 271, 256-260, 1991: Pb-Pb УПС для измерения a_т

CMS Run 2 results (pp)

CMS Preliminary 138 fb⁻¹ (13 TeV)

Observed — 68% CL — 95% CL

• Чувствителен к новой физике: суперсимметрия, новые резонансы...

- Чувствителен к новой физике: суперсимметрия, новые резонансы...
- Наблюдение: ATLAS (Nature Phys. 3, 852, 2017) и CMS (PLB, 797, 134826 2019)
- Измерения ограничены триггером: $m_{yy} > 5 \ \Gamma \Rightarrow B/c^2$

- Чувствителен к новой физике: суперсимметрия, новые резонансы...
- Наблюдение: ATLAS (Nature Phys. 3, 852, 2017) и CMS (PLB, 797, 134826 2019)
- Измерения ограничены триггером: $m_{yy} > 5 \ \Gamma \Rightarrow B/c^2$

- Чувствителен к новой физике: суперсимметрия, новые резонансы...
- Наблюдение: ATLAS (Nature Phys. 3, 852, 2017) и CMS (PLB, 797, 134826 2019)
- Измерения ограничены триггером: $m_{yy} > 5$ ГэВ/ c^2
- Перспективы измерения при малых массах с ALICE 3
 - Большой фон от распада π^0
 - ightarrow можно подавить требованием на асимметрию
 - → или методами машинного обучения

$$\mathcal{L}_a = \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} \frac{a}{\Lambda} F \widetilde{F}$$

- Аксион: проблема СР-симметрии в сильных взаимодействиях и теория Печчеи-Квинн
- Аксионоподобные частицы класс псеводскалярных частиц, кандидаты в частицы темной материи

- Аксион: проблема СР-симметрии в сильных взаимодействиях и теория Печчеи-Квинн
- Аксионоподобные частицы класс псеводскалярных частиц, кандидаты в частицы темной материи

- Аксион: проблема СР-симметрии в сильных взаимодействиях и теория Печчеи-Квинн
- Аксионоподобные частицы класс псеводскалярных частиц, кандидаты в частицы темной материи

- Аксион: проблема СР-симметрии в сильных взаимодействиях и теория Печчеи-Квинн
- Аксионоподобные частицы класс псеводскалярных частиц, кандидаты в частицы темной материи
- Оценки пределов Л на основе моделирования в Upcgen (CPC 277 (2022) 108388)
- ALICE 3 может продвинуться в область малых масс, но поиски затруднительны в области π^0 , η, η', χ_c

Фотон-ядерные взаимодействия

Vector meson

²⁰⁸Pb

Photon energy

Фоторождение векторных мезонов в УПС

V. Guzey, E. Kryshen, M. Zhalov, PRC 93 (2016) 5, 055206

Когерентное и некогерентное фоторождение на ядрах

λ_{Coherent}

Когерентное:

- когерентное взаимодействие со всеми нуклонами ядра
- $\langle p_{\rm T} \rangle \sim 1/R_{\rm Pb} \sim 60 {
 m M}_{
 m B}/{
 m c}$
- эксклюзивный процесс

Некогерентное:

- взаимодействие с отдельными нуклонами
- $\langle p_{\rm T} \rangle \sim 1/R_{\rm p} \sim 450 \text{ M}_{
 m B}/c$
- обычно сопровождается развалом ядра

M. Ryskin, Z.Phys.C 57 (1993), 89-92

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt} \bigg|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48 \alpha_{\rm em} Q^8} \Big[x g_A(x, Q^2) \Big]^2$$

Партонные плотности в ядрах (nPDFs)

Большие погрешности извлекаемых функций глюонных экранировок, особенно при малых Q²:

- Ограниченная кинематика DIS и DY данных
- Непрямое извлечение глюонных распределений из уравнений эволюции

Измерения в зависимости от быстроты

V. Guzey, E. Kryshen, M. Strikman, M. Zhalov, PLB 726 (2013), 290-295

Цель: извлечение вклада сечения при малых х~10-5

- ~20% событий когерентного рождения сопровождается испусканием нейтронов из-за дополнительного обмена фотонами
- Нейтроны можно измерять в калориметрах нулевого угла (ZDC zero degree calorimeter)
- Измерения сечений с/без испускания нейтронов позволяют разделить вклады, соответствующие высоким и низким энергиям фотонов:

0n0n: без нейтронов

OnXn: нейтроны с одной из сторон

измерения $\frac{d\sigma_{PbPb}^{0n0n}(y)}{dy} = n_{\gamma}^{0n0n}(y)\sigma_{\gamma Pb}(y) + n_{\gamma}^{0n0n}(-y)\sigma_{\gamma Pb}(-y)$ $\frac{d\sigma_{PbPb}^{0nXn}(y)}{dy} = n_{\gamma}^{0nXn}(y)\sigma_{\gamma Pb}(y) + n_{\gamma}^{0nXn}(-y)\sigma_{\gamma Pb}(-y)$ Неизвестные фотоядерные сечения

V. Guzey, M. Strikman, M. Zhalov, EPJC 74 (2014) 7, 2942

Зависимость фотоядерных сечений от энергии

 ALICE: впервые фотоядерное сечение измерено до энергий ~ 1 ТэВ!

LTA: Guzey, Kryshen, Zhalov, PRC 93 (2016) 055206

ALICE, JHEP 10 (2023) 119 CMS, PRL 131 (2023) 262301

Зависимость фотоядерных сечений от энергии

- ALICE: впервые фотоядерное сечение измерено до энергий ~ 1 ТэВ!
- Согласие результатов ALICE и CMS

LTA: Guzey, Kryshen, Zhalov, PRC 93 (2016) 055206

ALICE, JHEP 10 (2023) 119 CMS, PRL 131 (2023) 262301

Зависимость фотоядерных сечений от энергии

- ALICE: впервые фотоядерное сечение измерено до энергий ~ 1 ТэВ!
- Согласие результатов ALICE и CMS
- Сравнение с теоретическими расчетами:
 - При малых энергиях: согласие с импульсным приближением
 - При высоких энергиях: согласие с LTA и расчетами в дипольной модели (b-BK-A, GG-HS)

LTA: Guzey, Kryshen, Zhalov, PRC 93 (2016) 055206

ALICE, JHEP 10 (2023) 119 CMS, PRL 131 (2023) 262301

Фактор ядерного подавления

 Фактор ядерного подавления впервые измерен вплоть до х ~ 10⁻⁵!

$$S_{
m Pb} = \sqrt{rac{\sigma_{\gamma
m Pb}}{\sigma_{\gamma
m Pb}^{
m IA}}}$$

При малых х: согласие как с моделью LTA (глюонные экранировки), так и с моделями, основанными на эффектах насыщения глюонной плотности

Перспективы измерений УПС в сеансах Run 3 и Run 4

Z. Citron, CERN Yellow Rep. Monogr. 7 (2019) 1159

Ожидаемая статистика в Run 3-4 (13 /нб):

Канал распада	σ	Всего	$ \eta < 0.9$	$ \eta < 2.4$	$2.5 < \eta < 4.0$	$2.0 < \eta < 5.0$
$\rho^0 \to \pi^+\pi^-$	5.2 б	68 B	5.5 B	21B	4.9 B	13 B
$\phi \to {\rm K^+K^-}$	0.22 б	2.9 B	82 M	$490 {\rm \ M}$	$15 \mathrm{M}$	330 M
${\rm J}/\psi \to \mu^+ \mu^-$	1.0 мб	14 M	1.1 M	$5.7 \mathrm{~M}$	600 K	1.6 M
$\psi(2S) \to \mu^+ \mu^-$	30 мкб	$400 \mathrm{K}$	$35 \mathrm{K}$	180 K	19 K	47 K
$\Upsilon(1{\rm S}) \to \mu^+ \mu^-$	2.0 мкб	$26 \mathrm{K}$	2.8 K	14 K	880	2.0 K

Основные цели в Run 3-4:

- прецизионное измерение экранировок при малых х
- изучение зависимости экранировок от Q²

Спасибо за внимание!

09

Фоторождение Ј/ψ на протоне

В LO сечение эксклюзивного фоторождения J/ ψ пропорционально квадрату глюонной плотности:

$$\frac{d\sigma_{\gamma p \to J/\psi p}}{dt}\Big|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \Big[xg_p(x,Q^2)\Big]^2$$

Ryskin: Z. Phys. C 57 (1993) 89

Фоторождение векторных мезонов можно использовать для получения ограничений на глюонные PDF при малых х

Измерение сечений

Когерентное сечение J/ ψ + испускание нейтронов

ALICE, JHEP 10 (2023) 119

24

Партонные функции

Насыщение глюонной плотности

При достаточно малых х ожидается переход в режим «насыщения» глюонной плотности

→ замедление роста сечений фоторождения?

Photon resolution power (Q)—

Эксклюзивное рождение Ј/ѱ на протоне

- Измерения LHCb в pp, ALICE в p-Pb столкновениях
- Максимальные энергии порядка 1 ТэВ
- Измерения хорошо описываются степенной зависимостью:

$$\sigma_{\gamma \mathrm{p} \to J/\psi \mathrm{p}} \sim W_{\gamma p}^{\delta} \qquad \delta = 0.70 \pm 0.04$$

- В согласии с HERA: H1: δ =0.67 ± 0.03 ZEUS: δ =0.69 ± 0.02 ± 0.03
- Явных признаков насыщения не обнаружено ⁽³⁾

Ограничение глюонных распределений?

Caveats:

- J/ψ photoproduction probes generalized gluon distributions (two gluons have different x values)
 - Connected with collinear PDFs via
 Shuvaev transform: PRD 60 (1999)
 014015
- **Scale uncertainty** $\mu^2 \sim 2.4-3 \text{ GeV}^2$ is a reasonable choice
 - Guzey, Zhalov: JHEP 1310 (2013) 207
- Large NLO contributions
 - Y measurements reveal importance of NLO effects

Ядерные экранировки

Расчет nPDF в приближении лидирующих твистов

LTA (Leading twist approximation) – обобщение модели Грибова-Глаубера на партонный уровень Frankfurt, Strikman, EPJ A5 (1999) 293

- основано на идее Грибова о связи ядерных экранировок и дифракции
- В расчетах используются дифракционные партонные распределения, измеренные на HERA
- Работают уравнения эволюции DGLAP

Обзор: Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255