

Sergey Kiselev (NRC KI - ITEP Moscow) on behalf of the ALICE Collaboration

- Motivation
- ALICE detector
- Signal extraction
- Transverse momentum spectra
- Yields
- Mean transverse momentum
- Ratios to longer-lived hadrons
- Nuclear modification factors
- Summary

Motivation

• pp and p–Pb collisions:

- \checkmark baseline for heavy-ion collisions
- ✓ system size dependence
- \checkmark role of cold nuclear matter
- ✓ study of collectivity in small collision systems

• A–A collisions:

- ✓ in-medium energy loss
 - → nuclear modification factor for resonances
- \checkmark restoration of chiral symmetry
 - → modification of width, mass and branching ratio
- ✓ regeneration and rescattering effects
 → modification of measurable yield and ratios to longer-lived hadrons
 - → timescale between chemical and kinetic freeze-out

Resonance			
ρ(770) ⁰	1.3	ππ	pp/Pb–Pb @ 2.76
K*(892) ⁰	4.2	Κπ	pp/p–Pb/Pb–Pb/Xe–Xe @ all energies
K*(892) [±]	4.2	$K_S^{\ 0} \pi$	pp @ 5.02/8/13 Pb-Pb @ 5.02
f ₀ (980)	~ 5	ππ	pp/p–Pb @ 5.02
$\Sigma(1385)^{\pm}$	5-5.5	Λπ	pp@7/13 p-Pb /Pb-Pb @ 5.02
Л(1520)	12.6	рК	pp @ 7 p-Pb @ 5.02 Pb-Pb@ 5.02
Ξ(1530) ⁰	21.7	$\Xi^{-}\pi$	pp @ 7/13 p-Pb@ 5.02
ϕ(1020)	46.4	КК	pp/p-Pb/Pb-Pb/Xe-Xe @ all energies

ALICE detector

ALICE papers

recent papers

1. in preparation (\rightarrow PLB)

Multiplicity dependence of $K^*(892)^{\pm}$ production in pp collisions at $\sqrt{s} = 13$ TeV

2. arXiv:2311.11786 (→ PLB)

Observation of abnormal suppression of $f_0(980)$ production in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV 3. arXiv:2308.16119 (\rightarrow PRC)

K*(892)± resonance production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

4. arXiv:2308.16116 (→ JHEP)

Multiplicity-dependent production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in pp collisions at $\sqrt{s} = 13$ TeV 5. PRC109(2024)014911

System size dependence of hadronic rescattering effect at LHC energies

4

Transverse momentum $(p_{\rm T})$ spectra

spectra become harder from low to high multiplicity collisions

1-5 Apr 2024

yields, $\langle p_T \rangle$ vs. $dN_{ch}/d\eta$

yields for a fixed multiplicity:

- independent of collision system and energy
- appear to be driven by event multiplicity
- EPOS-LHC and PYTHIA8 with Rope shoving describe within uncertainties

 $\langle p_{\mathrm{T}} \rangle$:

pp, p–Pb vs. Xe–Xe, Pb–Pb - larger at similar multiplicity more rapid expansion - steeper increase with multiplicity can be understood as the effect of color reconnection between strings produced in multi-parton interactions, PL B727 (2013) 371

$\langle p_{\rm T} \rangle$ vs. models

pp@13 TeV Σ(1385)[±], Ξ(1530)⁰

arXiv:2308.16116

steeper increase with multiplicity in pp than in p–Pb
well described by EPOS-LHC, underestimated by PYTHIA8

K* \pm/K vs. dN_{ch}/d η

$\tau(K^*) = 4.2 \text{ fm/}c$

- K*[±]/K shows a suppression
 going from peripheral Pb–Pb collisions to most central Pb–Pb
- → consistent with the rescattering of the daughters as the dominant effect
- models with rescaterring effect (MUSIC+SMASH and HRG-PCE) qualitatively describe the data
- the thermal model γ_s CSM: a relatively flat ratio, overestimate
- K^{*±} measurement is consistent with previous results for K^{*0}
- ϕ/K shows no suppression
 - almost constant behavior
 - rescattering is not significant for ϕ :
 - $\tau(\phi) = 46.2 \text{ fm/c} >> \tau(K^{*0}) = 4.2 \text{ fm/c}$

- results for Xe–Xe confirm the trend observed in Pb–Pb
- HRG-PCE gives the best agreement
- pp, p–Pb: hint of decrease

the lower bound of the hadronic phase lifetime τ_{low} : $r_{kin} = r_{chem} \exp(-\tau_{low}/\tau_{res})$ $r_{kin} - particle ratio at kinetic freeze-out (A-A)$ $r_{chem} - particle ratio at chemical freeze-out (pp)$ τ_{res} - lifetime of resonance assuming no regeneration \rightarrow lower bound

RAS24, Dubna, S.Kiselev

10

K*/K: hadronic phase in pp?

pp@13 TeV K*(892)[±]

paper in preparation

- suppression at a $\sim 7\sigma$ level passing from low to high multiplicity pp collisions (taking into account the multiplicityuncorrelated uncertainties)

a low p_T dominant process

- suggest the presence of a finite lifetime hadronic phase
- but EPOS-LHC without a hadronic phase reproduces the decreasing trend

 $\tau(K^*) = 4.2 \text{ fm/}c$

Σ^{\pm}/Λ , Ξ^{\pm}/Ξ : regeneration in pp? $\tau(\Sigma^{\pm}) = 5-5.5 \text{ fm/c}$ $\tau(\Xi^{\pm}) = 21.7 \text{ fm/c}$

pp@13 TeV $\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$ arXiv:2308.16116 $(\Sigma^{*\pm})/2(\Lambda+\overline{\Lambda})/2(\Lambda+\overline{\Lambda})/2(\Lambda+\overline{\Lambda})/2$ ALICE 0.24E Models: pp √s = 13 TeV pp 13 TeV |y| < 0.5[I] PYTHIA 8.243 Monash 2013 pp 13 TeV INEL |y| < 0.5EPOS-LHC pp 7 TeV INEL |y| < 0.5PYTHIA 8.243 Rope shoving p-Pb 5.02 TeV, -0.5 < y_{cms} < 0 °, [1] 0.16 0.14 × 10.3 0.12 0.1 0.2 0.08 35 35 20 25 30 40 0 5 25 30 40 10 15 20 $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}$ $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}$ ALI-PUB-556152

- a hint for an increase with multiplicity
- despite similar lifetimes, K* and $\Sigma^{*\pm}$ exhibit different trends
- $\Sigma^{*\pm} \rightarrow \Lambda \pi \quad \Xi^{*0} \rightarrow \Xi^0 \pi$

As long-lived, Λ and Ξ⁰ decay out of the hadronic phase only π can be rescattered
more pronounced regeneration effect: Λ π → Σ^{*±}, Ξ⁰ π → Ξ^{*0}
- EPOS-LHC and PYTHIA8 with Rope shoving predict a slight increase of the ratios

Σ^{\pm}/π , Ξ^{0}/π : increasing in pp

pp@13 TeV $\Sigma(1385)^{\pm}, \Xi(1530)^{0}$

arXiv:2308.16116

- increasing trend with multiplicity
- the enhancement is more pronounced for Ξ^{*0} (S=2) than $\Sigma^{*\pm}$ (S=1)
- consistent with previous measurements of ground-state hyperons to pion ratios
- EPOS-LHC and PYTHIA8 with Rope shoving predict an increasing trend with multiplicity

f_0/π : hadronic phase in p–Pb?

quark structure of f_0 is still unknown

possible configurations: qqbar, (qq)(qbar qbar), hadronic molecules, ...

 ϕ/π : strangeness enhancement K^{*0}/π : competition strangeness enhancement and rescattering effect f_0/π : rescattering is the dominant effect exists at low p_T γ_s -CSM (no rescattering effects): predictions with

zero hidden strangeness, |S|=0, are closer to the data

arXiv:2311.11786

no enhancement at intermediate p_T observed for baryon-to-meson ratio \rightarrow a hint: f_0 composed of two quarks

 $\tau(\mathbf{f}_0) = \sim 5 \text{ fm/}c$

1-5 Apr 2024

R_{AA} in Xe–Xe and Pb–Pb are consistent within uncertainties once compared at the same multiplicity (and not just centrality percentile) 1-5 Apr 2024 RAS2

Summary

Yields for a fixed multiplicity:

independent of collision system and energy

appear to be driven by event multiplicity

Mean $p_{\rm T}$ for a fixed multiplicity:

 $p_T(pp) > p_T(p-Pb) > p_T(Xe-Xe) \sim p_T(Pb-Pb)$

Particle yield ratios (with previous results):

to ground-state with the same strangeness content

resonance suppression (yes ? no)

resonance	ρ	K *	\mathbf{f}_{0}	$\Sigma^{*\pm}$	Λ^*	Ξ*0	ø
lifetime (fm/ c)	1.3	4.2	~ 5	5-5.5	12.6	21.7	46.4
Pb–Pb, Xe–Xe	yes	yes	?	?	yes	?	no
pp, p–Pb	?	yes	yes	no	no	no	no

Pb–Pb, Xe–Xe:qualitatively described by models with rescattering **pp, p–Pb**: a hint for an increase for Σ^{\pm} and Ξ^{*0} (regeneration?) estimation of the lower bound of the hadronic phase lifetime

to π in pp, p–Pb

strangeness enhancement for $\Sigma^{*\pm}$ and Ξ^{*0}

 R_{AA} : K*(892)[±] in Pb–Pb@ 5.02 TeV

K*(892)⁰ in Xe–Xe@ 5.44 TeV : at the same multiplicity R_{AA} (Xe–Xe) ≈ R_{AA} (Pb–Pb) Q_{pPb} : no Cronin-like enhancement $\rightarrow f_0$ composed of two quarks ?

1-5 Apr 2024