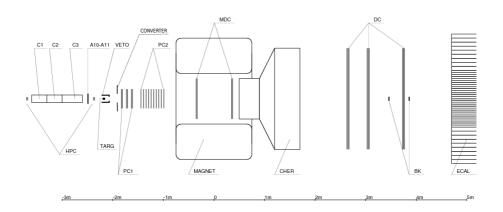
Методика измерения сечений реакций в эксперименте ВЕС

Шумаков Антон Анатольевич

НИЦ "Курчатовский институт" - Институт физики высоких энергий Лаборатория адронной спектроскопии

04.04.2024

Установка ВЕС



- Трековая система пропкамеры (HPC,PCRED,PC), дрейфовые трубки (MDC,DC)
- Элементы триггера пучковые сцинтилляционные счётчики (S1,S2,S3), beamkiller'ы (BK), охранная система (VETO)
- Идентификация пучковые пороговые черенковские счётчики (С1,С2,С3), черенковский счётчик (СНЕR)
- Электромагнитный калориметр (ECAL)

Установка ВЕС

- ullet Пучок, направляемый в установку, состоит из π^- , K^- , \bar{p} , e^- .
- ullet Импульс пучка 29 ГэВ/c, разброс $\sigma pprox 0.2$ ГэВ/c.
- Интенсивность пучка $\sim 1.5 \cdot 10^6$ частиц/с.
- Мишень представляет собой бериллиевый цилиндр толщиной 4 см (0.11 рад. длин) и диаметром 4.5 см.
- Триггер реализует несколько триггерных решений, в том числе:
 - ightharpoonup MAIN: $S_1 \cdot S_2 \cdot S_3 \cdot \overline{A_{10}} \cdot \overline{A_{11}} \cdot \overline{K_1} \cdot \overline{K_2} \cdot \overline{\text{Veto}}$.
 - ightharpoonup MWG: $S_1 \cdot S_2 \cdot S_3 \cdot \overline{A_{10}} \cdot \overline{A_{11}} \cdot \overline{K_1} \cdot \overline{K_2}$.
 - ▶ BEAM: $S_1 \cdot S_2 \cdot S_3 \cdot \overline{A_{10}} \cdot \overline{A_{11}}$.
- Обрабатываются данные, полученые в сеансах run44 (2012 г.), run45 (2013 г.), run47 (2015 г.), run48 (2015 г.)

Формулы

Рассмотрим классическую формулу, связывающую число событий и сечение в эксперименте на фиксированной мишени

$$\frac{N_{real}}{N_{beam}} = P(react) = \sigma_{sys} nl(1 - e^{-l/\lambda_I})$$
(1)

Выражая это в терминах наблюдаемого на эксперименте числа событий, получаем

$$N_{obs} = N_{beam} P(react) S_{trig} P(DT) \varepsilon$$
 (2)

Здесь N_{beam} — число налетающих пучковых частиц. P(DT) — вероятность принять событие с учётом мёртвого времени ССД, P(react) — вероятность искомой реакции, ε — аксептанс, S_{trig} — коэффициент разрежения триггера.

Вероятности

Введём несколько обозначений возможных исходов при регистрации и реконструкции события:

- react произошла искомая реакция
- ullet trig сработал триггер (конкретные триггеры BEAM,MWG,MAIN)
- ullet beam пучок был реконструирован и прошёл отборы, с ним связанные, есть триггер BEAM
- sys.rec система вторичных частиц была реконструирована и прошла отборы

Подробнее распишем множества в пространстве событий, которые стоят за искомой вероятностью и пользуясь определением условной вероятности преобразуем формулу с предыдущего слайда

$$N_{obs} = N_{beam} P(DT) P(react) P(beam|react) P(sys.rec|beam \cap react) P(trig|sys.rec \cap beam \cap react) S_{trig}$$
(3)

Число наблюдаемых пучковых событий в триггере BEAM находится по формуле

$$N_{obs.beams} = N_{beam} P(DT) P(\underline{beam}) S_{BEAM} \tag{4}$$

Метод прямого подсчёта

Выражая вероятность реакции из формул на предыдущем слайдах получаем

$$P(react) = \frac{N_{obs}}{N_{obs.beams}} \cdot \frac{S_{BEAM}}{S_{trig}} \cdot \frac{1}{P(sys.rec|beam \cap react)P(trig|sys.rec \cap beam \cap react)}$$
 (5)

Для учёта влияния pile-up, предполагается, что все величины в формуле выше кроме P(react) зависят от интенсивности.

Pile-up и интенсивность

Pile-up – эффект, когда одно событие ССД содержит в себе информацию от нескольких актов попадания пучковых частиц в установку.

Связанные с этим параметры событий

- Интенсивность (I, c^{-1}) : находится по количеству срабатываний $S_1 \cdot S_2$ за время между этим и предыдущим событиями.
- ullet Время t_{after} до ближайшего срабатывания $S_1 \cdot S_2$ после события
- ullet Время t_{before} до ближайшего срабатывания $S_1 \cdot S_2$ до события

MC-моделирование: используется сэмпл событий, набранных на триггере, асинхронным с пучком. Хиты из событий этого сэмпла подмешиваются к хитам основных событий, моделируемых с использованием GEANT4.

Реакция $\pi^- Be \to X^+ X^- X^- Be$

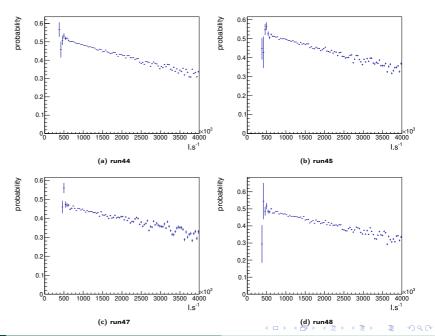
Отборы:

- Система успешно реконструирована
- Один положительный трек и два отрицательных
- ullet Допускается гамма-квант в калориметре с энергией $E < 0.5~{\rm ГэВ}$
- Трек пучка пересекает передний по пучку торец мишени в точке, расположенной не ближе, чем 5 мм к краю мишени.
- ullet z-координата вершины отстоит от торцов мишени не более чем на 4 см
- Отсутствие пересечения треков частиц с beam-killer'ами
- Инвариантная масса пар разноимённо заряженных частиц с приписанной им массой электронов должна быть больше $0.03~\Gamma$ эВ $/c^2$
- Восстановленный по энергетическому балансу импульс пучка $27~ \Gamma$ эВ/c эВ<math>/c
- $t' < 0.02 \; \Gamma \ni B^2/c^2$
- ullet идентификация пучковой частицы как π

$\pi^- Be o X^+ X^- X^- Be$: аксептанс

Под аксептансом подразумевается величина $P(sys.rec|beam \cap react)$, вычисляемая как число событий, прошедших отборы, делить на число событий с успешно реконструированным пучком.

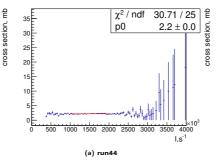
Зависимость аксептанса от интенсивности I представлена на рисунках справа.

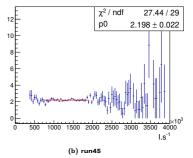


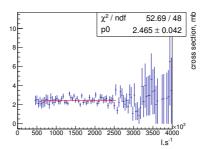
$\pi^- Be o X^+ X^- X^- Be$: сечение

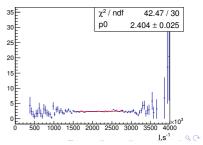
Адекватность описания зависимости сечения от интенсивности проверяется фитом константой зависимости этой. Пределы фита берутся равными квантилям Q(0.05) и Q(0.95) распределения по интенсивности событий с реконструированным пучком в триггере BEAM.

Сама величина сечения извлекается из отношения побинных сумм числителя и знаменателя в формуле метода. Бины, входящие в суммы, определяются теми же условиями, что и пределы фита.









$\pi^- Be \rightarrow X^+ X^- X^- Be$: сечение

Полученные сечения для отдельных сеансов затем объединяются методом взвешенного среднего. Статистическая ошибка происходит из метода взвешенного среднего. Если учесть систематические ошибки с известным происхождением ($\sim 4\%$), то метод взвешенного среднего даёт $\chi^2/ndf=14.4/3$. Поэтому систематическая ошибка результата рассчитывается как стандартное отклонение выборки результатов по сеансам. В итоге получаем:

$$\sigma_{\pi^- Be \to X^+ X^- X^- Be} = (2.31 \pm 0.01(stat.) \pm 0.15(sys.)) \text{ мБн}, \tag{6}$$

что даёт общую относительную ошибку 6.4%. Отметим, что в данном измерении не участвуют триггерные решения MWG и MAIN, которые могут вносить дополнительную систематику, связанную с неточностью их моделирования.

Метод по потоку каонов

Для начала запишем выражение для числа каонных распадов.

$$N_{kaon} = N_{beamK} P(DT) W P(\underline{Kbeam}) P(kaon.rec|beam \cap kaon) \cdot P(trig|kaon.rec \cap beam \cap kaon) S_{trig}$$
(7)

Здесь N_{beamK} – число налетающих пучковых каонов, W – вероятность распада в нужном канале внутри распадной базы, Kbeam – пучок реконструирован и прошёл необходимые обрезания. Из отношения числа каонов и числа событий искомой реакции можно выразить вероятность этой

$$P(react) = \frac{N_{obs}}{N_{obs,kaons}} \cdot \frac{K_{frac}W}{P(intersection)} \cdot \frac{S_{trig,kaon}}{S_{trig}} \cdot \frac{P(kaon.rec|beam \cap kaon)P(trig|kaon.rec \cap beam \cap kaon)}{P(sys.rec|beam \cap react)P(trig|sys.rec \cap beam \cap react)}$$
(8)

реакции.

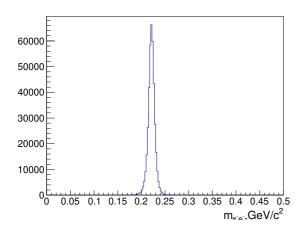
Состав пучка

Для определения сечения по потоку каонов необходимо знать долю каонов в пучке. В данной работе мы предполагаем, что пучок состоит только из π , K и \bar{p} Пучковые пороговые черенковские счётчики установки ВЕС настроены следующим образом: два отвечают за разделение π/K , а один – за K/\bar{p} Идея метода. Выделить по одной эталонной реакции на каждый тип пучковых частиц и измерить отклики системы и алгоритма идентификации в этих эталонных реакциях. С помощью полученных результатов составить систему уравнений связывающую наблюдаемые и истинные доли частиц в пучке.

$$\begin{pmatrix} \epsilon_{\pi \to \pi} & \epsilon_{K \to \pi} & \epsilon_{\bar{p} \to \pi} & 0 \\ \epsilon_{\pi \to K} & \epsilon_{K \to K} & \epsilon_{\bar{p} \to K} & 0 \\ \epsilon_{\pi \to \bar{p}} & \epsilon_{K \to \bar{p}} & \epsilon_{\bar{p} \to \bar{p}} & 0 \\ \epsilon_{\pi \to unk} & \epsilon_{K \to unk} & \epsilon_{\bar{p} \to unk} & 1 \end{pmatrix} \begin{pmatrix} f_{\pi}^{(real)} \\ f_{K}^{(real)} \\ f_{\bar{p}}^{(real)} \\ f_{unk}^{(real)} \end{pmatrix} = \begin{pmatrix} f_{\pi} \\ f_{K} \\ f_{\bar{p}} \\ f_{unk} \end{pmatrix}$$
(9)

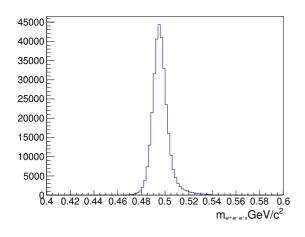
Здесь $\epsilon_{i \to j}$ – вероятность, что алгоритм идентификации даст ответ j, если в реальности была частица i, а $f_i^{(real)}$ и f_i – реальная и измеренная доли частиц типа i в пучке

Эталонные реакции: $\pi^-e \to \pi^-e$



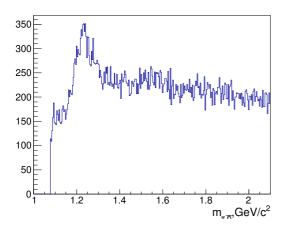
- Система успешно реконструирована
- Два отрицательно заряженных трека
- Вершина взаимодействия находится внутри мишени
- ullet Инвариантная масса $\pi^-e \in [0.17; 0.27]$ ГэВ $/c^2$
- Обрезание по суммарному импульсу вторичных частиц (27 ГэВ $/c < p_{tot} < 31$ ГэВ/c)
- ullet Импульс вылетевшего электрона $p_e>3.36~ \Gamma$ э ${
 m B}/c$
- $t' < 0.001 \; \text{F} \cdot \text{B}^2/c^2$
- Отсутствие пересечения треков частиц с beam-killer'ами

Эталонные реакции: $K \to \pi^+\pi^-\pi^-$



- Система успешно реконструирована
- Один положительно и два отрицательно заряженных трека.
- ullet Допускается лишний гамма E < 0.5~ ГэВ
- ullet Обрезание по вершине ($-400~{
 m cm} < z < -240~{
 m cm}$)
- Обрезание по восстановленному импульсу пучка $(27\Gamma
 ightarrow B/c < p_{beam} < 31\Gamma
 ightarrow B/c)$
- Обрезание $m_{ee}>0.03$ ГэВ для пар противоположно заряженных треков
- Отсутствие пересечения треков частиц с beam-killer'ами
- ullet Инвариантная масса вторичных частиц $m_{3\pi} \in [0.46; 0.54]$ ГэВ
- t' < 0.004

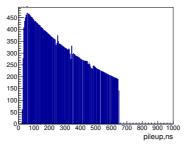
Эталонные реакции: $\bar{p}n o \Delta^{--}p o \bar{p}\pi^-p$

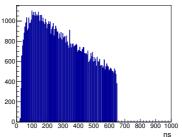


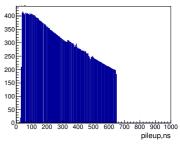
- Система успешно реконструирована
- Два отрицательно заряженных трека.
- Вершина взаимодействия находится в мишени
- Обрезание по суммарному импульсу вторичных частиц (27ГэВ $< p_{tot} < 31$ ГэВ)
- Отсутствие пересечения треков частиц с beam-killer'ами
- Идентификация с помощью CHER28; гипотезы $\pi\pi$, πK , $K\pi$, $\bar{p}\pi$, $\pi \bar{p}$

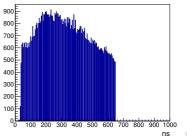
Pileup

Выбор "успешной" реакции в основной части установки давит события с pileup и, тем самым, влияет на эффекты pileup в пучковой части. Для противодействия этому вводится обрезание $t_{before} > 228$ нс и $t_{after} > 130$ нс









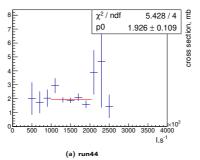
Доля частиц в пучке

Сеанс	π	K
run44	$(98.23 \pm 0.03)\%$	$(1.608 \pm 0.006)\%$
run45	$(98.30 \pm 0.05)\%$	$(1.626 \pm 0.008)\%$
run47	$(98.32 \pm 0.09)\%$	$(1.625 \pm 0.012)\%$
run48	$(98.11 \pm 0.07)\%$	$(1.637 \pm 0.010)\%$
Сеанс	\bar{p}	unknown
Ceaнc run44	\bar{p} (0.24 ± 0.01)%	$(-0.08 \pm 0.03)\%$
		$(-0.08 \pm 0.03)\%$ $(-0.16 \pm 0.04)\%$
run44	· /	$(-0.08 \pm 0.03)\%$
run44 run45	$(0.24 \pm 0.02)\%$	$(-0.08 \pm 0.03)\%$ $(-0.16 \pm 0.04)\%$

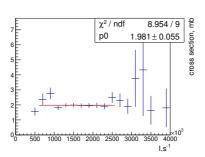
$\pi^- Be o X^+ X^- X^- Be$: сечение

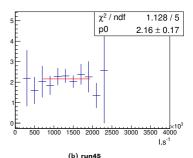
Адекватность описания зависимости сечения от интенсивности проверяется фитом константой. Пределы фита берутся равными квантилям Q(0.05) и Q(0.95) распределения по интенсивности событий с реконструированным пучком в триггере BEAM.

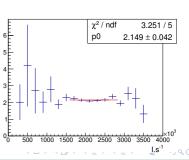
Сама величина сечения извлекается из отношения побинных сумм числителя и знаменателя в формуле метода. Бины, входящие в суммы, определяются теми же условиями, что и пределы фита.



cross section, mb







$\pi^- Be \rightarrow X^+ X^- X^- Be$: сечение

Найдём сечение реакции $\pi^-Be \to X^+X^-X^-Be$ при t' < 0.02~ Гэ B^2/c^2 пользуясь каонным методом в триггере MWG. Сечения получаются посеансово, последующий метод взвешенного среднего даёт $\chi^2/ndf = 3.4/3$. Объединяя результаты по сеансам получаем полную относительную ошибку 4.4%.

$$\sigma_{\pi^- Be \to X^+ X^- X^- Be} = (2.09 \pm 0.04 (stat.) \pm 0.08 (sys.))$$
 мБн (10)

$K^- o \pi^+ \pi^- \pi^-$: бренчинг

Дополнительно посмотрим на бренчинг $K^- \to \pi^+ \pi^- \pi^-$, чтобы проверить согласованность методов. Найдём методом прямого подсчёта по событиям из триггера MWG. Брэнчинг получаются посеансово, последующий метод взвешенного среднего даёт $\chi^2/ndf=5/3$. Объединяя результаты по сеансам получаем полную относительную ошибку 8%. Для сравнения в PDG: $(5.583\pm0.024)\%$

$$Br(K^- \to \pi^+ \pi^- \pi^-) = (5.9 \pm 0.2(stat.) \pm 0.5(sys.))\%$$
 (11)

Метод опорной реакции

Используя экспериментально или теоретически известное сечение одной реакции можно найти интегральную светимость в том или ином триггере. Воспользуемся формулой числа наблюдённых событий, записанной для двух реакций, обозначенных индексами 1 и 2. Возьмём отношение и сократим одинаковые члены.

$$\frac{N_{obs}^{(1)}}{N_{obs}^{(2)}} = \frac{P(1)P(sys^{(1)}.rec|beam\cap(1))P(trig|sys^{(1)}.rec\cap beam\cap(1))}{P(2)P(sys^{(2)}.rec|beam\cap(2))P(trig|sys^{(2)}.rec\cap beam\cap(2))}$$
(12)

Переходя к сечениям и приводя выражение к виду известной формулы $N=\sigma\mathcal{L}$, связывающей число событий, сечение и интегральную светимость, получаем:

$$N_{obs}^{(1)} = \sigma_1 \frac{N_{obs}^{(2)} P(sys^{(1)}.rec|beam \cap (1)) P(trig|sys^{(1)}.rec \cap beam \cap (1))}{\sigma_2 P(sys^{(2)}.rec|beam \cap (2)) P(trig|sys^{(2)}.rec \cap beam \cap (2))}$$
(13)

Светимость

Выделим всю информацию о второй (референсной) реакции в отдельную величину

$$L(I) = \frac{N_{obs}^{(2)}}{\sigma_2 P(sys^{(2)}.rec|beam \cap (2))P(trig|sys^{(2)}.rec \cap beam \cap (2))}$$
(14)

Отметим, что эта величина зависит от выбранного триггера. Вставим эту величину в формулу с предыдущего слайда.

$$N_{obs}^{(1)} = \sigma_1 L(I) P(sys^{(1)}.rec|beam \cap (1)) P(trig|sys^{(1)}.rec \cap beam \cap (1))$$

$$\tag{15}$$

Эта величина имеет смысл интегральной светимости, поправленной на эффективность реконструкции пучка и мёртвое время установки. Получив эту величину, можно применять её универсальным образом для нахождения сечения реакций.

Светимость

Воспользуемся ранее определённым сечением реакции $\pi^-Be \to X^+X^-X^-Be$ при t' < 0.02~ ГэВ $^2/c^2$ полученным в триггере BEAM для определения L(I) в триггере MAIN. В таблице приведена сумма интегральной светимости для интенсивности $I \in [6,40] \cdot 10^5~$ с $^{-1}$

run	L , нБн $^{-1}$
44	26.2 ± 2.1
45	13.5 ± 1.1
47	7.7 ± 0.6
48	16.9 ± 1.3
total	42.9 ± 2.9

π^-e^- : сечение

Воспользуемся этим методом для нахождения сечения реакции $\pi^-e^- \to \pi^-e^-$ для энергии вылетающих электронов $E_e>0.3$ ГэВ. Здесь систематическая ошибка была получена из ошибок светимости, опорного сечения (6) и аксептанса системы, тогда как статистическая ошибка содержит в себе только пуассоновскую ошибку полного числа событий π^-e^- по всем сеансам.

$$\sigma_{\pi e} = (0.732 \pm 0.002(stat.) \pm 0.051(sys.)) \text{ мБн}$$
 (16)

Отметим, что из формул выше для упрощения изложения был исключён фактор отношения концентраций рассеивающих центров n_e/n . Это фактор введён из-за того, что тип частиц, с которыми происходит взаимодействие, отличаются для искомой и опорной реакций. В финальный ответ этот фактор входит.

Теоретическое значение:

$$\sigma_{\pi e}^{theory} = (0.773 \pm 0.002) \text{ мБн}$$
 (17)

Итог

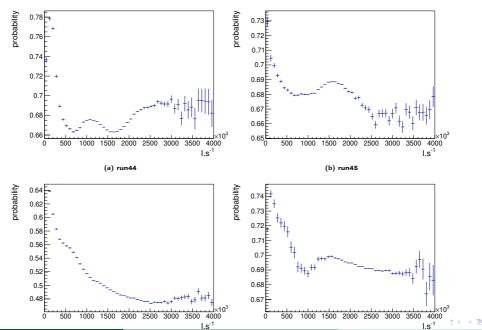
Элементы, которые хотелось бы подчеркнуть

- Наличие минимально возмущённого триггера BEAM позволяет использовать метод прямого подсчёта и анализировать работу других триггеров
- Интенсивность пучка и связанные с этим эффекты pile-up вносят заметный вклад в выход событий и могут быть смоделированы с помощью сэмплов с триггером асихронным с пучком.
- Для использования метода по потоку каонов истинный состав пучка должен быть определён с учётом особенностей системы идентификации
- Метод по потоку каонов и метод опорной реакции являются предпочтительными, ибо могут приводить к сокращению неучтённой систематики.

Спасибо за внимание.

Систематика $\pi^- Be \to X^+ X^- X^- Be$

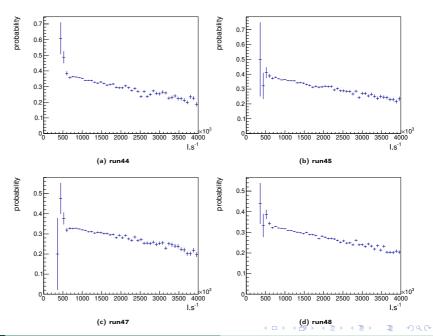
Источник	Вклад, %
Шум калоритметра	0.6
Восстановление вершины	1.5
Герметичность установки	1.0
Неэксклюзивность	1.2



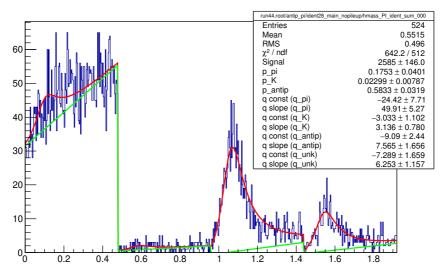
$K^- \to \pi^+ \pi^- \pi^-$: аксептанс

Под аксептансом подразумевается величина $P(kaon.rec|beam \cap kaon)$, вычисляемая как число событий, прошедших отборы, делить на число событий с успешно реконструированным пучком.

Зависимость аксептанса от интенсивности I представлена на рисунках справа.



Особенности извлечения ошибок идентификации \bar{p}



Состав пучка

run48 (используются SADC в черенковских счётчиках)

$$\begin{pmatrix} 0.983 & 0.003 & 0.134 & 0 \\ 0.0002 & 0.944 & 0.015 & 0 \\ 0.008 & 0.018 & 0.811 & 0 \\ 0.008 & 0.034 & 0.040 & 1 \end{pmatrix} \begin{pmatrix} 0.981 \\ 0.0164 \\ 0.0032 \\ -0.0006 \end{pmatrix} = \begin{pmatrix} 0.965 \\ 0.0157 \\ 0.0109 \\ 0.0083 \end{pmatrix}$$

run44 (используются IADC в черенковских счётчиках)

$$\begin{pmatrix} 0.992 & 0.198 & 0.175 & 0 \\ 0.00005 & 0.709 & 0.023 & 0 \\ 0.00002 & 0.002 & 0.583 & 0 \\ 0.008 & 0.091 & 0.218 & 1 \end{pmatrix} \begin{pmatrix} 0.982 \\ 0.016 \\ 0.0024 \\ -0.0008 \end{pmatrix} = \begin{pmatrix} 0.9777 \\ 0.0115 \\ 0.0014 \\ 0.0093 \end{pmatrix}$$

π^-e^- : метод

Воспользуемся этим методом для нахождения сечения реакции $\pi^-e^- \to \pi^-e^-$ для энергии вылетающих электронов $E_e>0.3$ ГэВ. Сделаем предположение о зависимостях аксептансных величин от интенсивности.

$$P(sys^{(1)}.rec|beam \cap (1)) = AI + B$$

$$P(MAIN|sys^{(1)}.rec \cap beam \cap (1)) = C$$

Используя это получаем

$$N_{obs}^{(1)} = \frac{\sigma_1}{\sigma_2} C \int L(I)(AI + B)dI = \frac{\sigma_1}{\sigma_2} C(AL_1 + BL_0)$$
 (18)

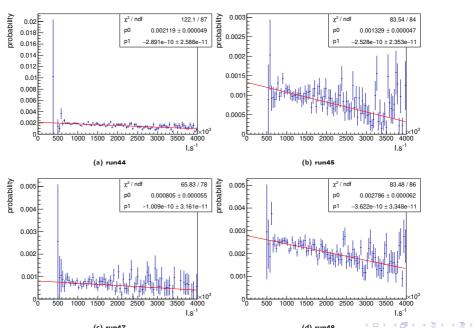
Как можно видеть, для линейной функции получается точное выражение, использующее только нулевой и первый моменты распределения L(I). Отметим, что для объединения результатов разных сеансов с разными аксептансами достаточно просто сложить светимости, поправленные на аксептанс $L_{acc}=C(AL_1+BL_0)$

04.04.2024

Моменты

В таблице приведены найденные моменты и их матрица ковариации для реакции $\pi^-Be \to X^+X^-X^-Be$ при t' < 0.02~ ГэВ $^2/c^2$ в триггере MAIN. Обрезание по пучку стандартное. Обрезание по интенсивности $I \in [6,40] \cdot 10^5~$ с $^{-1}$

run	$L_0, 10^7$	L_1 , 10^{13} c ⁻¹	$Var(L_0), 10^{10}$	$Var(L_1), 10^{22}c^{-2}$	$Cov(L_0, L_1), 10^{16} c^{-1}$
44	5.948	8.886	1.715	4.530	2.710
45	3.156	4.412	1.028	2.682	1.580
47	1.342	2.276	0.624	2.319	1.145
48	3.277	7.253	1.746	9.002	3.909



Методика измерения сечений

(c) run47

(d) run48