Статус модернизации системы АЧС АШИФ для детектора СНД.

И.А. Куянов от имени аэрогелевой группы ИЯФ СО РАН.

Институт Ядерной Физики СО РАН, Новосибирск

Научная сессия-конференция СЯФ ОФН РАН, 1-5 апреля 2024г., ОИЯИ, г. Дубна

Метод идентификации частиц АШИФ

ПММА пластина с добавкой BBQ работает как световод со спектросмещением.

Предложенно в ИЯФ СО РАН. A.Onuchin et.al. NIM A315(1992)517

Детекторы с АШИФ в ИЯФ (Новосибирск):

- ФЭУ с МКП (ØФК=18 mm)
- 0.97×4π

Φ59 C ΜΚΠ 20 ΦΕ
0.6×4π

Модернизации системы АЧС. ФЭУ с МКП → КФЭУ

ФЭУ с МКП

- Производитель: «Экран ФЭП» (Новосибирск).
- Окно из боросиликатного стекла
- Мультищелочной (Sb-Na-K-Cs) фотокатод
- МКП с диаметром канала 7 мкм
- Максимальное QE=23% при λ=500 нм
- Коэффициент сбора фотоэлектронов ~0,6.
- PDE=QE*CE=23*0,6~14%
- Осевое магнитное поле
- Электропитание 2÷4 кВ

MPPC (Multi-Pixel Photon Counter) S13363-3050NE-16

Wavelength (nm)

- Производитель: «Hamamatsu».
- Эффективная светочувствительная площадь/канал
- 3×3 mm
- Количество пикселей/канал 3584
- PDE=40% при λ=500 нм
- Магнитное поле любого направления
- Источник питания <100 В (тип. V_{BR} = 53 В)
- Высокий уровень темновых шумов (0,5 Мкпс)

Переход на SiPM должен увеличить количество обнаруживаемых фотоэлектронов. 8÷10⇒20÷30 ф.э.

Прототип счетчика АШИФ

- Использовался сегмент ситемы АШИФ детектора СНД
- Сегмент состоит из трех черенковских счетчиков (использовался только один).
- Размеры: R=105÷141 мм., длина 260мм., ширина 80 мм..
- Аэрогель обернут в тефлон с коэффициентом отражения ~98%.
- Аэрогель толшиной 25мм. с показателем преломления 1.12 (счетчик заполнен не полностью) или 30мм. с показателем преломления 1.05.
- Массив из 5 КФЭУ снимает сигнал с WLS с резмером 17х3 мм².

Версия 2

- В1. Последовательное соединение КФЭУ с делителем напряжения смещения;
- В2. Последовательное соединение КФЭУ с параллельным распределением напряжения смещения. (идея соединения взята в статье NIMA 925 (2019) 148, 155

И.А. Куянов

Калибровка числа фотоэлектронов

Количество зарегистрированных фотоэлектронов описывается распределением Пуассона для небольшого уровня облучения.

Среднее число зарегистрированных фотонов определялось по доле событий в пьедестале амплитудного распределения.

$$p(n) = \frac{\mathrm{e}^{-\mu}}{n!} \mu^n \qquad \mu = -\ln P_0$$

И.А. Куянов

Калибровка числа фотоэлектронов

Примеры осциллограмм для разных версий схемы питания массива КФЭУ.

4.04.2024

И.А. Куянов

Испытание прототипа на пучке электонов.

- Энергия электронов 2,5ГэВ;
- трекинговая система основана на 3-х координатных GEMдетекторах (σ_x 70 мкм., σ_y 200 мкм.) и Nal-калориметра;
- триггер формируется из совпадения двух счетчиков на основе ФЭУ с МКП;
- сигналы со счетчиков и прототипа оцифровываются V1742 CAEN;
- Было проведено три блока испытаний счетчика:
 - 1) Схема питания версия 1 (июнь 2023 г.) -- представлены результаты.
 - 2) Схема питания версия 2 (декабрь 2023г.) -- данные в обработке.
 - 3) Схема питания версия 2 (март 2024г.) данные в обработке.

Результаты испытания прототипа на пучке электонов.

Зарегистрированное число фотоэлектронов в различных геометрических точках счетчика

• из распределения максимальной амплитуды:

V=53B	V=54B	V=55B	V=56
p1 p2 p3 5.16±0.10 6.94±0.13 7.22±0.12	p1 p2 p3 10.86±0.16 15.20±0.24 12.76±0.18	p1 p2 p3 11.06±0.17 14.93±0.23 14.48±0.22	B p1 p2 p3 11.28±0.18 16.30±0.29 16.03±0.27
	p4 p5 p6 10.64±0.17 13.92±0.23 13.82±0.21		
p7 p8 5.09±0.67 6.45±0.18	p7 p8 p9 8.97±0.15 11.43±0.20 13.10±0.21	p7 p8 10.26±0.26 13.93±0.36	p7 p8 11.08±0.28 14.59±0.48

• Распределение площади импульса с КФЭУ:

V=53B	V=54B	V=55B	V=56B
p1 p2 p3 5.55±0.10 7.64±0.13 7.77±0.12	p1 p2 p3 10.53±0.16 15.05±0.22 12.62±0.17	p1 p2 p3 11.56±0.17 15.63±0.22 15.15±0.22	p1 p2 p3 11.85±0.18 16.23±0.23 16.28±0.22
	p4 p5 p6 10.55±0.16 14.00±0.22 13.91±0.21		
^{p7} ^{p8} 5.74±0.67 7.05±0.18 4.04.2024	p7 p8 p9 8.96±0.14 11.43±0.18 13.20±0.20	р7 р8 10.95±0.27 14.77±0.37 И.А. Ку	p7 p8 11.78±0.30 14.75±0.34 ЯНОВ

- Неоднородность светосбора составила ~30%.
- Разница между результатами двух методов обработки данных не более 1 ф.е.

Результаты испытания прототипа на пучке электонов.

Geant4 simulations at AANL

The simulated prototype:

- Al container box, 2.5 cm high
- 8.6x2.5x22.6 cm³ aerogel block (BIC, n=1.12) inside
- Imbedded WLS bar, 3x17 mm² cross section
- 5 3x3 mm² Hamamatsu SiPM-s on end of WLS bar
- Container box covered by PTFE reflector from inside

 ^a

 ^b

 ^b
 <td

ASIPH Prototype signals, 2.5 GeV e- incident

Comparison of real data and MC (change in aerogel only)

Hamlet Mkrtchyan, Vardan Tadevosyan, Arthur Mkrtchyan,

Национальная Научная Лаборатория имени А.И. Алиханяна (Ереванский Физический Институт)

Результаты испытания прототипа на пучке электонов.

• Допороговая эффективность в основном определяется собственным DCR

56V, точка 2, T=24C⁰, DCR=3MHz

• Разделение частиц лучше 4 опри пороге 4,5 ф.э.

4.04.2024

Испытание системы охлаждения

Одним из основных ограничений использования SiPM в детекторах является необходимость создания системы охлаждения из-за высокого уровня темновых шумов.

Испытание системы охлаждения

При температуре окружающей среды 50°С удалось стабилизировать температуру на КФЭУ в 15°С

Заключение

- Создан стенд для испытания прототипа счетчика АШИФ
- Проведены испытания прототипа счетчика АШИФ-КФЭУ на электронном пучке в ИЯФ СО РАН:
 - Среднее число зарегистрированных фотоэлектронов 14.
 - Неоднородность светосбора составляет ~30%.
 - Показано разделение частиц лучше 4 о при пороге 4,5 ф.э. (напряжение смещения 56 В, Т=24∘С)
- Разработана система термостабилизации SiPM внутри прототипа АШИФ.
- Показано улучшение числа фотоэлектронов после замены ФЭУ с МКП на КФЭУ: АШИФ с ФЭУ МКП, аэрогель n=1,13, 30 мм., N_{pe} = 8 (на начало эксперимента).
 АШИФ с КФЭУ, аэрогель n=1,12, 25 мм, N_{pe} = 8 ≈ 14 × 1,3 ≈ 18,2.
 N_{pe} (АШИФ с КФЭУ) / N_{pe} (АШИФ с ФЭУ с МКП) ≈ 2,2, что согласуется с соотношением PDE у этих приборов.
- Продолжается поиск оптимального варианта системы питания КФЭУ.

BACKUP

🖤 СНД эксперимент — ВЭПП-2000

Symmetric e^+e^- collider with round beams $2E_{max}$ =2000 MeV L=10³¹cm⁻²s⁻¹ at E=510 MeV L=10³²cm⁻²s⁻¹ at E=1000 MeV

- π/K separation from 300 to 870 MeV/c
- Cylindrical shape: R=105÷141 mm
- Case material: 1mm of Al
- 3 segments of 3 counters in each
- Solid angle: ~60% of 4π
- Thickness: 0.09 X_o

Signal spectra, row 1, real (top) vs MC (bottom)

