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Effective potential in renormalizable case

• Lagrangian of SO(N)-model 

• Coleman-Weinberg[CW’73] and Jackiw[Jackiw’75] LLA-results for ф4-model 
and for SO(N)-model:
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Effective potential in renormalizable case

• Coleman-Weinberg [CW’73] and Jackiw [Jackiw’75] LLA-results for simple 
ф4-model and for SO(N)-model:
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LLA NLA NkLA

……………………….

1PI Feynman diagram topologies for Ф4
constants



Effective potential in general case: overlook

• Lagrangian of general SO(N)-model:

 All PT-rules are applicable on non-renormalizable case
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LLA NLA NkLA

…

…………………….

We will focus only on LLA’s as for non-
renormalizable interaction (NLA’s are 
scheme-dependent)

In the case of non-renormalizable models, 
coefficients in front of the logarithms are no 
longer numbers, but depend on the field

not necessarily 
constants

General potential Exp|Ф|-model
 
 



Effective potential: general formalism
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• Generating functional

• 1PI generating functional

• Legendre transformation

• Shifted action:

effective mass



Feynman rules

Efficient way to find effective potential is to sum 1PI vacuum diagrams
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Effective mass from shifted action Propagators:

Vertices are derivatives of V(ф) and symm. combination of

For example

etc



One-loop result

• One-loop diagrams:

• Ф4-model:

singular part leading logs

• Ф6-model

singular part leading logs
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Two loop results

• Ф4 model

Coincidence with the results of [CC’98, Kastening’96] (even on 3-loop level)

• Ф6 model
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BPHZ-procedure

R’-operation for n-loop graph

n-loop divergence always is local due to Bogoliubov-Parasiuk theorem [BP’57, 
Hepp’66,Zimmerman’69], result of R’(G) must not contain terms like

Consequence:
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Higher order leading divergences are governed by one-loop divergence

Now we have all the needed information to obtain the recurrence relations 



Recurrence relation

• Based on calculated diagrams we can write recurrence relation which 
generate leading poles: 

• Or, shortly

As the coefficient of the leading logarithm is always equal to the one of the 
leading pole now we know short way to find exact leading log behaviour
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N=1 limit

• Generalized RG-equation from [Kazakov, I.R, Tolkachev’23] is restored

• Introducing function

• Exact generalized RG-equation and effective potential

In the case of power-like potential
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Power-like potential

p=4

This ODE is too difficult to solve analytically



N=1 limit

• Exact generalized RG-equation and effective potential

In the case of power-like potential
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Power-like potential



Large N limit

• In this limit we can find 

Again we introduce the function summing all poles (effective potential)

• Generalized RG-equation is given by
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Power-like potential

p=4

The ODE is the first order so we can solve it 
analytically (and numerically)

RG-equation for power like potential:
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Ф4 model Ф6 model exp(|Ф|) model

Large N limit
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Ф4 model Ф6 model exp(|Ф|) model

Large N limit



Conclusions and prospects

• A recurrence relation for SO(N) scalar model with general power-like 
potential was found

• The resulting recurrence relations recovers the known theories within its 
limits

• Analytical evaluation were provided in large N limit

• Subleading orders and scheme dependence in scalar models have to be 
investigated in details

• Generalized RG-equation for leading logs in curved space-times and higher 
dimensions also should be studied

• EP in matrix models? SUSY?..
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Thanks for attention!
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