Cornwall-Jackiw-Tomboulis effective action in (2+1)-dimensional models

Roman N. Zhokhov IZMIRAN, IHEP

Секция ядерной физики Отделения физических наук Российской академии наук, ОИЯИ, Дубна

K.G. Klimenko, IHEP

T.G. Khunjua, University of Georgia, MSU

details can be found in

 $\begin{array}{l} {\rm Phys.Rev.D~106~(2022)~12,~125010~arXiv:2212.01062~[hep-th]} \\ {\rm Phys.Rev.D~106~(2022)~8,~085002~arXiv:2208.11735~[hep-th]} \\ {\rm Phys.Rev.D~105~(2022)~2,~025014~arXiv:~2112.13012~[hep-th]} \\ {\rm Int.J.Mod.Phys.A~36~(2021)~31n32,~2150231} \end{array}$

The work is supported by

► Russian Science Foundation (RSF) grant number 19-72-00077

under

► Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики и математики Lagrangian of Gross-Neveu model

$$L = i\overline{\psi}_k \gamma^{\nu} \partial_{\nu} \psi_k + \frac{G}{2N} \left(\overline{\psi}_k \psi_k \right)^2$$

k = 1, ..., N is a number of flavours

It exhibits chiral symmetry breaking and dynamical mass generation

$$\langle \overline{\psi}\psi \rangle \neq 0$$

$$L \sim -\frac{2N}{G}\sigma(x)^2 + i\,\overline{\psi}\gamma^\mu\partial_\mu\psi - \sigma(x)\,\overline{\psi}\psi, \quad \langle\sigma\rangle \sim \langle\overline{\psi}\psi\rangle$$

Note that the definition of chiral symmetry is slightly unusual in (2+1)-dimensions.

There exists no other 2×2 matrix anticommuting with the gamma matrices, which would allow the introduction of a γ^5 -matrix in the irreducible representation.

The concept of **chiral symmetries** and their breakdown by mass terms can nevertheless be realized also in the framework of (2+1)-dimensional quantum field theories

by considering a four-component reducible representation for Dirac fields

The Dirac spinors ψ have the following form:

$$\psi(x) = \begin{pmatrix} \tilde{\psi}_1(x) \\ \tilde{\psi}_2(x) \end{pmatrix},$$

with $\tilde{\psi}_1, \tilde{\psi}_2$ being two-component spinors.

 4×4 γ -matrices:

$$\gamma^{\mu} = diag(\tilde{\gamma}^{\mu}, -\tilde{\gamma}^{\mu})$$

There exist two matrices, γ^3 and γ^5 , which anticommute with all γ^{μ} ($\mu = 0, 1, 2$) and with themselves

$$\gamma^3 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \qquad \gamma^5 = \gamma^0 \gamma^1 \gamma^2 \gamma^3 = i \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

One can also construct

$$\tau = -i\gamma^3 \gamma^5 = \left(\begin{array}{cc} I \ , & 0 \\ 0 \ , & -I \end{array} \right)$$

As a rule one introduces the source terms

$$S_s = \int d^3x \left(\overline{\psi}_k(x) J_k(x) + \overline{J}_k(x) \psi_k(y) \right)$$

But now let us introduce bilocal source

$$S_s = \int d^3x d^3y \overline{\psi}_k^{\alpha}(x) K_{\alpha}^{\beta}(x, y) \psi_{k\beta}(y)$$

Z(K) is the generating functional of the Green's functions of bilocal fermion-antifermion composite operators $\overline{\psi}_k^{\alpha}(x)\psi_{k\beta}(y)$

$$Z(K) \equiv \exp(iNW(K)) =$$

$$= \int \mathcal{D}\overline{\psi}_k \mathcal{D}\psi_k \exp\left(i\left[I(\overline{\psi}, \psi) + \int d^3x d^3y \overline{\psi}_k^{\alpha}(x) K_{\alpha}^{\beta}(x, y) \psi_{k\beta}(y)\right]\right)$$

where $\alpha, \beta = 1, 2, 3, 4$ are spinor indices, $K_{\alpha}^{\beta}(x, y)$ is a bilocal source of the fermion bilinear composite field $\bar{\psi}_{k}^{\alpha}(x)\psi_{k\beta}(y)$ Generating functional can be expressed in the following form $% \left(-1\right) =-1$

$$Z(K) = \exp\left(iI_{int}\left(-i\frac{\delta}{\delta K}\right)\right) \exp\left[N\operatorname{Tr}\ln\left(D(x,y) + K(x,y)\right)\right]$$

$$Z(K) = \exp(iNW(K))$$

$$\exp(iNW(K)) =$$

$$= \exp\left(iI_{int}\left(-i\frac{\delta}{\delta K}\right)\right) \exp\left[N\operatorname{Tr}\ln\left(D(x,y) + K(x,y)\right)\right]$$

CJT effective action of the composite bilocal and bispinor operator $\bar{\psi}_k^{\alpha}(x)\psi_{k\beta}(y)$ is defined as a functional $\Gamma(S)$ of the full fermion propagator $S_{\beta}^{\alpha}(x,y)$ by Legendre transformation of the functional W(K)

$$\Gamma(S) = W(K) - \int d^3x d^3y S^{\alpha}_{\beta}(x,y) K^{\beta}_{\alpha}(y,x),$$

$$S^{\alpha}_{\beta}(x,y) = \frac{\delta W(K)}{\delta K^{\beta}_{\alpha}(y,x)}.$$

S(x,y) is the full fermion propagator at K(x,y)=0

One can show for CJT effective action $\Gamma(S)$

$$\frac{\delta\Gamma(S)}{\delta S^{\alpha}_{\beta}(x,y)} = -K^{\beta}_{\alpha}(y,x)$$

If bilocal sources $K_{\alpha}^{\beta}(y,x)$ are zero, the full fermion propagator is a solution of

$$\frac{\delta\Gamma(S)}{\delta S^{\alpha}_{\beta}(x,y)} = 0.$$

we calculate the effective action pertubatively

$$\Gamma(S) = -i \operatorname{Tr} \ln \left(-i S^{-1} \right) + \int d^3 x d^3 y S_{\beta}^{\alpha}(x, y) D_{\alpha}^{\beta}(y, x)$$
$$+ \frac{G}{2} \int d^3 x \left[\operatorname{tr} S(x, x) \right]^2 - \frac{G}{2N} \int d^3 x \operatorname{tr} \left[S(x, x) S(x, x) \right].$$

The stationary equation for the CJT effective action

$$0 = i \left[S^{-1} \right]_{\alpha}^{\beta}(x,y) + D_{\alpha}^{\beta}(x,y) + G\delta_{\alpha}^{\beta}\delta(x-y) \operatorname{tr}S(x,y) - \frac{G}{N} S_{\alpha}^{\beta}(x,y)\delta(x-y).$$

S(x,y) is a translationary invariant operator

$$\overline{(S^{-1})_{\alpha}^{\beta}}(p) - ip_{\nu}(\gamma^{\nu})_{\alpha}^{\beta} = iG\delta_{\alpha}^{\beta} \int \frac{d^{3}q}{(2\pi)^{3}} \operatorname{tr}\overline{S}(q) - i\frac{G}{N} \int \frac{d^{3}q}{(2\pi)^{3}} \overline{S_{\alpha}^{\beta}}(q)$$

Let us explore, using the CJT approach, the possibility of mass term

$$\overline{S^{-1}} = i(\hat{p} + m_D), \text{ i.e. } \overline{S} = -i\frac{\hat{p} + m_D}{p^2 - m_D^2}$$

 ${\mathcal P}$ - symmetric

 \mathcal{T} - symmetric

Break chiral symmetries Γ^5 and Γ^3

UV divergence can be removed from the gap equations if we require the following behavior of the bare coupling constant $G \equiv G(\Lambda)$ vs Λ

$$\frac{1}{G(\Lambda)} = \frac{4N - 1}{2N\pi^2} \left(\Lambda + g_D \frac{\pi}{2} + g_D \mathcal{O}\left(\frac{g_D}{\Lambda}\right) \right)$$

where g_D is a finite Λ -independent and renormalization group invariant quantity, and it can also be considered as a new free parameter of the model.

▶ at $g_D > 0$ its global minimum lies at the point $m_D = 0$, and no dynamical mass generation

▶ at $g_D < 0$ the global minimum is achieved at $m_D = |g_D|$

$$m_D = |g_D|$$

One could define dimensionless bare coupling constant

$$\lambda = \Lambda G(\Lambda)$$

The β -function is

$$\beta(\Lambda) = \Lambda \frac{\partial \lambda(\Lambda)}{\partial \Lambda}, \qquad \beta(\Lambda) = \frac{\lambda}{\lambda_D} (\lambda_D - \lambda)$$

where $\lambda_D = \frac{2N\pi^2}{4N-1}$

there exists a nonzero UV-stable fixed point λ_D in the model

At rather large values of Λ

$$\lambda(\Lambda) - \lambda_D \sim -\frac{g_D}{\Lambda}$$

- ▶ at $\lambda > \lambda_D$ chiral symmetry is broken
- ▶ at $\lambda < \lambda_D$ symmetry of the model remains intact

Let us explore, using the CJT approach, the possibility of mass term

$$\overline{S^{-1}} = i(\hat{p} + \tau m_H), \quad \text{i.e.} \quad \overline{S} = -i\frac{\hat{p} + \tau m_H}{p^2 - m_H^2}$$

 \mathcal{P} - breaking

 $\mathcal T$ - symmetric

Keep chiral symmetries Γ^5 and Γ^3 intact

the UV divergence can be removed from the gap equations if we require the following behavior of the bare coupling constant $G\equiv G(\Lambda)$ vs Λ

$$\frac{1}{G(\Lambda)} = -\frac{1}{2N\pi^2} \Big(\Lambda + g_H \frac{\pi}{2} + g_H \mathcal{O}\Big(\frac{g_H}{\Lambda} \Big) \Big)$$

where g_H is a finite Λ -independent and renormalization group invariant quantity, and it can also be considered as a new free parameter of the model.

▶ at $g_H > 0$ its global minimum lies at the point $m_H = 0$, and no dynamical generation of Haldane mass

▶ at $g_H < 0$ the global minimum is achieved at $m_H = |g_H|$ $m_H = |g_H|$

At rather large values of Λ

$$\lambda(\Lambda) - \lambda_H \sim \frac{2\pi^2 N g_H}{\Lambda}$$

where $\lambda_H = -2N\pi^2$

- ▶ at $\lambda > \lambda_H$ parity remains intact
- ▶ at $\lambda < \lambda_H$ parity is broken

Since
$$\lambda_H \to -\infty$$
 at $N \to \infty$

we may conclude that in the limit of large N the (2+1)-D GN model cannot have a **P-odd phase** and **Haldane mass** cannot arise dynamically

Let us explore the possibility that the solution of the gap equation has the form

$$\overline{S^{-1}} = i(\hat{p} + i\gamma^5 m_5 + i\gamma^3 m_3), \text{ i.e. } \overline{S} = -i\frac{\hat{p} + i\gamma^5 m_5 + i\gamma^3 m_3}{p^2 - (m_3^2 + m_5^2)}$$

It corresponds to a dynamically generated mass term of the form $\mathcal{M}_H = (m_5 \overline{\psi} i \gamma^5 \psi + m_3 \overline{\psi} i \gamma^3 \psi)$ in the Lagrangian

Since m_5 and m_3 are some real numbers, this mass term is a Hermitian one.

- ▶ at g > 0 only a trivial solution of the gap equations exists, $m_3 = m_5 = 0$, and all discrete symmetries of the model remain intact
- ▶ at g < 0 $m_3 = |g| \cos \alpha, \quad m_5 = |g| \sin \alpha$ (where $0 \le \alpha \le \pi/2$ is some arbitrary fixed angle)

At g < 0 in all above mentioned cases (at arbitrary values of the angle parameter α)

the genuine physical fermion mass, which is indeed a pole of the fermion propagator, is equal to

$$M_F = \sqrt{m_3^2 + m_5^2} \equiv |g|$$

At rather large values of Λ

$$\lambda(\Lambda) - \lambda_{35} \sim \frac{2\pi^2 Ng}{\Lambda}$$

where $\lambda_{35} = 2N\pi^2$

- ▶ at $\lambda > \lambda_{35} m_5 \overline{\psi} i \gamma^5 \psi + m_3 \overline{\psi} i \gamma^3 \psi$ mass term is dynamically generated
- ▶ at $\lambda < \lambda_{35}$ symmetric phase

Since $\lambda_{35} \to \infty$ at $N \to \infty$

we may conclude that in the limit of large N there is no dynamical $m_5\overline{\psi}i\gamma^5\psi + m_3\overline{\psi}i\gamma^3\psi$ mass term generation

Spontaneous non-Hermiticity in Gross-Neveu model

$$\mathcal{M}_H = im_5\overline{\psi}(x)\gamma^5\psi(x) + im_3\overline{\psi}(x)\gamma^3\psi(x)$$

$$\mathcal{M}_{NH1} = im_5 \overline{\psi}(x) \gamma^5 \psi(x) + m_3 \overline{\psi}(x) \gamma^3 \psi(x)$$

\mathcal{PT} - symmetric

$$\mathcal{M}_{NH2} = m_5 \overline{\psi}(x) \gamma^5 \psi(x) + i m_3 \overline{\psi}(x) \gamma^3 \psi(x)$$

\mathcal{PT} - breaking

Let us explore, using the CJT approach, the possibility of the dynamic appearance of a non-Hermitian and \mathcal{PT} symmetric mass term \mathcal{M}_{NH1}

$$\overline{S^{-1}} = i(\hat{p} + i\gamma^5 m_5 + \gamma^3 m_3), \text{ i.e. } \overline{S} = -i\frac{\hat{p} + i\gamma^5 m_5 + \gamma^3 m_3}{p^2 - (m_5^2 - m_3^2)}$$

where m_3 and m_5 are real quantities.

Suppose that
$$m_5^2 \ge m_3^2$$

- ▶ at g > 0 its global minimum lies at the point $m_5 = m_3 = 0$, and dynamical mass generation is absent
- ▶ at g < 0 the global minimum is achieved at arbitrary (m_3, m_5) point such that $m_5^2 m_3^2 = g^2$

$$m_3 = |g| \sinh \beta, \quad m_5 = |g| \cosh \beta$$

Note that such a structure of the global minimum point of the model appears due to the emergent symmetry of the CJT effective potential with respect to non-Unitary transformations

$$\begin{pmatrix} m_5 \\ m_3 \end{pmatrix} \to \begin{pmatrix} \cosh \beta & \sinh \beta \\ \sinh \beta & \cosh \beta \end{pmatrix} \begin{pmatrix} m_5 \\ m_3 \end{pmatrix}.$$

the non-Hermitian but \mathcal{PT} -odd mass term \mathcal{M}_{NH2}

$$\overline{S^{-1}} = i(\hat{p} + \gamma^5 m_5 + i\gamma^3 m_3), \text{ i.e. } \overline{S} = -i\frac{\hat{p} + \gamma^5 m_5 + i\gamma^3 m_3}{p^2 - (m_3^2 - m_5^2)}$$

where m_3 and m_5 are real quantities.

Suppose that $m_5^2 \le m_3^2$

It can be shown in exactly the same way that for the same dependence of the bare coupling constant G vs Λ , there exists a nontrivial solution of the renormalized stationary (Dyson-Schwinger) equation

▶ at g < 0 of the non-Hermitian but \mathcal{PT} -odd mass term \mathcal{M}_{NH2} in the model.

$$m_3 = |g| \cosh \omega, \quad m_5 = |g| \sinh \omega$$

$$\sqrt{m_3^2 - m_5^2} \equiv |g|$$
 fermion pole mass $M_F = \sqrt{m_3^2 - m_5^2} \equiv |g|$.

at $\lambda > \lambda_{35}$ — non-Hermitian mass terms could be dynamically generated

where
$$\lambda_{35} = 2N\pi^2$$

Since
$$\lambda_{35} \to \infty$$
 at $N \to \infty$

we may conclude that in the limit of large N there is no dynamical generation of non-Hermitian mass terms

Spontaneous symmetry breaking in Thirring model

Lagrangian of Thirring model

$$L = \overline{\Psi}_k \gamma^{\nu} i \partial_{\nu} \Psi_k - \frac{G}{2N} \left(\overline{\Psi}_k \gamma^{\mu} \Psi_k \right) \left(\overline{\Psi}_l \gamma_{\mu} \Psi_l \right)$$

k = 1, ..., N is a number of flavours

It is invariant under the transformations

$$U(N), U(2N), \Gamma_3, \Gamma_5, \mathcal{P}$$

The stationary equation for the CJT effective action

$$-i\left[S^{-1}\right]_{\alpha}^{\beta}(x,y) - D_{\alpha}^{\beta}(x,y) = -G(\gamma^{\rho})_{\alpha}^{\beta} \operatorname{tr}\left[\gamma_{\rho} S(x,y)\right] \delta^{3}(x-y)$$
$$+ \frac{G}{N} \left[\gamma^{\rho} S(x,y) \gamma_{\rho}\right]_{\alpha}^{\beta} \delta^{3}(x-y)$$

S(x,y) is a translationary invariant operator

$$-i\overline{(S^{-1})_{\alpha}^{\beta}}(p) - (\hat{p})_{\alpha}^{\beta} = -G(\gamma^{\rho})_{\alpha}^{\beta} \int \frac{d^{3}q}{(2\pi)^{3}} \operatorname{tr}\left[\gamma_{\rho}\overline{S}(q)\right] + \frac{G}{N} \int \frac{d^{3}q}{(2\pi)^{3}} \left[\gamma^{\rho}\overline{S}(q)\gamma_{\rho}\right]_{\alpha}^{\beta}$$

Let us explore, using the CJT approach, the possibility of mass term

$$i\overline{S^{-1}} = (\hat{p} + m_D + m_H \tau) = \begin{pmatrix} \tilde{p} + m_D + m_H, & 0 \\ 0, & -\tilde{p} + m_D - m_H \end{pmatrix}$$

i. e.

$$\overline{S}(p) = -i \begin{pmatrix} \frac{\tilde{p} - m_D - m_H}{p^2 - (m_D + m_H)^2}, & 0\\ 0, & \frac{-\tilde{p} - m_D + m_H}{p^2 - (m_D - m_H)^2} \end{pmatrix}$$

CJT effective potential

$$V(S) \int d^3x \equiv -\Gamma(S) \Big|_{\text{transl.-inv. S(x,y)}}$$

for Thirring model is

CJT effective potential has the following symmetries

$$m_D \to -m_D, \ m_H \to -m_H \qquad m_H \leftrightarrow m_D$$

▶ at g > 0 its global minimum lies at the point $m_D = 0$ and $m_H = 0$, and no dynamical mass generation

ightharpoonup at g < 0 the global minimum is achieved at

$$(m_D = -g/2, m_H = 0)$$
 and $(m_D = 0, m_H = -g/2)$

- ▶ at $\lambda > \lambda_0$ symmetries of the model are broken
- ▶ at $\lambda < \lambda_0$ symmetry of the model remains intact

 $\lambda < \lambda_0$ - symmetry of the model remains intact

Since
$$\lambda_0 \to \infty$$
 at $N \to \infty$

we may conclude that in the limit of large N there is no dynamical mass generation in Thirring model

The global minimum is achieved at

$$(m_D = -g/2, m_H = 0)$$
 and $(m_D = 0, m_H = -g/2)$

and is degenerate

Spontaneous symmetry breaking in generalized Thirring model

Lagrangian of Thirring model

$$L = \overline{\Psi}_k \gamma^{\nu} i \partial_{\nu} \Psi_k - \frac{G_v}{2N} \left(\overline{\Psi}_k \gamma^{\mu} \Psi_k \right) \left(\overline{\Psi}_k \gamma_{\mu} \Psi_k \right) + \frac{G_s}{2N} \left(\overline{\Psi}_k \tau \Psi_k \right)^2$$

$$k = 1, ..., N$$
 is a number of flavours, and $\tau = -i\gamma^3 \gamma^5$

It is invariant under the transformations

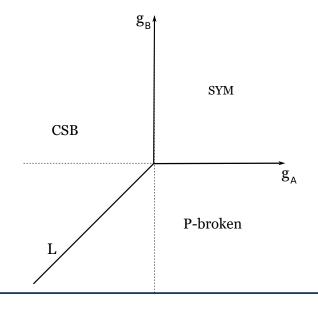
$$U(N), U(2N), \Gamma_3, \Gamma_5, \mathcal{P}$$

Let us explore, using the CJT approach, the possibility of mass term

$$i\overline{S^{-1}} = (\hat{p} + m_D + m_H \tau) = \begin{pmatrix} \tilde{p} + m_D + m_H, & 0 \\ 0, & -\tilde{p} + m_D - m_H \end{pmatrix}$$

i. e.

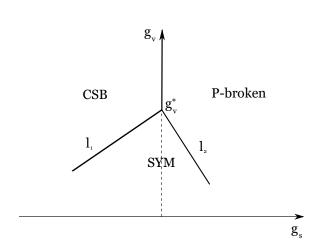
$$\overline{S}(p) = -i \begin{pmatrix} \frac{\tilde{p} - m_D - m_H}{p^2 - (m_D + m_H)^2}, & 0\\ 0, & \frac{-\tilde{p} - m_D + m_H}{p^2 - (m_D - m_H)^2} \end{pmatrix}$$



In terms of other more natural and physically acceptable dimensionless coupling constants

$$g_s \equiv \Lambda G_s$$

 $g_v \equiv \Lambda G_v$



Spontaneous non-hermiticity in Thirring model

Let us explore, using the CJT approach, the possibility of mass term

$$\mathcal{M}_H = \overline{\Psi}_k (m_H \tau + m_D + i m_5 \gamma^5 + i m_3 \gamma^3) \Psi_k$$

i. e.

$$\overline{S^{-1}}(p) = i \left(\hat{p} + m_H \tau + m_D + i m_5 \gamma^5 + i m_3 \gamma^3 \right)$$

▶ at g > 0 its global minimum lies at the point $m_D = 0$, $m_H = 0$, $m_3 = 0$ and $m_5 = 0$ and no dynamical mass generation

▶ at g < 0 the global minimum is achieved at $(m_H = -g/2, \Sigma = 0) \text{ and } (m_H = 0, \Sigma = -g/2)$ $\Sigma^2 \equiv m_D^2 + m_5^2 + m_3^2 = g^2/4$

the non-Hermitian mass term \mathcal{M}_{NH}

$$\mathcal{M}_{NH} = \overline{\Psi}_k (m_H \tau + \eta \cdot m_D + \vartheta \cdot i m_5 \gamma^5 + \kappa \cdot i m_3 \gamma^3) \Psi_k$$

where each of the multipliers η, ϑ, κ is either 1 or i and all mass parameters m_H, m_D, m_5, m_3 are real quantities

ightharpoonup at g > 0

(i)
$$\overline{\Psi}_k(m_D - m_5\gamma^5 + im_3\gamma^3)\Psi_k$$
 where $m_D^2 + m_3^2 = m_5^2$,

(ii)
$$\overline{\Psi}_k(im_D + im_5\gamma^5 + im_3\gamma^3)\Psi_k$$
 where $m_5^2 + m_3^2 = m_D^2$,

(iii)
$$\overline{\Psi}_k(im_D - m_5\gamma^5 + im_3\gamma^3)\Psi_k$$
 where $m_D^2 + m_5^2 = m_3^2$,

(iv)
$$\overline{\Psi}_k(im_D + im_5\gamma^5 - m_3\gamma^3)\Psi_k$$
 where $m_D^2 + m_3^2 = m_5^2$,

(v)
$$\overline{\Psi}_k(m_D - m_5\gamma^5 - m_3\gamma^3)\Psi_k$$
 where $m_5^2 + m_3^2 = m_D^2$

the corresponding to non-Hermitian mass term $\overline{\Psi}_k(m_D + im_5\gamma^5 - m_3\gamma^3)\Psi_k$ fermion propagator $\overline{S}(p)$ looks like

$$\overline{S}(p) = -i(\hat{p} + m_D + i\gamma^5 m_5 - \gamma^3 m_3)/p^2$$

$$ightharpoonup$$
 at $q < 0$

In the case $m_H = -g/2$ and $\widetilde{\Sigma} = 0$

(i)
$$\overline{\Psi}_k(m_H\tau + m_D + im_5\gamma^5 - m_3\gamma^3)\Psi_k$$
 with $m_D^2 + m_5^2 = m_3^2$,

(ii)
$$\overline{\Psi}_k(m_H\tau + m_D - m_5\gamma^5 + im_3\gamma^3)\Psi_k$$
 with $m_D^2 + m_3^2 = m_5^2$,

(iii)
$$\overline{\Psi}_k(m_H\tau + im_D - m_5\gamma^5 + im_3\gamma^3)\Psi_k$$
 with $m_D^2 + m_5^2 = m_3^2$,

(iv)
$$\overline{\Psi}_k(m_H \tau + i m_D + i m_5 \gamma^5 - m_3 \gamma^3) \Psi_k$$
 with $m_D^2 + m_3^2 = m_5^2$,

(v)
$$\overline{\Psi}_k(m_H\tau + im_D + im_5\gamma^5 + im_3\gamma^3)\Psi_k$$
 with $m_5^2 + m_3^2 = m_D^2$,

(vi)
$$\overline{\Psi}_k(m_H\tau + m_D - m_5\gamma^5 - m_3\gamma^3)\Psi_k$$
 with $m_5^2 + m_3^2 = m_D^2$

the corresponding fermion propagator $\overline{S}(p)$ looks like

$$\overline{S}(p) = -i \frac{\hat{p} + i m_D + i \gamma^5 m_5 - \gamma^3 m_3}{p^2 + M_F^2}$$

where $M_F = |g|/2$

- ► There has been studied the possibility of the dynamical appearance of both Hermitian and non-Hermitian mass terms in the originally Hermitian massless (2+1)-dimensional GN model
- ightharpoonup the effect of spontaneous non-Hermiticity can be detected only outside the large-N expansion technique
- ► There has been shown that parity breaking Haldane mass can be generated dynamically in the model