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Lagrangian of Gross-Neveu model

Lagrangian of Gross-Neveu model

L = i)y 0,0, ton (%@/Jk)

k=1,...,N is a number of flavours

It exhibits chiral symmetry breaking and
dynamical mass generation

(W) #0

2N — — —

L~ —?a(x)z +ipyo) —o(x) P, (o) ~ (Y1)




Chiral symmetry

Note that the definition of chiral symmetry
is slightly unusual in (24-1)-dimensions.

There exists no other 2 x 2 matrix anticommuting with the
gamma matrices, which would allow the introduction of a
~P-matrix in the irreducible representation.




Chiral symmetry

The concept of chiral symmetries and their breakdown by
mass terms can nevertheless be realized also in the framework of
(241)-dimensional quantum field theories

by considering a four-component reducible representation
for Dirac fields

The Dirac spinors ¥ have the following form:

1= (50 )

with 1[11, Vo being two-component spinors.
4x4 ~v-matrices:
Y = diag(¥", =3")




Chiral symmetry: 3, 4° and 7

There exist two matrices, ¥3 and ~4°, which anticommute with
all v* (p=0,1,2) and with themselves

3 ) 0.1.2.3 . )
7 <170)7 7 - Z( ’ O)

~

One can also construct

. I, O
72—17375:<0 —I)




Bilocal source for ¢n) composite operators

As a rule one introduces the source terms

So= [ a(By(@) @) + Tula)nlv)

But now let us introduce bilocal source

S = / Byl (@) K (2, )k (v)




Generating functional

—

Z(K) is the generating functional of the Green’s functions of
bilocal fermion-antifermion composite operators ¥y, ()1 (y)

Z(K)=exp(iNW(K)) =

- / D, Dy, exp (z {I@,dzn / d3xd3yﬂg(w)K5(ﬂzy)ww(y)D

where o, 8 = 1,2, 3,4 are spinor indices,
KP(x,y) is a bilocal source of the fermion bilinear composite field

YR (@) Yrs(y)




Generating functional

—

Generating functional can be expressed in the following form

Z(K) =exp <Umt< — z%)) exp [NTr In (D(x, y) + K(x, y))}
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Generating functional

—

= exp (z’[mt< —

Z(K) = exp(iNW (K))

exp(iINW(K)) =

idiK)) exp [Nﬂ In (D(z,y) + K(z, y))]
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CJT effective action 12

—

CJT effective action of the composite bilocal and bispinor
operator ¥ (x)ys(y) is defined as a functional I'(S) of the full
fermion propagator Sg‘(a:,y) by Legendre transformation
of the functional W (K)

I(S) = W(K) - / PrdyS3(z, y) K2 (4, 7).

SW (K)

§%(x,y) = —— 20
5(@:0) SKS(y, =)




Full fermion propagator 13

S(z,y) is the full fermion propagator at K(z,y) =0

One can show for CJT effective action I'(S)

3T(S)

G
555(x,9) .2)

If bilocal sources Kg(y, x) are zero, the full fermion propagator
is a solution of
OT(S)

— 2.
055 (z,y)




CJT effective action
—

we calculate the effective action pertubatively

I'(S)=—iTrln(—iS™") + /dga:dgySg‘(x,y)Dg(y,x)

+§/d3x {trS(m,x)r— % A3z tr{S(m,x)S(m,x) )
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Stationary equation for the CJT effective action 15

The stationary equation for the CJT effective action

0—i[s7!] ﬁ (@, y)+ DS (x, y)+Gol5(x—y) trS(a, y)—%sém, y)6(z—y).

S(z,y) is a translationary invariant operator

3 3, —
S =in 0" = 163, [ G S =iy [ i)

=




Dirac mass term generation

—

Let us explore, using the CJT approach, the possibility of mass

term
T . = .pt+m
Sl =i(p+mp), ie S= —2]?272
b —mp
P - symmetric T - symmetric

Break chiral symmetries I'® and I3




coupling constant renormalization 17

UV divergence can be removed from the gap equations if we
require the following behavior of the bare coupling constant

G=G(A) vs A

G(lA) - 45\7;21 (A+905 +900(7))

where gp is a finite A-independent and renormalization group
invariant quantity, and it can also be considered as a new free
parameter of the model.




Dynamical mass generation 18

> at gp > 0 its global minimum lies at the point mp = 0, and
no dynamical mass generation

» at gp < 0 the global minimum is achieved at mp = |gp|

mp = \9D|




Renormalization group equation

—

One could define dimensionless bare coupling constant

A=AG(A)
The S-function is
OA(A) A
AN=A——+ A =— -
where \p = 2N

there exists a nonzero UV-stable fixed point \p in
the model

19




Renormalization group equation

—

At rather large values of A

» at A > A\p — chiral symmetry is broken

> at A < A\p — symmetry of the model remains intact

20




Haldane mass term generation 21

—

Let us explore, using the CJT approach, the possibility of mass

term
T i . = p+Tm
Sl =i(p+rmyg), ie. S=-— 292#
b —my
P - breaking T - symmetric

Keep chiral symmetries I and I'? intact




Coupling constant renormalization 22

the UV divergence can be removed from the gap equations if we
require the following behavior of the bare coupling constant
G=G(A) vs A

G(lA) - _21\}7# (A+ gy + gHO(gTH»

where gy is a finite A-independent and renormalization group
invariant quantity, and it can also be considered as a new free
parameter of the model.




Dynamical generation of Haldane mass 23

> at gy > 0 its global minimum lies at the point my = 0,
and no dynamical generation of Haldane mass

» at gy < 0 the global minimum is achieved at my = |gg|

myg = \9H|




Renormalization group equation

—

At rather large values of A

where Ay = —2N7?

> at A > Ay — parity remains intact
» at A\ < Ay — parity is broken

Since Ay — —oo at N — o

we may conclude that in the limit of large N the (2+1)-D
GN model cannot have a P-odd phase and Haldane mass
cannot arise dynamically

24




More exotic mass terms

—

Let us explore the possibility that the solution of the gap
equation has the form

=1 e i+ iyt

S—1 =i(p+iv°ms +iv3mg), ie. S=

(p Y 5 Y 3) pg — (mg + m%)
It corresponds to a dynamically generated mass term of the
form My = (m5z/17j'y5w + mgz/zi’y?’w) in the Lagrangian

Since ms and mg are some real numbers, this mass term is a
Hermitian one.




Dynamical generation of masses mg and ms

» at g > 0 only a trivial solution of the gap equations exists,
ms = ms = 0, and all discrete symmetries of the model
remain intact

> atg <0
ms = |g|cosa, ms5 = |g|sina

(where 0 < a < 7/2 is some arbitrary fixed angle)

26




Physical fermion mass 27

—

At g < 0 in all above mentioned cases (at arbitrary values of the
angle parameter o)

the genuine physical fermion mass, which is indeed a pole of the
fermion propagator, is equal to

My = fm + m =g




Renormalization group equation

—

At rather large values of A

212 Ng

A(A) = g ~ =

where \35 = 2N 72
> at A > A3z — ms5in°Y + maivyd) mass term is
dynamically generated

> at A < A\35 — symmetric phase

Since Ag5 — oo at N — 00

we may conclude that in the limit of large NN there is no
dynamical msyiy°y + m3iy>y) mass term generation

28




Spontaneous non-Hermiticity

—

Spontaneous non-Hermiticity
in Gross-Neveu model

29




More exotic masses: non-Hermitian mass terms

—

My = imsh(x)7y P (x) + imah(x)y>d(2)

My = imsh(z)7°h(x) + msp(z)7y*)(x)

PT - symmetric

Mz = msp(x)y 1 (x) + imgih (x)y*)(x)
PT - breaking

30




non-Hermitian mass term 31

—

Let us explore, using the CJT approach, the possibility of the
dynamic appearance of a non-Hermitian and P7T symmetric
mass term M g1
A . 5 3
o1 o _ip+Z’Ym5+’Ym3

S—1 =i(p+iv°ms +~*m3), ie. =
p? = (m3 —m3)

where m3 and ms are real quantities.

Suppose that m% > m%




Vacuum solution 32

—

> at g > 0 its global minimum lies at the point ms = m3 = 0,
and dynamical mass generation is absent

» at g < 0 the global minimum is achieved at arbitrary
(mg, ms) point such that mg — m% = 92

mg = |g|sinh B, ms = |g| cosh 3

Note that such a structure of the global minimum point of the
model appears due to the emergent symmetry of the CJT
effective potential with respect to non-Unitary transformations

ms cosh 8 sinhf ms
mg | sinn £ cosh 3 mg )’




non-Hermitian mass term 33

—

the non-Hermitian but P7-odd mass term My o

_ o P .
ST = i(p+Pms + inmg), i 8=l b0 T

p? — (m3 —m2)

where m3 and ms are real quantities.

Suppose that m2 < m32




non-Hermitian mass term 34

—

It can be shown in exactly the same way that for the same
dependence of the bare coupling constant G vs A, there exists a
nontrivial solution of the renormalized stationary
(Dyson-Schwinger) equation
» at g < 0 of the non-Hermitian but P7T-odd mass term
M g2 in the model.

m3 = |g|coshw, ms = |g|sinhw

31\3
|
CNSI\D
I

lg]

- ‘ _ 2
fermion pole mass Mp = \/m3 —m2 = |g|.

3




Renormalization group equation 35

—

at A > A35 — non-Hermitian mass terms could be
dynamically generated

where \35 = 2N 72

Since A35 — oo at N — oo

we may conclude that in the limit of large N there is no
dynamical generation of non-Hermitian mass terms




Thirring model
P——

Spontaneous symmetry
breaking

in Thirring model

36




Lagrangian of Thirring model

Lagrangian of Thirring model

_ a _
L =U~1"i0,V; — N (U k) (7, 7))

k=1,...,N is a number of flavours

It is invariant under the transformations

U(N)7 U(2N)a F37 F57 P

37




Stationary equation for the CJT effective action 38

The stationary equation for the CJT effective action

—i [S_l]ﬂ(x, y) — DE(x,y) = —~G(v*) tr[y,5 (2, )] 6* (x — )

«

+% (VS (2, y)vp) 0% (z — )

S(z,y) is a translationary invariant operator

~is ) -0 = 6L [ G bS]




Dirac and Haldane mass term generation

—

Let us explore, using the CJT approach, the possibility of mass
term

P+ mp + my, 0

iSTl=((p+mp+myr) = ( 0 —F+mp — my

39

)




CJT effective potential for Thirring model
—

CJT effective potential

V(S)/d3$ = _F(S) transl.—inv. S(x,y)

for Thirring model is

CJT effective potential has the following symmetries

mp — —mMp, mg — —mg myg <> mp

40




Dynamical mass generation 41

> at g > 0 its global minimum lies at the point mp = 0 and
mpy = 0, and no dynamical mass generation

> at g < 0 the global minimum is achieved at

(mD = —g/Z,mH = O) and (mD =0,mpg = _9/2)




Renormalization group equation

—

> at A > \g — symmetries of the model are broken

> at A < A\g — symmetry of the model remains intact

A < Ag - symmetry of the model remains intact
Since A\g — oo at N — o0

we may conclude that in the limit of large N there is no
dynamical mass generation in Thirring model

42




Degeneracy of Thirring model vacuum

The global minimum is achieved at
(mp =—g/2,myg =0) and (mp=0,myg = —g/2)

and is degenerate

43




Generalized Thirring model

—

Spontaneous symmetry
breaking

in generalized Thirring model

44




Lagrangian of Thirring model 45

Lagrangian of Thirring model

L= Wi, Uy — 5% (T 0y) (T i) +

 (Grw,)

+2N

k =1,...,N is a number of flavours, and 7 = —iy3y°

It is invariant under the transformations

U(N), U@2N), Ty Is, P




Dirac and Haldane mass term generation

—

Let us explore, using the CJT approach, the possibility of mass
term

p+mp + my, 0

iS™t=(p+mp+myr) = ( 0 —F+mp — my

46

)




Phase diagram of generalized Thirring model 47

&g

SYM

P-broken




Phase diagram of generalized Thirring model 48

In terms of other
more natural and
physically
acceptable
dimensionless
coupling constants

P-broken

gs = NGy

g = AG,

Y




Non-hermitian masses in Thirring model

—

Spontaneous non-hermiticity

in Thirring model

49




More general mass term generation 50

—

Let us explore, using the CJT approach, the possibility of mass
term

My = U(myt + mp +imsy° + imsgy*) ¥y,

SL(p) =i (p + muT +mp + imsy° + imzy?)




Dynamical mass generation 51

> at g > 0 its global minimum lies at the point
mp =0, mg=0,m3=0and ms =0

and no dynamical mass generation

> at g < 0 the global minimum is achieved at
(mg =—g/2,2=0) and (mg =0,X = —g/2)

EQEm%+m§+m§:g2/4




non-Hermitian mass term in Thirring model 52

—

the non-Hermitian mass term Mg

My = Up(muT +1-mp +9 - imsy° + & - imay”) ¥y

where each of the multipliers n, ¥,  is either 1 or ¢ and all mass
parameters mpg, mp, ms, m3 are real quantities




Gapless non-Hermitian phases

—

> atg>0
(i) Uip(mp —msy® +imsy>)¥,  where m2, +m32 = m2,
(i) Vi(imp + im5’y5 +im3y®) Wy where m2 +m2 = m%,
(iii) Ui(imp —msy® +im3y®)¥y  where m3, +m2 = m3,
(iv) Up(imp + imsy® —mzy®)¥,  where m2 +m3 = m2,
(v) Up(mp —msy® —m3y®)¥y  where m2 +m3 =m%

the corresponding to non-Hermitian mass term
U (mp + imsy°® — m3y®) ¥y, fermion propagator S(p) looks like

S(p) = —i(p+mp + iy ms — v3m3) /p?




non-Hermitian mass term in Thirring model

—

> at g <0
In the case my = —g/2 and ¥ = 0

(i)  Uyp(mpr+mp +imsy® —m3~y3)¥,  with m2D +m§ :m§7
(i) Up(mpgT+mp —msy® +imzy3) ¥y, with m2D + mg = mg,
(iii) Uy(mpyT +imp —msy® +im3y3)¥;,  with m2D + mg = m%,
(iv) Up(mpyT+imp +imsy® —may®)¥,  with m2 +m3 = m2,
(v) Up(myr +imp + imsy® 4+ imay>) U, with m2 + m2 =m?2),

(vi) Up(mut+mp —msy® —may3)¥,  with m2 +mi =m%

the corresponding fermion propagator S(p) looks like

_primp+ i°ms —v°mg

where Mp = |g|/2

o4




Conclusions and Thanks for the Attention

—

» There has been studied the possibility of the dynamical
appearance of both Hermitian and non-Hermitian mass
terms in the originally Hermitian massless
(2+41)-dimensional GN model

» the effect of spontaneous non-Hermiticity can be detected
only outside the large-N expansion technique

» There has been shown that parity breaking Haldane mass
can be generated dynamically in the model
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