Ревизия результатов по массам узких состояний боттомония

А.Г. Шамов, МД-1@ВЭПП-4—КЕДР@ВЭПП-4М Институт ядерной физики СО РАН, Новосибирск

Научная сессия секции ядерной физики ОФН РАН Дубна, 1-5 Апреля 2024

Ревизия масс узких состояний боттомония

Ведение

- Опубликованные значения масс
- Причины ревизии
- 🕨 Метод резонансной деполяризации
- 3 Обработка данных Mackay et al. [CUSB@CESR]
- 🜗 Поправка радиационных поправок
- 🔊 Уточнение массы электрона
- 🕥 Интерференция резонанса и подложки
- 7 Macca $\Upsilon(1S)$, MD-1@VEPP-4 vs CUSB@CESR
- **1** Macca $\Upsilon(2S)$, MD-1@VEPP-4 vs ARGUS+CB@DORIS
- ${igodold D}$ Масса $\Upsilon(3S)$, МД-1 ${igodold V}$ EPP-4
-) Итоги ревизии
- Готовящийся эксперимент КЕДР@ВЭПП-4М

$\Upsilon(1S)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT						
9460.30±0.26 OUR AVERAGE Error includes scale factor of 3.3.									
$9460.51 \pm 0.09 \pm 0.05$	¹ ARTAMONOV 00	MD1	$e^+e^- ightarrow$ hadrons						
$9459.97 \!\pm\! 0.11 \!\pm\! 0.07$	MACKAY 84	REDE	$e^+e^- ightarrow$ hadrons						
Расхождение 3.25 σ !									
au(2S) MASS									
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT						
10023.26 \pm 0.31 OUR AVERAGE									
10023.5 ± 0.5	¹ ARTAMONOV 00	MD1	$e^+e^- ightarrow$ hadrons						
10023.1 ± 0.4	BARBER 84	REDE	$e^+e^- ightarrow$ hadrons						
	τ(3 <i>5</i>) MASS								
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT						
10355.2±0.5	¹ ARTAMONOV 00	MD1	$e^+e^- ightarrow$ hadrons						
1 Reanalysis of BARU 92B and	ARTAMONOV 84 using	g new elec	tron mass (COHEN 87).						

Проблемы:

- Неправильный учет радиационных поправок в
 - W. W. MacKay et al., PRD 29(1984),2483 (CUSB@CESR),
 - D. P. Barber et al., PLB 135(1984),498 (ARGUS+CB@DORIS)
- Использование устаревшего значения массы электрона в этих двух работах
- Игнорирование интерференционных эффектов во всех обсуждаемых измерениях
- Расхождение результатов МД-1 и CUSB по $\Upsilon(1S)$

Цель:

 Добиться замены результатов в таблицах PDG, как произошло с лептонными ширинами тяжелых кваркониев после работы
 J. P. Alexander *et al.*, Nucl.Phys.B **320**(1989)45

Почему сейчас?

 Подготовка к новому эксперименту КЕДР@ВЭПП-4М с ожидаемой точностью около 50 кэВ

Экспериментальные аспекты работ не обсуждаются!

Метод резонансной деполяризации

Электронный пучок в ускорителе может спонтанно поляризоваться, спин прецессирует вокруг направления ведущего поля с частотой

$$\Omega_{
m spin}=\omega_{
m rev}\left(1\!+\!\mu'/\mu\,\gamma
ight)$$
 зависящей от энергии пучка $\mathit{E}=\gamma\,\mathit{m}_e$

Внешнее электромагнитное поле переменной частоты f_d деполяризует пучок при резонансном условии

$$\Omega_{\sf spin} = m \cdot \omega_{\sf rev} + n \cdot f_d$$
 ($\Upsilon(1S)$ at VEPP-4: $m = 11, n = 1$)

Измерение f_d и $\omega_{\rm rev}$ в момент деполяризации позволяет определить энергию пучка с точностью $\sim\!10^{-6}$

Момент деполяризации в обсуждаемых экспериментах определялся, используя асимметрию рассеяния продольно поляризованных фотонов на поперечно поляризованном пучке:

Андрей Шамов, Массы $\Upsilon(1S)$ - $\Upsilon(3S)$. Научная сессия секции ядерной физики ОФН РАН, Дубна, 2024 🛛 5/18

Обработка данных Mackay et al. [CUSB*@CESR]

Наш фит опубликованных данных с одинаковым учетом радиационных поправок в 1986 г. дал значение массы на 0.375 МэВ выше приведенного в статье.

Опечатка в данных? Данные из опубликованного в журнале рисунка были восстановлены с максимально возможной точностью с помощью графического редактора. Точки совпали, а подгоночные кривые нет.

Разница в массах связана с вычислением резонансной кривой. Несколько разных реализаций используемых математических функций дают одинаковые результаты.

Была найдена и исправлена опечатка в таблице формирования 13 точек для подгонки по результатам 22 заходов. Влияние ее на массу пренебрежимо.

*) CUSB — Columbia University – Stony Brook

Поправка радиационных поправок

Первая опубликованная работа по р.п. при рождении узких резонансов: Ya.I.Azimov, A.I.Vainshtein, L.N.Lipatov, V A.Khoze, JETP Lett. **21**(1975)172,

парой месяцев позже появилась хорошая альтернатива: M.Greco, G.Pancheri-Srivastava, Y.Srivastava, Nucl.Phys. **B101**(1975)234 Однако, в большинство обработок ψ и Υ до 1985 проводилось в соответствии с

J.D.Jackson and D.L.Scharre, NIM 128(1975)13

Fig. 1. e⁺e⁻ annihilation via one-photon exchange. (a) Lowest order diagram; (b) Higher order diagrams, the top two involving real (soft) photon emission and the next four each involving one additional virtual photon. 'Радиационный гауссиан' G_R был получен сверткой гауссовского разброса по энергии пучков G и вероятности потери энергии за счет множественного излучения мягких фотонов в приближении нулевой ширины резонанса.

Излучение дополнительных фотонов учитывалось для диаграмм (a), но не (b)

 $\sigma(W) \propto G_R(W-M) + \delta_v \cdot G(W-M)$ вместо $(1+\delta_v) \cdot G_R(W-M)$ Сдвиг массы зависит от разброса энергии пучков, ~ 100 кэВ для Υ Метод резонансной деполяризации дает значение среднего лоренцфактора электронов пучка, так что энергия пучка пропорциональна массе электрона m_e . В 1983 неточность m_e была около 2.8 ppm, что соответствовало 26 кэВ в массе $\Upsilon(1S)$.

«The 1986 adjustment of the fundamental physical constants», E.R.Cohen and B.N.Taylor, Rev.Mod.Phys.**59**(1987)1121: значение m_e сдвинулось на -8.5 ppm с уменьшением неопределенности до 0.3 ppm вследствие уточнения значения e/h

Результаты с ВЭПП-4 были пересчитаны в Phys.Lett. **В474**(2000)427 Сдвиги масс составили -80, -85 и -88 кэВ для $\Upsilon(1S)$, $\Upsilon(2S)$ и $\Upsilon(3S)$, соответственно

Результаты с CESR и DORIS остались неизменными

Интерференция резонанса и подложки

Ya.I. Azimov *et al.*, JETP Lett. **21**(1975)172 вклад резонанса в конечное состояние f в приближении мягких фотонов (нуждается лишь в небольших уточнениях):

$$\sigma^{\Upsilon \to f}(W) = \frac{12\pi}{M^2} \left(1 + \frac{3}{4}\beta \right) \left[\frac{\Gamma_{ee}\Gamma_f}{\Gamma M} \operatorname{Im} f(W) - \frac{2\alpha\sqrt{R_f}\Gamma_{ee}\Gamma_f}{3W} \lambda \operatorname{Re} \frac{f(W)}{1 - \beta/6} \right]$$

$$\Gamma_{de} \quad f(W) = \left(\frac{M/2}{M - W - i\Gamma/2} \right)^{1 - \beta}, \quad \beta = \frac{4\alpha}{\pi} \left(\ln \frac{W}{m_e} - \frac{1}{2} \right)$$

$$\Pi_{apametric} \lambda \text{ определяет силу интерференционного эффекта } \lambda = 1 \text{ и } R_f = 1 \text{ для}$$

Параметр λ определяет силу интерференционного эффекта, $\lambda = 1$ и $R_f = 1$ для $f = \mu^+ \mu^-$. Для суммы адронных мод распада (b_m и $\mathcal{B}_m^{(s)}$ – относительные вероятности моды в электромагнитных и сильных распадах, соответственно, ϕ – фаза интерференции электромагнитной и сильной амплитуд)

$$\lambda = \sqrt{\frac{R\mathcal{B}_{ee}}{\mathcal{B}_h}} + \sqrt{\frac{1}{\mathcal{B}_h}} \sum_m \sqrt{b_m \mathcal{B}_m^{(s)}} \left\langle \cos \phi_m \right\rangle \,. \tag{1}$$

На уровне партонной модели сильные 3g и электромагнитные $q\bar{q}$ распады не интерферируют, так что в правой части (1) должна занулиться. То же произойдет при некоррелированных ϕ_m .

Сдвиг массы растет с энергетическим разбросом, $\sim 100~{ m keV}$

Macca $\Upsilon(1S)$ (M₃B)

 $\Upsilon(2S)$ mass (M₃B)

 $\Upsilon(3S)$ mass (MeV)

Итоги ревизии (1)

- Показано, что значение массы $\Upsilon(1S)$, опубликованное в работе CUSB/CESR, некорректно. В рамках использованного в работе подхода сдвиг составляет -0.375 МэВ.
- При необходимости, опубликованные значения были поправлены на:
 - Некорректный учет радиационных поправок
 - Использование устаревшего значения массы электрона
 - Интерференционные эффекты

$\Upsilon(1S)$:	$9460.51{\pm}0.09{\pm}0.05$	\rightarrow	$9460.40{\pm}0.09{\pm}0.04$	MD-1
	$9559.97 {\pm} 0.11 {\pm} 0.07$		$9460.11{\pm}0.11{\pm}0.07$	CUSB
Ƴ(2 <i>S</i>):	10023.5 ± 0.5	\rightarrow	10023.4 ± 0.5	MD-1
	10023.1 ± 0.4		10022.7 ± 0.4	ARGUS+CB
Ƴ(3 <i>S</i>):	10355.2 ± 0.5	\rightarrow	10355.1 ± 0.5	MD-1

• Расхождение в результатах МД-1 and CUSB по массе $\Upsilon(1S)$ уменьшилось с 3.25σ до 1.83σ Среднее значение массы $\Upsilon(1S)$, вычисленное по правилам PDG 9460.29 \pm 0.15 МэВ

Итоги ревизии (2)

A.G.Shamov and O.L.Rezanova, Phys.Lett. B839 (2023) 137766

argamma(1S) mass	9460.40 ± 0.10 MeV						
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
$9460.40 \pm 0.09 \pm 0.04$	1 SHAMOV	2023	RVUE	$e^+ \; e^- ightarrow { m hadrons}$			
• • We do not use the following data for averages, fits, limits, etc. • •							
$9460.11 \pm 0.11 \pm 0.07$	² SHAMOV	2023	RVUE	$e^+ \; e^- ightarrow { m hadrons}$			
$9460.51 \pm 0.09 \pm 0.05$	^{3, 4} ARTAMONOV	2000	MD1	$e^+ \; e^- ightarrow { m hadrons}$			
$9460.60 \pm 0.09 \pm 0.05$	^{5, 6} BARU	1992B	MD1	$e^+ \; e^- ightarrow { m hadrons}$			
$9460.59\ {\pm}0.12$	BARU	1986	MD1	$e^+ \; e^- ightarrow { m hadrons}$			
9460.6 ± 0.4	7, 6 ARTAMONOV	1984	MD1	$e^+ \; e^- ightarrow { m hadrons}$			
$9459.97 \pm 0.11 \pm 0.07$	⁸ MACKAY	1984	CUSB	$e^+ \; e^- ightarrow { m hadrons}$			
¹ Reanalysis of MD1 data using the electron mass from COHEN 1987 , the radiative corrections from KURAEV 1985 and interference effects.							
2 Obtained by reanalysing CUSB data (MACKAY 1984), but not authored by the CUSB collaboration.							
³ Reanalysis of BARU 1992B and ARTAMONOV 1984 using new electron mass (COHEN 1987).							
⁴ Superseded by SHAMOV 2023 .							
⁵ Supersedes BARU 1986 .							
⁶ Superseded by ARTAMONOV 2000.							
⁷ Value includes data of ARTAMONOV 1982.							
⁸ Reanalysed by SHAMOV 2023.							

Исключение результата CUSB снижает надежность табличного значения массы поскольку неопределенности ускорительной природы оценить нелегко

Готовящийся эксперимент КЕДР@ВЭПП-4М (1)

Опыт работы KEDR@VEPP-4М по измерению масс:

"Final analysis of KEDR data on J/ ψ and $\psi(2S)$ masses" PLB **749**(2015)50

- $\bullet\,\,6\,\,J/\psi$ и 7 $\psi(2S)$ точных сканирований 2002–2008
- Систематические неопределенности в сканировании 7÷10 keV (2.5 ppm)
- рассмотрено более 15 источников неопределенности

Разница условий на ψ и Υ :

- ψ : Инжекция из ВЭПП-3 в ВЭПП-4М на энергии точки сканирования
- Υ : Ускорение в ВЭПП-4М от 1.9 до 4.73 ГэВ
- Υ : Некоторые систематические неопределенности $\propto E_{beam}^2$

Цели эксперимента на $\Upsilon(1S)$:

- Систематические неопределенности < 30 кэВ (6.3 ppm)
- Статистическая ошибка массы < 40 кэВ
- Статистическая ошибка $\Gamma_{ee} < 1\%$

Интегральная светимость $\simeq 10~\text{pb}^{-1}$, $\simeq 400~\text{runs},$

 $\simeq 3$ месяца при пиковой светимости $0.5 \cdot 10^{31} \, \mathrm{cm}^{-2} \mathrm{c}^{-1}$

Подготовка к эксперименту КЕДР@ВЭПП-4М (2)

Состояние дел:

- Получена поляризация в окрестности *E_{beam}* = 4.73 ГэВ
- Улучшена температурная стабильность ВЭПП-4М
- Проведено короткое тестовое сканирование $\Upsilon(1S)$
- Оптимизирован энергетический разброс
- Хорошо работает лазерный поляриметр:

Ожидаемые систематические неопределенности (кэВ)

Пересчет неопределенностей с J/ ψ на $\Upsilon(1S)$, таблица из PLB **749**(2015)50

Systematic uncertainties in J/ψ scans (keV):

Uncertainty source	J/ψ	\rightarrow	$\Upsilon(1S)$
Energy spread variation			17.
Energy calibration accuracy	1.9		6.
Energy assignment to DAQ runs			12.
Beam separation in parasitic I.P.s*	1.7		
Beam misalignment in the I.P.	1.5		5.
e ⁺ -, e ⁻ -energy difference	1.2		4.
Symmetric distortion of the energy distribution			6.
Asymmetric distortion of the energy distribution*			18.
Beam potential			6.
Detection efficiency instability			5.
Residual machine background			3.
Luminosity measurements			5.
Interference in the hadronic channel	2.7		20.
Sum in quadrature	\approx 7.2	\rightarrow	$\simeq 35$

* — correction uncertainty

VEPP-4M polarimeter

Layout of the laser polarimeter:

V. E. Blinov et al., JINST 15 (2020) C08024