Определение термодинамических параметров среды, образующейся в столкновениях тяжелых ионов

Недорезов Е.В. (ОИЯИ), Апарин А.А. (ОИЯИ), Парван А.С. (ОИЯИ, IFIN-HH)

Работа была поддержана РНФ (грант №22-72-10028)

Научная сессия секции ядерной физики ОФН РАН

05.04.2024

1 Введение

- Фазовая диаграмма КХД
- Эволюция кварк-глюонной плазмы
- Эксперимент STAR
- Программа Beam Energy Scan на RHIC

Используемая модель

 ${f 3}$ Фит для лёгких мезонов (K^{\pm},π^{\pm})

4 Выводы

э

Фазовая диаграмма КХД

Параметры:

- ▶ Температура T
- Барионный химический потенциал µ

э

Эволюция кварк-глюонной плазмы

Этапы столкновения ядер :

- а) Прохождение ядер сквозь друг друга
- b) Образование горячей материи
- с) Расширение и остывание
- d) Адронный газ
- е) Выход конечных частиц

< E

Эксперимент STAR

TPC (Time Projection Chamber)

- используется для трекинга и идентификации
- длина 4.2 м, диаметр 4 м (1 м)
- азимутальный угол 2π
- диапазон по псевдобыстроте
 $|\eta| < 1$
- в магнитном поле 0.5 Тесла

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Программа Beam Energy Scan на RHIC

Используемые данные:

- ▶ RHIC BES-I, 2010-2011
- $Au + Au \sqrt{S_{NN}} = 7.7 27$ GeV.
- спектры по поперечному импульсу $f(p_T) = \frac{\mathrm{d}^2 N}{2\pi p_T \mathrm{d} p_T \mathrm{d} y}$
- Phys.Rev.C 96, 044904 (2017), Phys.Rev.C 101, 024905 (2020)

2 Используемая модель

- Обзор существующих моделей
- Статистика Цаллис-3
- Приближение нулевого члена

${f 3}$ Фит для лёгких мезонов (K^{\pm},π^{\pm})

4 Выводы

Обзор существующих моделей

► Модель Blast-Wave:

(Phys.Rev. C 48, 2462 (1993))

$$\frac{\mathrm{d}N}{p_T\,\mathrm{d}p_T} \propto \int_0^R r\,\mathrm{d}r\,\mathrm{K}_1\left(\frac{m_T\cosh\rho}{T}\right)\mathrm{I}_0\left(\frac{m_T\sinh\rho}{T}\right)$$

Функция Леви:

(Phys.Rev. C 75, 064901 (2007))

$$\frac{\mathrm{d}^2 N}{p_T \,\mathrm{d}p_T \,\mathrm{d}y} = \frac{\mathrm{d}N}{\mathrm{d}y} \frac{(n-1)(n-2)}{nC(nC+m_0(n-2))} \left(1 + \frac{m_T - m_0}{mC}\right)^{-n}$$

 Феноменологическое распределение Цаллиса: (J.Phys.G:Nucl.Part.Phys. 39, 025006 (2012))

$$\frac{\mathrm{d}^2 N}{p_T \,\mathrm{d}p_T \,\mathrm{d}y} = \frac{gV}{(2\pi)^2} m_T \cosh y \left(1 + (q-1)\frac{m_T \cosh y - \mu}{T}\right)^{\frac{-q}{q-1}}$$

< ∃⇒

Энтропия Цаллиса:

$$S = \sum_{i} \frac{p_i^q - p_i}{1 - q}, \ \sum_{i} p_i = 1,$$

где p_i - вероятность i-го микроскопического состояния системы, $q \in [0,\infty]$.

В гиббсовском пределе $q \to 1$ выражение переходит в классическую энтропию Больцмана-Гиббса:

$$S = \sum_{i} p_i \ln p_i$$

э

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▶ В макроканоническом ансамбле термодинамический потенциал Ω имеет вид:

$$\Omega = \langle H
angle - TS - \mu \langle N
angle,$$
где $\langle H
angle = rac{1}{ heta} \sum_i p_i^q E_i, \; \langle N
angle = rac{1}{ heta} \sum_i p_i^q N_i, \; heta = \sum_i p_i^q.$

Из условия термодинамического равновесия (принцип минимума энтропии) следуют нормировочные выражения для параметров $\Lambda = -\theta TS + \langle H \rangle - \mu \langle N \rangle$ и θ :

$$\sum_{i} \left(1 + (1-q) \frac{\Lambda - E_i + \mu N_i}{T\theta^2} \right)^{\frac{1}{1-q}} = 1,$$
$$\sum_{i} \left(1 + (1-q) \frac{\Lambda - E_i + \mu N_i}{T\theta^2} \right)^{\frac{q}{1-q}} = \theta$$

Рассмотрим релятивисткий идеальный газ в макроканоническом ансамбле. Тогда, переходя к интегральному представлению $x^{-y} = \frac{1}{\Gamma(y)} \int_0^\infty t^{y-1} e^{-tx} dt$, получим нормировочные выражения в виде:

$$1 = \sum_{n=0}^{n_0} \frac{\omega^n}{n! \,\Gamma\left(\frac{1}{q-1}\right)} \int_0^\infty t^{\frac{2-q}{q-1}-n} e^{-t+\beta'(\Lambda+\mu n)} (\mathbf{K}_2(\beta' m))^n \, \mathrm{d}t \,,$$

$$\theta = \sum_{n=0}^{n_0} \frac{\omega^n}{n! \,\Gamma\left(\frac{q}{q-1}\right)} \int_0^\infty t^{\frac{1}{q-1}-n} e^{-t+\beta'(\Lambda+\mu n)} (\mathbf{K}_2(\beta' m))^n \,\mathrm{d}t \,,$$

где
$$\omega = rac{gV}{2\pi^2} rac{m^2 T heta^2}{q-1}, \; eta' = rac{-t(1-q)}{T heta^2}, \; n_0$$
 – количество учитываемых членов

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

▶ Выражение для спектра по поперечному импульсу в диапазоне по быстроте y ∈ [y_{min}, y_{max}] имеет вид:

$$\frac{\mathrm{d}^2 N}{p_T \,\mathrm{d} p_T \,\mathrm{d} y} \bigg|_{y_{min}}^{y_{max}} = \frac{gV}{(2\pi)^2} m_T \int_{y_{min}}^{y_{max}} \mathrm{d} y \cosh y \times$$

$$\times \frac{1}{\theta} \sum_{n=0}^{n_0} \frac{\omega^n}{n! \,\Gamma\left(\frac{q}{q-1}\right)} \int_0^\infty t^{\frac{1}{q-1}-n} e^{-t+\beta' (\Lambda - m_T \cosh y + \mu(n+1))} (\mathcal{K}_2(\beta' m))^n \, \mathrm{d}t$$

• В этой работе: $n_0 = 1$, $\mu = 0$.

э

Приближение нулевого члена

При n₀ = 0 система нормировочных уравнений разрешима аналитически: Λ = 0, θ = 1. Тогда выражение для спектра в приближении нулевого члена имеет вид:

$$\frac{\mathrm{d}^2 N}{p_T \,\mathrm{d} p_T \,\mathrm{d} y} \bigg|_{y_{min}}^{y_{max}} = \frac{gV}{(2\pi)^2} \int_{y_{min}}^{y_{max}} \mathrm{d} y \, m_T \cosh y \left(1 - (1-q)\frac{m_T \cosh y - \mu}{T}\right)^{\frac{q}{1-q}}$$

• Это выражение совпадает с феноменологическим распределением Цаллиса.

э.

・ロット (日) (日) (日)

Введение

Используемая модель

${f 3}$ Фит для лёгких мезонов (K^{\pm},π^{\pm})

- $\sqrt{S_{NN}} = 14.5$ ГэВ
- Энергетическая зависимость

4 Выводы

 $\sqrt{S_{NN}} = 14.5$ ГэВ

Недорезов Егор (ОИЯИ)

Научная сессия секции ядерной физики ОФН РАН

 $\sqrt{S_{NN}} = 14.5$ ГэВ

Центр.	<i>Т</i> , МэВ	q	χ^2/NDF
0-5%:	206.6 ± 1.6	1.039 ± 0.004	54.6/88 (0.62)
5-10%:	204.9 ± 1.2	1.040 ± 0.003	30.9/88 (0.35)
10-20%:	201.5 ± 1.0	1.038 ± 0.002	53.7/88 (0.61)
20-30%:	197.1 ± 1.0	1.040 ± 0.003	38.4/88 (0.44)
30-40%:	187.7 ± 0.9	1.032 ± 0.003	58.9/88 (0.67)
40-50%:	178.6 ± 1.0	1.033 ± 0.003	65.5/84 (0.78)
50-60%:	170.9 ± 1.1	1.028 ± 0.003	90.5/82 (1.10)
60-70%:	160.8 ± 1.8	1.012 ± 0.006	124.4/79 (1.57)
70-80%:	152.1 ± 1.1	1.014 ± 0.003	85.2/76 (1.12)

 $\sqrt{S_{NN}} = 14.5$ ГэВ

Центр.	R_{π^+} , фм	R_{π^-} , фм	R_{K^+} , фм	R_{K^-} , фм
0-5%	18.4 ± 0.9	18.2 ± 0.9	16.3 ± 0.8	12.4 ± 0.5
5-10%	17.3 ± 0.7	17.3 ± 0.7	15.8 ± 0.6	11.6 ± 0.4
10-20%	15.8 ± 0.4	15.6 ± 0.4	13.8 ± 0.3	10.7 ± 0.2
20-30%	14.2 ± 0.6	14.3 ± 0.6	12.3 ± 0.5	9.2 ± 0.3
30-40%	11.9 ± 0.4	11.9 ± 0.4	10.1 ± 0.3	7.7 ± 0.2
40-50%	10.7 ± 0.4	10.8 ± 0.4	8.9 ± 0.3	6.9 ± 0.2
50-60%	8.8 ± 0.3	8.9 ± 0.3	6.7 ± 0.2	5.4 ± 0.1
60-70%	7.2 ± 0.5	7.4 ± 0.5	5.5 ± 0.3	4.5 ± 0.2
70-80%	6.2 ± 0.2	6.2 ± 0.2	4.5 ± 0.1	3.7 ± 0.1

$\sqrt{S_{NN}} = 14.5$ ГэВ

Сравнение с приближением нулевого члена

Сравнение с другими энергиями

э

Энергетическая зависимость

Цаллис-3

Приближение нулевого члена

イロト イヨト イヨト イヨト

Недорезов Егор (ОИЯИ)

æ

Энергетическая зависимость

Цаллис-3

Приближение нулевого члена

・ロト ・四ト ・ヨト ・ヨト

æ

Энергетическая зависимость

Цаллис-3

Приближение нулевого члена

イロト イヨト イヨト イヨト

æ

1 Введение

- Используемая модель
- ${f 3}$ Фит для лёгких мезонов (K^{\pm},π^{\pm})

4 Выводы

э.

イロト イヨト イヨト イヨト

Выводы

 С помощью нового подхода, статистики Цаллис-3, были измерены термодинамические параметры среды, образующейся в ультрарелятивистких столкновениях тяжелых ионов.

- Установлено, что температура *T* монотонно увеличивается с ростом центральности, что говорит о том, что в центральных столкновениях материя более горячая, чем в периферических.
- Было измерено отклонение системы от классического равновесия.
- Радиус системы *R* увеличивается с ростом центральности, что свидетельствует о том, что в центральных столкновениях размер системы больше, чем в периферических.
- Было показано, что значения термодинамических параметров слабо зависят от энергии столкновения.
- Широко применяемая феноменологическая статистика Цаллиса является частным случаем статистики Цаллис-3 в приближении нулевого члена.
- Показано, что учет дополнительных членов в разложении сильно меняет значения параметров: температура T увеличивается, в то время как параметр q уменьшается.

Дальнейшая работа

- Учесть вклад распадов резонансов в спектры частиц по поперечному импульсу.
- Включить в фит другие типы частиц (протоны и странные барионы).
- Расширить диапазон по энергии.
- Учесть химический потенциал, с помощью него восстановить множественность частиц на основе экспериментальных данных и Монте-Карло симуляции.

э.

・ロット (日) (日) (日)

Спасибо за внимание!

Недорезов Егор (ОИЯИ)

Научная сессия секции ядерной физики ОФН РАН