Синтез-генератор нейтронов и активация полупроводниковых материалов

ОФН РАН 2024

Раденко В.В., Долгополов М.В., Чипура А.С.,

с Раденко А.В., Свирков В.Б., Сомов А.И.

- Задел, опыт. Электронно-управляемый плазменный электрический генератор
- Схема плазменного нейтронного генератора на плазменной мишени
- Перспективы. Активация при инжекции нейтронов
- Перспективы. Эксперименты на установке с плазменным электрогенератором

Введение

[1] В.Л. Аксенов. Импульсные реакторы для нейтронных исследований. Физика элементарных частиц и атомного ядра. 1995, том 26, вып. 6, с. 1449.

[2] В.Л. Аксенов, А.М. Балагуров. Времяпролетная нейтронная дифрактометрия. УФН, т.166, № 9, с. 955 (1996)

[3] С.В. Артемов, А.Г. Бажажин, О.Ш. Жураев, А.А. Караходжаев. Ядерно-физические методики анализа на базе нейтронного генератора НГ-150 в Лаборатории Ядерных Реакций Института Ядерной Физики Академии Наук Республики Узбекистан (г. Ташкент)

[4] A. Moeslang, U. Fischer, V. Heinzel and et al., Recent Advances at the International Fusion Materials Irradiation Facility

[5] The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source Spallation Neutron Source

[6] M. Giovannozzi, R. Cappi, G. Metral. The Proton Beams for the Time-of-Flight at the CERN-PS. Proc. of EPAC 2000

[7] J. Geuther, Y. Danon, F. Saglime. Nuclear Reactions Induced by a Pyroelectric Accelerator. Phys. Rev. Lett. 96, 054803 (2006)
[8] Раденко А.В., Раденко В.В., Долгополов М.В. Modelling of magnetodynamic plasma flows // III International Scientific Conference Material Science "Nonequilibrium Phase Transformations". — 2017. — Вып. 1(1). — С. 107-108
[9] Chipura A.S., Dolgopolov M.V., Radenko V.V., etc. Electronically Controlled Plasma Power Devices for Sustainable and Environmentally Friendly Electric Energy Technologies // Advances in Engineering Research 2022. – Issue 210. – P. 197-205
[10] Khripunov V.I., Kurbatov D.K., Subbotin M.L. Source terms and carbon-14 production rates in power fusion reactors. Questions of atomic science and technology. Series. Thermonuclear Fusion. 2007. no. 2. p. 10-17.

В данной области работают ведущие научные группы:

- > Объединенный институт ядерных исследований, г. Дубна;
- ▶ ВНИИА им. Н.Л. Духова, г. Москва;
- ➤ The New Sorgentina Fusion Source (NSFS), г. Рим;
- > Учебно-демонстрационный токамак МИФИ, г. Москва;
- ▶ НИЦ <<Курчатовский Институт>>, г. Москва;
- ▶ ПИЯФ им. Б.П. Константинова, г. Гатчина;
- ▶ ИЯФ, г. Ташкент;
- ➢ MIT, г. Кеймбридж.

Данные по некоторым направлениям исследований известных установок ловушек типа FRC с обращенной магнитной конфигурацией

Название установки	Местонахождение	Основные направления исследований
Boulder/ Colorado FRC	Университет Колорадо. Болдер	Исследование плазменной турбулентности, изучение явлений переноса частиц и энергии в удерживаемой плазме
CBFR Tri alpha	Калифорнийский университет. Ирвайн	Эксперимент на встречных пучках, безнейтронная реакция р+11В
FIREX	Университет Корнелл. Итака	Изучение проблем равновесия
FIX, NUCTE-3	Университет Осака, университет Нихон	Формирование FRC на основе Ө-пинча, источник нейтронов
FRX-L, FRCHX Shiva-FRC	LANL, Лос-Аламос AFRL. Киртленд	Синтез замагниченной мишени (MTF), высокие плотность и температура
КТ, ГОР. ТОР-Лайнер	ТРИНИТИ, Троицк	Исследование нагрева, сжатия и перевода компактного тора
OMAK	ФИАН им. II. Н. Лебедева РАН. Москва	Формирование конфигурации, обращение магнитного поля
Princeton FRC, MRX, SPIRIT	PPPL. Принстон	Исследование процессов перезамыкания магнитных силовых линий, устойчивости
ROTAMAK	Университет Флиндерс, Австралия	Поддержание тока вращающимся магнитным полем (RMF), изучение сферических конфигураций
SSX	Свартмор. Пенсильвания	Формирование FRC слиянием сферомаков
TCSU, STX, TRAP,	Вашингтонский университет, Сиэтл, Рэдмондская	Исследование вращающегося магнитного поля, ускорения FRC для подпитки токамаков, получение высокой
PHDX, IPA	плазмофизическая лаборатория	
TS-3,4	Токийский университет	Слияние тороидальных конфигураций
ХОСОТ	Мичиганский университет	Применение в качестве двигательной установки
Экспериментальная установка УПЭГ- 2021г., [13,14]	Самара, СамГТУ	Подтверждение эффекта термоядерного синтеза легких элементов в циклической магнитной системе для дискретизированного потока ионов
Опытно-промышленная ЭУПЭГ-2021-2023гг., [14,15]	Самара, НПК «Новая Энергия»	Исследования, связанные с увеличением выходной мощности и работой в автономном режиме с инвертором и преобразователем КЭП
Teopeтически смоделированный проект для опытно-промышленной установки, данная статья Computational Nanotechnology Vol. 10. No. 2. 2023, Somov A.I., Radenko V.V. et al.	Самара, НПК «Новая Энергия»	Проводится моделирование для испытаний на установке ЭУПЭГ НПК "Новая Энергия" с целью подтверждения возможности инициализации синтеза в малогабаритных установках с квадрупольными магнитными системами со сферической кумуляцией ударных магнитных волн в бланкетной конфигурации дискретов плазмы

Установка NERD метода на базе НГ-150[1]

Нейтронный генератор НГ-150 (Лаборатории Ядерных Реакций Института Ядерной Физики Академии Наук Республики Узбекистан, г. Ташкент)

Нейтронный генератор НГ-150 предназначен для выполнения широкого диапазона научных исследований в области ядерной и радиационной физики, а также элементного анализа. Он оснащен следующим экспериментальными методиками:

- Уникальная методика NERD и соответствующая установка используются для "онлайн"-определения содержания и профилей концентрации изотопов водорода и гелия в приповерхностных слоях образцов различного типа.
- > Установка для активационного анализа на быстрых нейтронах, с НР Ge детектором и двухплечевым сцинтилляционным спектрометром, используется для активационного анализа легких, в том числе короткоживущих радионуклидов.
- ▶ ΔЕ-Е методика с Si-детекторами в вакуумной камере, используется для измерений сечения реакций, вызванных быстрыми нейтронами.

Нейтронный генератор НГ-150

Часть 1. Предлагаемый вариант нейтронного генератора

- 1) Газовый накопитель дейтерия и трития
- 2) Источник ионов дейтерия
-) Источник ионов трития
- Ускорительная камера ионов дейтерия
- Ускорительная камера ионов трития
- Накопитель магнитооптический ионов сдвоенный
-) Нейтрализатор источник потока плазмы дейтерия и трития
-) Камера синтеза дейтерия и трития в плазменных потоках
- 9) Нейтронный излучатель

Плазмодинамическая магнитооптическая камера используется для формирования сжатого потока плазмы. В камеру вводятся последовательно потоки тритиевой и дейтериевой плазмы. Далее располагается магнитооптическая камера синтеза для формирования запертой в магнитной ловушке тритиевой плазмы с формированием мишени и последующей бомбардировкой дейтериевой плазмой. Для вывода отработанной мишени и гелия установлен магнитооптический управляемый сепаратор для вывода отработанной мишени гелия. Вывод пучка нейтронов на мишень осуществляется через нейтронный излучатель как в импульсном, так и в непрерывном режиме. Значение интенсивности формируемого пучка может изменяться от 10¹⁰ до 10¹⁶ нейтронов в секунду и выше.

<u>Патент RU 2 757 666 C1</u>, <u>Patent WO 2022/186717 A1</u> (Устройство генератора)

Часть 2 – задел. Схема установки

Comp. Nanotechnology 2023 (Синтез)

1 – картридж гидрида лития;

- 2 электронная пушка;
- 3 нагревательная камера;
- 4 ионизатор, тактная камера синтеза;
- 5 магнитооптическая секция аккумулятора, разгонная секция;
- 6 магнитооптические квадрупольные линзы;
- 7 вакуумное сечение;

8 – триод высокочастотного дрейфа – ионно-эмиссионный квантовый преобразователь энергии (КЭП, QEC).

Движение плазмы от первой до второй квадрупольной линзы происходит дискретными потоками

Поскольку имеется множество дискретных потоков и изменение параметров будет прерывным, мы проиндексируем токи ј и напряженности поля Е.

Применим теперь введенный выше метод дискретизации, задавая систему уравнений

для каждого потока:

$$M \frac{d\overline{v}_{i}}{dt} = -\nabla p_{i} + en\left(\overline{E} + \frac{1}{c}[\overline{v}_{i}, \overline{H}]\right) - \alpha\left(\overline{v}_{i} - \overline{v}_{e}\right)$$
$$m \frac{d\overline{v}_{e}}{dt} = -\nabla p_{e} - en\left(\overline{E} + \frac{1}{c}[\overline{v}_{e}, \overline{H}]\right) + \alpha(\overline{v}_{i} - \overline{v}_{e})$$
$$\frac{\partial n}{\partial t} + div \ n\overline{v}_{i} = 0$$
$$rot \ \overline{H} = \frac{4\pi e}{c} \overline{j}$$

Распределение токов в камере синтеза

Изменяя параметры магнитной линзы, можно менять параметры токов внутри камеры синтеза, которые как раз и влияют на распределение частиц в пространстве, что влечет более структурированную мишень для более точной дальнейшей бомбардировки её другими потоками.

Формула распределения плотности тока имеет вид:

$$(j_1, j_2) = \int j_1^*(r') j_2(r') d^3r'$$

Распределение плотности токов внутри камеры синтеза, где * – знак комплексного сопряжения, j_1 и j_2 – плотности распределений электрических или магнитных токов в объеме V

Распределение токов внутри камеры синтеза в нашем случае:

$$j(\Delta R) = j_0 \cdot \left(1 + \frac{R}{\Delta R}\right)$$
, где **R** - радиус ширины камеры, ΔR - радиальное смещение $j_0 = 20$ мА - начальное значение сила тока.

Метод получения управляемых дискретных потоков заряженных частиц

Совокупность методов задания законов изменения параметров заряженных частиц: энергии E, тока частиц I, концентрации n, периода следования Tsl определяет получение электронно-управляемых потоков заряженных частиц.

В основе метода лежит формирования линейного потока Pi из источника ионов со средним значением ионного тока I₀.

Разбиение линейного потока Pi с начальным током I_0 на потоки I_{01} , I_{02} , ..., I_{0n} , с периодом следования $(T_{01}...T_{0n})$ – называется токовой дискретизацией, т.е. имеет место $(I_{01}, T_{01}) (I_{02}, T_{02}) ... (I_{0n}, T_{0n})$.

D_n - токовый дискрет.

Зададим для движения дискрета D_1 функцию $F_1(x,y,z,t)$, описывающую его движение во времени t таким образом, что имеет место функциональной дискретизацией $[F_1(x,y,z,t) \dots F_n(x,y,z,t)]$. $Dn_F - функциональный дискрет. Совокупность данных методов называется методикой уплотнения потока заряженных частиц и получения первичного электронно-управляемого потока – получения дискретных потоков Dn из линейного потока Pi.$

Ввод ионов и электронов в первый ускоритель

$$(I_{01}, T_{01})(I_{02}, T_{02}), \ldots, (I_{0n}, T_{0n})$$

Разбиение потоков (I_{01}, T_{01}), ..., (I_{0n}, T_{0n}) с начальной энергией E_0

$$(I_{01}, T_{01})(E_{01}, \ldots, E_{0k}), \ldots, (I_{0n}, T_{0n})(E_{01}, \ldots, E_{0k})$$

Задание временной дискретизации

$$\left[(I_{01}, T_{01})(E_{01}, \ldots, E_{0k})(T_{01}, \ldots, T_{0k}), \ldots \\ \ldots, (I_{0n}, T_{0n})(E_{01}, \ldots, E_{0k})(T_{01}, \ldots, T_{0k}) \right]$$

Часть 3. Основные узлы и энергетические параметры синтез

C种O	ератора тип
1.	Газовый накопитель дейтериевый
2.	Газовый накопитель тритиевый
3.	Источник ионов дейтерия
4.	Источник ионов трития
5.	Секция МО накопителя дейтерия
6.	Секция МО накопителя дейтерия
7.	Ускорительная секция дейтерия
8.	Ускорительная секция трития
9.	Секция камеры ионного нейтрализатора дейтерия
10.	Секция камеры ионного нейтрализатора трития
11.	Секция инжектора тритиевой и дейтериевой плазмь
12.	Секция МО плазменной ловушки
13.	Система вывода нейтронного потока
14.	Система управления синтез генератором

N⁰	Реакция	Энерговыделение МэВ	σ _{max.} "барн (в области энергий меньше или равно 1 МэВ)	Энергия налетающей частицы соответствую щая σ _{max.} , МэВ
1.	$d+t \rightarrow ^{4}He +n$	17.6	5.0	0.13
2.	$t+d \rightarrow ^{4}He +n$	17.6	5.0	0.195

Конструкционные элементы нейтронного генератора

- Источник дейтерия с газообразным дейтерием с электромагнитным клапаном впуска нормированных порций дейтерия, ионизатора дейтерия на ионную и электронную компоненты и ускорительной секции электронов и дейтронов,
- Источник трития с газообразным тритием с электромагнитным клапаном впуска нормированных порций трития, ионизатора трития на ионную и электронную компоненты и ускорительной секции электронов и атомов трития,
- > Блок нейтрализатора ионов дейтерия путем смешивания ускоренных ионов и электронов,
- > Блок нейтрализатора ионов трития путем смешивания ускоренных ионов и электронов,
- > Накопитель-формирователь дейтериевой плазмы,
- > Накопитель-формирователь тритиевой плазмы,
- > Плазмодинамическая магнитооптическая камера,
- > Магнитооптическая камера синтеза,
- > Магнитооптический сепаратор, управляемый для вывода отработанной мишени и гелия,
- > Нейтронный излучатель,
- > Блок питания и управления нейтронным генератором,
- ▶ Кожух и система защиты.

Малогабаритность и возможные области применения генератора

Малогабаритность генератора позволяет использовать его как стационарный или мобильный источник нейтронов для различного применения. Также возможно создание нейтронных генераторов узкой направленности нейтронного пучка и его экранированности плазменным потоком.

Большой интерес данный генератор может представлять для производства различных радиоизотопов в промышленных масштабах и стоимости радиоизотопов на несколько порядков ниже чем на атомных реакторах. Радионуклиды медицинского и общепромышленного назначения, например:

Углерод-14	Cepa-35	Железо-59
Кальций-45	Хром-51	Цинк-65
Кобальт-6о	Скандий-46	Селен-75

Зависимость полного сечения реакции, от энергии дейтронов Еd, МэВ

10

Часть 4. Эффективные сечения и ожидаемые скорости реакций образования C-14

[10] Khripunov V.I., Kurbatov D.K., Subbotin M.L. Source terms and carbon-14 production rates in power fusion reactors. Questions of atomic science and technology. Series. Thermonuclear Fusion. 2007. no. 2. p. 10-17.

Также к образованию радиационных дефектов и к возникновению радионуклидов приводит нейтронное облучение [10]. Таким образом создается бета-спектр излучения электронов внутри полупроводникового материала. Основные реакции образования, например, радионуклида С-14обладают довольно значительными сечениями взаимодействия с тепловыми нейтронами – 1,8, 0,22 и 0,0013 барн [10]. Для более глубокого исследования процессов образования радиоуглерода-14 (С-14) с азота-13 (N-13) легированных кремниевых материалах требуется проанализировать гамма- и бета-спектры образца с повышенным содержанием N-13 и решить определенные теоретические и практические задачи, приведенные далее. Провести изучение других образцов с предполагаемым наличием нанесенного 14С для его обнаружения через выделение участков спектров с энергией, соответствующей бета-излучению C-14 (максимальная E_в = 155 кэВ). Исследовать временное развитие активности C-14 в образцах и измерить период полураспада для уточнения кинетики образования С-14. Провести сравнительный анализ скорости образования С-14 в кремнии с различным содержанием N-13 и N-14 для оценки реакции (n, γ)-активации, уточнения в эксперименте флюенса, времени, концентрации потока нейтронов. Данное исследование позволит подтвердить или опровергнуть возможность образования С-14 в кремниевых материалах при нейтронной активации азота, которым в большой степени легированы пластинки кремния, уточнив понимание соответствующих ядерных процессов [10]

[10] *Khripunov V.I., Kurbatov D.K., Subbotin M.L.* Source terms and carbon-14 production rates in power fusion reactors. *Questions of atomic science and technology. Series. Thermonuclear Fusion.* 2007. no. 2. p. 10-17.

Гамма-спектр облученного нейтронами образца 6H1

Бета спектр облученного образца 6Н1

Гамма-спектр облученного нейтронами образца 15R-5

Бета спектр облученного образца 15R-1

Характеристики гамма-излучений радионуклидов, обнаруженных в образце 15R-5

175Hf			181Hf			182Ta		
T1/2, сутки	Еү, кэв	Выход, %	T1/2, сутки	Еү, кэв	Выход, %	T1/2, сутки	Еү, кэв	Выход, %
70	432,8	1,5	42,4	615,5	0,25	115,0	1231,0	11,5
	343,4	88		482,0	86		1221,4	27,3
	89,4	2,3		345,9	14		1189,0	16,3
				136,9	1,8		1121,3	34,5
				136,3	6,1		222,1	7,82
				133,0	43		152,4	7,24
							100,1	14
							67,7	41
КХ	55,3	70		58,8	35		67,7	33

Характеристики бета-излучения, радионуклидов, обнаруженных в образце 15R-5

175Hf		181Hf		182Ta				
E _β ,	Εβ,	Выход,	Ε _β ,	Εβ,	Выход,	Ε _β ,	Еβ, кэв	Выход,
КЭВ	КЭВ	%	КЭВ	КЭВ	%	КЭВ	сред.	%
	сред.			сред.				
-	-	-	403	117	7	238	73	28,0
			406	119	93	323	91	1,4
						437	127	18,7
						480	142	2,6
						522	155	43,7
						590	181	4,6

Заключение. Предварительный задел:

- > Рассмотрена схема плазменного нейтронного генератора на плазменной мишени,
- Рассмотрено радиационно-индуцированное дефектообразование при инжекции нейтронов и образовании гамма-излучения в результате взаимодействия с полупроводниковыми пластинами из карбида кремния,
- Проведены предварительные эксперименты на установке с плазменным электрогенератором для облучения полупроводниковых гетероструктур с целью создания радиационно-индуцированных дефектов.

Преимущества и недостатки:

Преимущества портативных Нейтронных Генераторов (НГ) с «отпаянной» нейтронной трубкой это то, что они практически не обладают радиационной опасностью в выключенном состоянии при хранении;

В сравнении с генерацией нейтронных импульсов с использованием малогабаритных вакуумных ускорительных трубок, использующие ускорение заряженных частиц, распространение получили реакции ускоренных до 1 МэВ дейтронов с мишенью из тяжёлой воды для получения нейтронов с большей энергией от 4 до 14,9 МэВ;

Режим регулируемого излучения нейтронов.

К *недостаткам* НГ относятся высокая стоимость и ограниченный ресурс работы до 300 часов, кроме того это большие габариты и большая масса а так же значительное энергопотребление от 200 Вт. НГ имеет ограниченное время непрерывной работы так как требуется периодическое отключение для охлаждения мишени и нестабильность выхода нейтронов от импульса к импульс.

Заключение

- Задел, опыт. Электронно-управляемый плазменный электрический генератор. Подтвержден эффект. Работы с экспериментальной промышленной установкой.
- Предложение схемы плазменного нейтронного генератора на плазменной мишени
- Активация полупроводниковых пластин при инжекции нейтронов
- Предложения по работе со спектрометрами.

Спасибо за внимание!