

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" Научно-образовательный центр НЕВОД

Детектор на многопроволочных дрейфовых камерах для исследования релятивистских мюонов в широких атмосферных ливнях

Докладчик: Трошин И.Ю., аспирант E-mail: IYTroshin@mephi.ru

Секция ядерной физики

г. Дубна, ОИЯИ

2024 г.

Многоцелевой Детектор Мюонов (МДМ)

Визуализация детектора: дрейфовые камеры (бирюзовые), стальной поглотитель (зелёный) и рамная конструкция (чёрная).

Цели проекта:

- Исследование космических лучей сверхвысокой энергии методом спектров локальной плотности мюонов (СЛПМ) для околовертикальных направлений.
- Определение плотности мюонов на разных расстояниях от оси в режиме совместной работы с другими установками исследования ШАЛ.
- Часть экспериментального комплекса, направленного на изучение первичных гамма-квантов высоких энергий.
- Прецизионное исследование зонных характеристик детекторов частиц.

Принцип работы дрейфовой камеры

Поперечное сечение дрейфовой камеры, подключение положительной и отрицательной полярности и принцип работы дрейфовой камеры

- •- полеформирующие проволоки,
- ●- сигнальные,
- катодные,
- ●- охранные.

Характеристики дрейфовых камер:

- •Состав газовой смеси: 94% Ar + 6% CO₂
- •Координатная точность ≈ 1 мм
- •Угловая точность ≈ 1.5°

•Разделение двух треков ≈ 3 мм

- •Время дрейфа электронов до 6 мкс
- •Скорость дрейфа ≈ 0.045 мм/нс

Расположение детектора

Детекторы Экспериментального Комплекса НЕВОД:

- **ТРЕК:** исследование окологоризонтальной мюонной компоненты ШАЛ
- МДМ: исследование околовертикальной мюонной компоненты ШАЛ
- ЧВД НЕВОД: черенковский водный детектор объемом 2000 м³
- НЕВОД-ШАЛ: исследование электроннофотонной компоненты ШАЛ
- **УРАН:** исследование нейтронной компоненты ШАЛ

Моделирование ШАЛ

Зависимость плотность частиц в ШАЛ от энергии частиц на расстоянии 100 м от оси ШАЛ от первичного протона с энергией 10-100 ПэВ 5

Зависимость плотность частиц в ШАЛ от энергии частиц на расстоянии 100 м от оси ШАЛ от первичного протона с энергией 1-10 ТэВ

Модель детектора в программном пакете Geant4

Модель детектора МДМ в Geant4 с характерными размерами

и прохождение мюона с энергией в 1 ТэВ

Энергетический пределы и генерация вторичных частиц от поглотителя 10² 10²

Частица	Пороговая энергия, МэВ	Верхний предел регистрации, МэВ
Мюон	340 <u>+</u> 30 (теория 360)	$(6.9 \pm 0.5) \cdot 10^7$
Электрон	790 <u>+</u> 20	$(2.9 \pm 0.3) \cdot 10^5$
Гамма-кванта	660 ± 20	$(2.0 \pm 0.2) \cdot 10^5$
Протон	240 ± 20	$(3.5 \pm 0.9) \cdot 10^5$

Модель детектора МДМ с двумя слоями поглотителя при прохождение мюона с энергией в 1 ТэВ

Зависимость числа заряженных частиц (dn) прошедших через дрейфовые камеры нормированных на начальное число частиц (dN) от энергии начальной частицы

10⁸

 10^{9}

Реконструкция и анализ

Реконструкция события, красный трек – мюон, фиолетовый трек – не мюон.

Критерии отбора:

- Частица прошла через все плоскости
- Разница по зенитному углу не более 5°
- Разница координате не более 5 мм
- Между треками больше 3 мм
- В событии не более 200 частиц

Реконструкция треков, две плоскости

Частица	Пороговая энергия, МэВ	Верхний предел регистрации, МэВ
Мюон	340 ± 30 (теория 360)	$(6.9 \pm 0.5) \cdot 10^7$
Электрон	790 ± 20	$(2.9 \pm 0.3) \cdot 10^5$
Фотон	660 ± 20	$(2.0 \pm 0.2) \cdot 10^5$
Протон	240 ± 20	$(3.5 \pm 0.9) \cdot 10^5$

Модель детектора МДМ с двумя слоями поглотителя при прохождение мюона с энергией в 5 ТэВ

Зависимость числа реконструированных частиц (n) в дрейфовых камерах нормированных на начальное число частиц (N) от энергии начальной частицы

Реконструкция треков, четыре плоскости

Частица	Пороговая энергия, МэВ	Верхний предел регистрации, МэВ	
Мюон	590 ± 60 (расчетное 602)	$(6.9 \pm 0.5) \cdot 10^7$	
Электрон	$(1.1 \pm 0.1) \cdot 10^3$	$(2.9 \pm 0.3) \cdot 10^5$	
Гамма-кванта	$(0.9 \pm 0.1) \cdot 10^3$	$(2.0 \pm 0.2) \cdot 10^5$	
Протон	590 ± 60	$(3.5 \pm 0.9) \cdot 10^5$	
Поглотитель Дрейфовые камеры			
Поглотитель			
Дрейфовые камеры Поглотитель			
Дрейфовы Поглотитель	е камеры		
Прайфарии			

Зависимость числа реконструированных частиц (n) в дрейфовых камерах нормированных на начальное число частиц (N) от энергии начальной частицы 10

Модель детектора МДМ с четырьмя слоями поглотителя при прохождение мюона с энергией в 5 ТэВ

Анализ результатов

энергии 10-100 ПэВ

Частица	Пороговая энергия, МэВ	Верхний предел регистрации, МэВ
Мюон	$(0.59 \pm 0.06) \cdot 10^3$	$(6.9 \pm 0.5) \cdot 10^7$
Электрон	$(1.1 \pm 0.1) \cdot 10^3$	$(2.9 \pm 0.3) \cdot 10^5$
Гамма-кванта	$(0.9 \pm 0.1) \cdot 10^3$	$(2.0 \pm 0.2) \cdot 10^5$
Протон	$(0.59 \pm 0.06) \cdot 10^3$	$(3.5 \pm 0.9) \cdot 10^5$

Заключение

- Многоцелевой Детектор Мюонов (МДМ) впервые позволит исследовать околовертикальные ШАЛ с использованием метода спектров локальной плотности мюонов (СЛПМ).
- Конструкция детектора позволит изучать как мюонную компоненту ШАЛ, так и одиночные мюоны с энергией от 600 МэВ до 20 ТэВ.
- Результаты моделирования регистрации и реконструкции одиночных мюонов в МДМ показали, что применение стального поглотителя позволит отсеивать вторичные частицы и уменьшить поток электронов, гамма-квантов и других частиц ШАЛ белее чем в 100 раз.

Спасибо за внимание

Докладчик : Трошин Иван Юрьевич Почта: <u>IYTroshin@mephi.ru</u>

Регистрация заряженных частиц в дрейфовых камерах

Реконструкция заряженных частиц в дрейфовых камерах

Модель детектора в программном пакете Geant4

Модель детектора МДМ в Geant4 с характерными размерами и прохождение мюона с энергией в 1 ТэВ

Принцип работы бестриггерного режима в ДК

Принцип работы бестриггерного режима в ДК

Расчёт поглощения

Fe

 $E^{\mu}_{
m \kappa p \mu au} = 347 \ \Gamma$ эВ $E^{e}_{
m \kappa p \mu au} = 21,68 \ M$ эВ

$$E_{\mu o \mu} = 1.451 \ \Gamma$$
эВ · $\frac{\mathrm{CM}^2}{\mathrm{\Gamma}}$
 $ho_{Fe} = 7.9 \cdot \frac{\mathrm{\Gamma}}{\mathrm{CM}^3}$

 $E_{\text{ион}} \cdot \rho_{Fe} \cdot (3 \cdot 105 \text{ мм}) = 0.36 \text{ ГэВ}$ $E_{\text{ион}} \cdot \rho_{Fe} \cdot (5 \cdot 105 \text{ мм}) = 0.60 \text{ ГэВ}$

Стальные пластины из ИФВЭ

Два типа пластин:

- 4500 на 750 на 105 мм³
- 3000 на 750 на 105 мм³

6000 мм

Дрейфовая камера ИФВЭ

Поперечное сечение дрейфовой камеры

Продольное сечение дрейфовой

камеры

Моделированные ШАЛ

