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We don’t know all physics up to infinitely high energies
(or down to infinitely small distances)

All our theories are effective low-energy (or large-distance)
theories (except The Theory of Everything if such a thing
exists)

There is a high energy scale M where an effective theory
breaks down. Its Lagrangian describes light particles

(m; < M) and their interactions at p; < M (distances

> 1/M); physics at distances < 1/M produces local
interactions of these light fields.

The Lagrangian contains all possible operators (allowed by
symmetries). Coefficients of operators of dimension n + 4
contain 1/M™. If M is much larger than energies we are
interested in, we can retain only renormalizable terms
(dimension 4), and, maybe, a power correction or two.



EFT in classical mechanics

» Slow motion — characteristic time 1/w

» Fast motion — characteristic time 1/

Q> w



EFT in classical mechanics

» Slow motion — characteristic time 1/w

» Fast motion — characteristic time 1/
Q>w

Average over fast oscillations
Effective Lagrangian describes slow motion
Poincaré, Krylov, Bogoliubov, Kapitza, ...
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EFT in classical mechanics
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Kapitza pendulum
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Kapitza pendulum
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Here physicists have high-intensity sources and excellent
detectors of low-energy photons, but they have no electrons
and don’t know that such a particle exists.



Photonia

Here physicists have high-intensity sources and excellent
detectors of low-energy photons, but they have no electrons
and don’t know that such a particle exists.

We indignantly refuse to discuss the question “What the
experimantalists and their apparata are made of?” as
irrelevant.
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Photonia

Quantum PhotoDynamics (QPD)

1
L = —ZF#VF'MV + 0101 + 0202
O1 = (F,,F"™)* Oy = F,,F"*F,sF

6172 ~ 1/M4



Photonia

We work at the order 1/M*, there can be only 1 4-photon
vertex

No corrections to the photon propagator

No renormalization of the photon field

No corrections to the 4-photon vertex
No renormalization of the operators O 5 and the couplings
C1,2
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experimental results.
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Qedland

Physicists in the neighboring Qedland are more advanced:

in addition to photons, they know electrons and positrons,
and investigate their interactions at energies £/ ~ M. They
have constructed a nice theory, QED, which describes their
experimental results.

They don’t know muons, but this is another story.

They understand that QPD (constructed in Photonia) is
just a low-energy approximation to QED.
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Matching

c12 can be found by matching S-matrix elements
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Matching

M2 (d—4)(d - 6)
THimk2viV2 0 r
@ L E) 850
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Heisengerg-Euler Lagrangian
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L= —
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Wilson line

Physicists in Photonia have some classical (infinitely heavy)
charged particles and can manipulate them.

Sint = e/dw"AM(x)
I
Feynman path integral: exp(iS) contains

W= exp (ie [dnt (o))

The vacuum-to-vacuum transition amplitude is the vacuum
average of the Wilson lines
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Potential

Charges e and —e stay at some distance 7 during a large

time 7 the vacuum amplitude e~VM7
T
T>r \ M o iUT
0 r
Coulomb gauge
1
DOO(Q) = —?

g 1 g
DY = oY —
D= ( g’ )
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Wilson line
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Coulomb potential
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No corrections



Contact interaction

In the presence of sources

L. = c(0"Fy,) (0,F™)



Contact interaction

In the presence of sources

L. = c(0"Fy,) (0,F™)

H v cL2 (2
'\/V\q/vv.W\q/\A/\ = 22@(] (q I — q#qy)



Contact interaction

In the presence of sources

L. = c(0"Fy,) (0,F™)

H v cL2 (2
'\/V\q/vv.W\q/\A/\ = 22@(] (q I — q#qy)

U (7) = 2¢6(7)



Qedland
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Qedland

1 1
DOO - _ = U — 2D00
@ == V@=40"@
In macroscopic measurements ¢ — 0
e2 1 e2
U(q) = —— ==
D= 2100~ ¢

On-shell renormalization scheme
€0 = [228]1/2 €os Ayg = [233]1/2 Aos
DY(q) = Z¥DX(Q)  De(q) — —

ze =231 =1-1(0)



MS renormalization scheme
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QPD



Charge decoupling
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Charge decoupling

Macroscopically measured charge is the same in QED and

QPD

€os = €os
eo=[C0 ey Q=122
0 =[G Gl = 2 = 52
1 loop
k+q
P o =i (¢° g — quav) 11(g°)
k

4edMy* d—4 ¢
2y _ _ ~~0""0 e T
M) = =5 g 1) (1 0 Mz )



1 loop

Cal)] " = Za — 7711 — TI(0)] = finite

«
Zo=1=0o—+"
4me
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1 loop

Cal)] " = Za — 7711 — TI(0)] = finite
Zo=1= o+
Bo = !
‘ 3
A N a(p)
[Ca<,“)] =1+ § (m) e F(l + 8) — 1] Ire

4o 7
- 14 -—=L L =2log ———
+3 A OgM(,u)



Electron charge

RG equation

d log a(p)
d log

Initial condition
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Electron charge

RG equation

dlogalu) _ o504

Initial condition
a(M) =o' (M)
Contact interaction
B 2 a1
1547 M?
. 4 o? .
Ue(q) = ——  Ur) =



Full theory and effective low-energy theory

QED
= . 1 % 1 w2
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Full theory and effective low-energy theory

QED
= . 1 % 1 w2
L = Vo (iDo — Mo) Wo — 7 Fopu Fi™ — 5— (0uA)
4 2&0
QPD
1 0% / 0,0
L' == Fo B — (a AL)? Zc oP +

Bare decoupling

= [¢§] 2 Ay +
= [ o= [



MS renormalization scheme
QED
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MS renormalization scheme
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MS renormalization scheme
QED
Ao = Z)*(a(p)) A(p)
ap = Za(a(p))alp)  eo= Zr*(a(p))e(n)
Zilo) =1+ 2=+ (Z+2) (3>2+-~

4 g2 € 47
a(u) — /1725 62</1“) e e
A7 (47r)d/2
1 Pubv Pubv
D v p — ( v £ ) +
w W)= g \ %~ e ) T
ZZIDH,V(p) = D;w b; H’)



MS renormalization scheme

QED

Ao = Z3{*(a(u) Ap)
ap = Za(a(p)a(u)  eo = Z3*(a(p)) e(n)

2
Zl) =1+ 22+ (F+2) (5) +

M —2e 62</“L) ef'ye

QPD



MS renormalization scheme

Renormalized decoupling

Alp) = G2 (1) A (1)
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MS renormalization scheme

Renormalized decoupling

Ap) = P () A (1)
a(p) = <A1<u>a< ) elw) = G ()e (u)
)

i) = B Gl = g




MS renormalization scheme

Renormalized decoupling
Alp) = G4 () A ()
a(u) = Ci'(wa' (1) elp) = (5 1/2( )e' (1)
Cal) = 228D o () = Zelali)) o

Z,((n) 2
RG equations
OB () — e ()

d log Ga(p) _
d log



On-shell renormalization scheme
QED
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On-shell renormalization scheme
QED
Ao = [ZXS(GO)]UZ Aos

ag = Zzs(eo) Qs €y = [ng(eo)]l/Q €os
1
Atp—=0  DY(p") = DI(p*) =
p

1

Z3(eo) = T=Ti(0)



On-shell renormalization scheme
QED

Ao = [ZXS(GO)]UZ Aos

ag = Zzs(eo) Qs €y = [ng(eo)]l/Q €os
1
Atp—0  DY(p°) = DI (p°) = 2
Z3(e0) =
A1) = T7T(0)

QPD
Zlos — 1 Z;[os — 1



On-shell renormalization scheme
QED

Ao = [ZBXS(eO)]l/Z Aos

ap = Z,?ls(GO) Qos €0 = [ZZS(GO)FQ €os
1
Atp—0  DP@*) — DI(p?) = 2
ZOS( ) 1
€) = ————
AV T1(0)

QPD
Zlos — 1 Z;[os — 1

Photon field decoupling
At p* =0, DF(p) = D'*(p) = D (p)

AOS — A/OS

7@
A0 = Zlen

—1-11(0)



1 loop

Ca
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where My = Z,(a(p)) M (1)

Calp) = ZaCl = finite
4 «
Zala) = Z =1— =%
ala) = Zq 3 dme



1 loop

= [ =1+ 5B
— 14 32 7 (a(0)) 27 (0l (%) D1+ e)e

where My = Z,(a(p)) M (1)
Calp) = ZaC, = finite

4 «
_ =1 _ 4 _ = =
Zal) =2, =1 5 I
4ol
Cal) = Gt =1+ 220

3 4r



2 loops



ks

F(El—ng)F(n1+n3—g)F(n2+n3—g)F(nl—i-ng—i-ng—d)

: ' (2) D(n)T(n2)T'(n1 4 no + 2n3 — d)

A. Vladimirov (1980)



2 loops

- 4 eg My
= (6] =1-10) = 1+ 5 EEETE)
2 (d — 4)(5d? — 33d + 34) ( M > (€>> ?

"3 d(d—5) (4m)i72




2 loops

_ 4 2M725
G=[¢) =1-10) =1+ 5%%)

2 (d — 4)(5d? — 33d + 34) [e2My > 2
3 d(d—5) ( (4m)2? F(5>>




2 loops

2 —2¢e
4 egM,

= [Cgrl =1-11(0) = 1+§W (e)

2 (d — 4)(5d? — 33d + 34) [e2My > 2
3 d(d—5) ( (4m)2? F(5>>




2 loops

Ca = ZaC% = finite

4 ) a(p) 2
1
Ja=J7""= 2e
“ ! 3 4me (4%5



2 loops

g:@@:mm

347r5
-G o (24 2

( )(“i:)

Za=2"=1- (



2 loops

Ca = Z4CY = finite

Z :Z_lz]_
4 “ 347r5 (

7-‘- )
2 2

D2

G =G =1+ [H (

() (5)

Define M (M) = M, then L =0




2 loops

Alternatively use Mg

M(:u)_ H 2 o L«
—MOS _1_6(10gM_OS+§ E L= E

[\
~~

o B 7 a(Mes) a(Mes) ’
CA(MOS) - Ca (MOS) =1+ 56 47 15 ( 4m )



2 loops

Alternatively use Mg

M(:u) H 2 o o
M, 6(OgM "3 )= St

4 4

Ca(Mos) = (1 (M) = 1 +%2 oMos) 45 (—O‘<M°S))

For any = M(1+ O(a)), (o =1+ O(e)a + O(a?)



Qedland

Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:
» increase the energy of eTe™ colliders to produce pairs
of new particles

» performing high-precision experiments at low energies



Qedland

Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:

» increase the energy of eTe™ colliders to produce pairs
of new particles

» performing high-precision experiments at low energies

We were lucky: the scale of new physics in QED is

M > m,, loops of heavy particles also suppressed by a™.
e agrees with QED without non-renormalizable
corrections to a good precision. Physicists expected the
same for proton. No luck here.



Dimension 6
Massless electron. Dimension 5 operator
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Dimension 6
Massless electron. Dimension 5 operator
&Fuuo'uyw

violates the helicity conservation
Dimension 6 operators — contact interactions

On = (L) (WTny) Ty =t oyt
conserve helicity at odd n
(0, ) (0" Fy) = 90, F" yutp = Oy
equations of motion

@Z_@AFWV[AVM’YV]%U =0



Contact interactions

The ¢? term in the muon loop

_ __2al 5 _ (ap A
AL = cO C=—Tr - M2+O(a ) O = (0"Fy,) (0, F™)
EOMO:6201

2 M 3
cl(M):—EO‘( )+ O(a?)

15 M?



Matching

><:

2 27 r—2¢
o e2de3M;
2ic) = 2?5 (4m) 72 ['(e)

d—4q2:> 4 e 1
10 MZ 15 (4m)i2 A2







Decoupling
Full theory: QED with muons

L = i Potbo + o (Do — Mo) Wo —
Effective theory' low-energy QED

,lvb() ]powo (;;uz éMV 8 A/M Z COO/O

1 v 1 2
ZFOMVF5 "o (9, 45)

Decoupling: fields
= [¢9] 72 A+ — Z 9.0,
-1/2 /
Py = [Q% ¢o+mgcﬁi0£ﬁ'“

Decoupling: parameters

= [ ao=[5] " af



Electron field

7vZJOS = %S + O (%)
o 25 (&)
CTP - chzs(eo)
1 1
2 (o) = =50 (0) Zy"(eq) = =) 1
Colpt) = Zy(a(p), a(p)) 0 Zy(a(p), alp)) Z"(ep)

CZ(o/ (), () 28 (e0) Zy (o (1), ol (1))
» UV cancel in Z,/Z3°, Z,,/Z*

» IR cancel in Z°/Z;*

» Zp* =1: UV and IR cancel



Electron field

r(g))2+...

e%MO_28
(4m)dr2

(

2(d — 1)(d — 4)(d — 6)
d(d —2)(d—5)(d —7)

2

Yy (0)

o \2

H...)(

5

1— =

0
Y




Electron mass

S(p) = pEv(p?) + moSs(p®)

1 1
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Electron mass

S(p) = pEv(p?) + moSs(p®)

1 1
S0 = T PR

1 — Yy (p?)

Near the mass shell

1 1 e

1 — Xy (p?)



Electron mass

S(p) = pEv(p?) + moSs(p®)

1 1
S ot e R B R 7
PTIE )™
Near the mass shell
1 1 9] 1

1 — Xy (p?) o 1+ %s(7) T1- E'v(pZ)ﬁ 1+ 35(p?)

1—Ev(p2) 1 =3y (p?)
1+ ES(O)m 1+ 3 (0)
-3, 0 " 1-x,0) "

Linear in mg; mo = 0 in Xy 5(0)



Electron mass

mo = [ng]il my

0 _ 0_11—{—2 (O)_l—{—zs(())
G = 1] 1+EZ(O) ~ 1-%y(0)



Electron mass

moy = [ng]il myg
0 _ co)! 1+%5(0) 1+ X5(0)
G = 1S 1+35(0)  1—%y(0)

!/

Mos = Mg
mo = ZSfmos m6 = qu‘rcz)sm:)s
CO — Z:TC;S(GB)

" Zg(eo)

Neglect m2, /M2 in Z!°



Electron mass

mo = [ng]il my
0 _ ¢o]! 1+X5(0) 1+ 3¥5(0)
m = 16 1+X4(0)  1—Xy(0)

!/

Mos = Mg
mo = Zypmes Mg = Zy'm,
oz

m (eo)

Neglect m2, /M2 in Z!°

m(p) = G (wm'(n)  Gn(p) = —)(?n



Electron mass

2d—1)(d—6) [e2My* :
ES(O):_(d_Q)(d—5)(d—7) (<4W)d/2r(€>) 4+ ...



Electron mass

2(d — 1)(d — 6) e2 My *

>0 =~ a-s)@-7 ( (4m) 7
o 8(d —1)(d — 6) e2 My
Gm =17 d(d—2)(d —5)(d—T7) ( (47)d/2

5 89
= 22 T2 <
1+( 35+185+ )

o 2
47)*



Electron mass

2d—1)(d—6) [e2My* :
#50) =~ gy sy )
o Sd-DA=6)  (@M* NP
R ) [y ( (4m)7 m)) "

=1+ 2—5 +89€2+ <&>2+ )
= 35718 4re




Electron mass

2d—1)(d—6) [e2My* 2
S50 =~ g 5T @)+

o Sd-DA=6)  (@M* NP
== g T ()

:1+(2—ge+%52+---) <4&m>2+...
1 (-3 (2

L8 (a(M))2+_“

47



Electron mass

2d—1)(d—6) [e2My* :
ES(O):_(d—Q)(d—5)(d—7) ((4W)d/2r(€)) 4+ ...

01 8(d —1)(d —6) <e3M0—2€
m d(d—2)(d —5)(d—7) \ (4m)d/>
:1+(2—gs+%52+---) <4&m>2+...
Zin(a(M)) 5 a )2

Z (@) (2‘552) (i)
%(M)ﬂﬁ—i(“ff)) '

dlzglocg ,EM) +Ym (i) — 7 (/ (p)) = 0

@) o




Power counting

p~N T~ 1/A 0~ A



Power counting

p~N T~ 1/A 0~ A
Soft photon

d'p il Puby
SOT (A @A} 0> ~ [ S8 g, — (1 222

A~ A Dy~ A



Power counting

p~A T ~1/N 0~ A
Soft photon

<OT (A, 4,00} 0> ~

A~XN Dy~ A
Soft electron

d4p —ip-x 1 pupu
e’ P {g“"_ S

<O {020} 05 ~ [ Fhee L

¢ ~ )\3/2



Power counting

i
A M
p~N T~ 1/A 0~ A
Soft photon
d'p il Pup
T {A,(x)A, ~ e g (1= q)Pelr
OT (A @A 0> ~ [ S g, — (1 )
A~ A Dy~ A
Soft electron
- dp . 1
T ~ —ip-x
<O {ole)iO} 10> ~ [ e
¢ ~ )\3/2
Lagrangian: F,, F" ~ A\ iPy) ~ \*
Action: ~ 1

Corrections to the Lagrangian ~ A\, to the action ~ \?



We can add higher-dimensional contributions to the
Lagrangian, with further unknown coefficients. To any
finite order in 1/M, the number of such coefficients is finite,
and the theory has predictive power.
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For example, if we want to work at the order 1/M*, then
either a single 1/M* (dimension 8) vertex or two 1/M? ones
(dimension 6) can occur in a diagram. UV divergences
which appear in diagrams with two dimension 6 vertices are
compensated by dimension 8 counterterms. So, the theory
can be renormalized.



We can add higher-dimensional contributions to the
Lagrangian, with further unknown coefficients. To any
finite order in 1/M, the number of such coefficients is finite,
and the theory has predictive power.

For example, if we want to work at the order 1/M*, then
either a single 1/M* (dimension 8) vertex or two 1/M? ones
(dimension 6) can occur in a diagram. UV divergences
which appear in diagrams with two dimension 6 vertices are
compensated by dimension 8 counterterms. So, the theory
can be renormalized.

The usual arguments about non-renormalizability are based
on considering diagrams with arbitrarily many vertices of
nonrenormalizable interactions (operators of dimensions

> 4); this leads to infinitely many free parameters in the
theory.



QCD

» QED: effects of decoupling of muon loops are tiny;
pion pairs become important at about the same
energies as muon pairs

» QCD: decoupling of heavy flavours is fundamental and
omnipresent; everybody using QCD with n; < 6 uses
an effective field theory (even if he does not know that
he speaks prose)



QCD

» QED: effects of decoupling of muon loops are tiny;
pion pairs become important at about the same
energies as muon pairs

» QCD: decoupling of heavy flavours is fundamental and
omnipresent; everybody using QCD with n; < 6 uses
an effective field theory (even if he does not know that
he speaks prose)

Full theory QCD with n; massless flavours
and 1 flavour of mass M

Effective theory QCD with n; massless flavours



Dimension 6 operators
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Dimension 6 operators
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Quark operators
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q q
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Only operators with odd n conserve the light-quark helicity
Equation of motion: 092 = gOO



Dimension 6 operators

001 — gofach GSMVGSV)\
Oy, = (D'G5y, ) (D, GEY)

Quark operators

= <Z C7(]’Y(7z)qo) (Z QOV(n)CIo)
q q
Og = (Z qw(nﬁ“qe) (Z qﬂ’Y(mt“qo)
q q

Only operators with odd n conserve the light-quark helicity
Equation of motion: 092 = gOO

If light quarks are not exactly massless, there is also
chromomagnetic interaction

Og, = MoGogo Gt qo



Contact interaction of quarks



Contact interaction of quarks

cga(M) =

e (S + o)

Eliminating this term in favour of é5,0%

- 2 T
Cqr(M) = —1*5]\/7;2 (@3 (M) + O(a3(M)))



3-gluon interaction

goM 2e
(1)

4
— Z o/ ks
390

fala2(l3

['(e)

d—4
44 180 (Tlﬂllnﬂs +12T#1N2#3>+O<pz)]



3-gluon interaction

2¢e
a1a2a390M _Z_l M1 243
Tef" " i € | 390V
d—4 11 243 11 p2 3
i (Tt + 12T} )+ Op))

Ty [ay(M /
cq1 (M) = _90;\}2 < ZLT ) + O(af(ﬂ[)))



QCD decoupling

agmﬂ)(u) _ Ql(ﬂ)a!”)(u)

2
an =1- (Roo- ey (420) 4

RG equation

dlog Ca (1)
dlog p

— 280 (" () + 260 (™) () = 0



QCD
0.225

0.22 -

0.215 1

0.21 . .
Mg — 0.5GeV M Mg+ 0.5GeV




Light-quark masses

m (1) = ¢ (p)m™ ()

Cn(M) =1 - T_ZCFTF (as(

47



Method of regions

m
SN d=2-9e
U M>m
M

I_/d% 1
- /2 (k:2+M2)(k2+m2)



Exact solution

I 1 dk 1 1
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Exact solution

I 1 dk 1 1
T M2 —m2 | gd2 _k2+M2+k2+m2

// \\ // \\
/ \ 1 / \
_ _ | |
U MR [ i ! ]

\ /

M2

M—Qe —2e IOg—

[=-T(e) mn m?

MQ_mZ M2_m2

1 2 m2 m?
=8 e [HW+W+ }



Method of regions

I =1,+1I
hard &k~ M

soft k ~m



Hard region

k~M

dk 1
In= / 22 G AR (2 1)

T 1 B 1 1 m? . m*
M2 M) (K2 +m?) k24 MZR? K2 kA
M2 m2 mA
Ih:—WF<€) |:1+W+W+“.}

» IR divergence
» Taylor series in m

» Loop integrals with a single scale M = M~2



Soft region

k~m

d
I :/ d kTs 1
w277 (k2 + M?)(k% 4+ m?)

T 1 11 k? N K

5(k2+M2)(k;2—|—m2) o M2 k2 + m2 M?2 M4
m-—2 m2 mi

Is:Wr‘<€) |:1+W+W+“.}

» UV divergence

» Taylor series in 1/M

» Loop integrals with a single scale m = m~%



Result

I=1I+1I,=-T()

M2

M~—2% _ g2 m2 mA
Mz M

1 M? m?  mt
Ty Mraptaa

I+ — 4+ — 4



Proof

mI<ANKEKM
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dk 1
+ /m 2 2R+ m)



Proof
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dek 1
I= Ty
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Proof

mI<ANKEKM

dk 1
I= T,
gon T2 (R2 4+ M2) (k2 +m?)

d?k 1
+ a3 s N\ ( 12 2
ped 277 (K2 + M?) (k% + m?2)
=1, +1,— Al

A[—/ d’k T
T Joea®@2 TR+ M) (K2 4+ m?)

dk 1
+ d/2 Ts 2 2 2 2
pon T (k2 + M?) (k% + m?)



Proof

mI<ANKEKM

dk 1
I= T,
gon T2 (R2 4+ M2) (k2 +m?)

d?k 1
+ a3 s N\ ( 12 2
ped 277 (K2 + M?) (k% + m?2)
=1, +1,— Al

A[—/ ddkTT 1
T S T2 (B2 M) (K2 4 m?)

+/ ko !
pon T2 (K2 MP)(R2 4 m?)



Proof

1 1

T.T, =T,T,
(R ME (R m?) T (R ME)(k + m?)

1 m2  mt k2 k*
:W 1—ﬁ—|—ﬁ—-.. 1__+__...

AI—/ Tk ! =0
=) w2 (R MR (k2 m2)

No scale
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Photonia has imported a single electron from Qedland, and
physicists are studying its interaction with soft photons
(both real and virtual)



Photonia

Photonia has imported a single electron from Qedland, and
physicists are studying its interaction with soft photons
(both real and virtual)

The ground state (“vacuum”) — the electron at rest e = 0

—2
P
=) =531



Photonia
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Photonia

Photonia has imported a single electron from Qedland, and
physicists are studying its interaction with soft photons
(both real and virtual)

The ground state (“vacuum”) — the electron at rest e = 0

)
LD
e(P) = 537
The leading-order mass shell
e(p) =0

Velocity
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L = h™idph

equation of motion
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Lagrangian

equation of motion
Charge —e

Equation of motion

Lagrangian

L = hTidgh

g = —€A0

1Doh =0
D, =0, —1ieA,

L = h'iDyh



Lagrangian

L = htidyh
equation of motion
Charge —e
g = —€A0
Equation of motion
1Doh =0
D, =0, —1ieA,
Lagrangian
L = h"iDyh

Not Lorentz-invariant



Lagrangian

+ Lagrangian of the photon field

0, F" = j¥
%= —eh™h

The electron produces the Coulomb field



Spin symmetry

At the leading order in 1/M, the electron spin does not
interact with electromagnetic field

We can rotate it without affecting physics

In addition to the U(1) symmetry h — e'®h,

also the SU(2) spin symmetry

h— Uh



Spin symmetry

At the leading order in 1/M, the electron spin does not
interact with electromagnetic field

We can rotate it without affecting physics

In addition to the U(1) symmetry h — e'®h,

also the SU(2) spin symmetry

h— Uh

The electron magnetic moment i = uc
interacts with magnetic field: —ji - B
By dimensionality p ~ e/M

(Bohr magneton e/(2M) up to radiative corrections)

(& —
L —— S 1tB.5h
™= oM 4

Violates the SU(2) spin symmetry at the 1/M level



Spin-flavour symmetry
ny flavours of heavy fermions
nf
L= hiiDoh;
=1

U(1) x SU(2ny) symmetry
Broken at 1/M; by kinetic energy and magnetic interaction



Spin-flavour symmetry
ny flavours of heavy fermions
nf
L= hiiDoh;
=1

U(1) x SU(2ny) symmetry

Broken at 1/M; by kinetic energy and magnetic interaction
At the leading order in 1/M, not only the spin direction
but also its magnitude is irrelevant

We can, for example, switch the electron spin off:

L = ¢*iDyp



Superflavour symmetry

The scalar and the spinor fields together

U(1) x SU(3) symmetry



Superflavour symmetry

The scalar and the spinor fields together

U(1) x SU(3) symmetry

The superflavour SU(3) symmetry:
> — X% h— e h
» SU(2) spin rorations

o(7)=(29) ()

¢ — an infinitesimal spinor
Broken at 1/M

>



Superflavour symmetry
The scalar and the spinor fields together

U(1) x SU(3) symmetry

The superflavour SU(3) symmetry:
> — X% h— e h
» SU(2) spin rorations

o(7)=(29) ()

¢ — an infinitesimal spinor
Broken at 1/M
We can consider, e. g., spins % and 1
SU(5) superflavour symmetry

>



Feynman rules
Leading order in 1/M

* 1 v
L = SOOZDOSOO I O,ul/F(';L - (8#148)2

4
The usual photon propagator
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* 1 v
L = SOOZDOSOO I OW/F(';L - (8#145)2

4
The usual photon propagator
The momentum-space free electron propagator
1
= o(p) o(p) P——T7
depends only on pg, not on p
(spin-3 field kg — the unit 2 X 2 spin matrix)
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Feynman rules
Leading order in 1/M

* 1 v
L = SOOZDOSOO I O,uZ/F(éL - (a,uAg)Q

4

The usual photon propagator
The momentum-space free electron propagator

1
= o(p) o(p) P——T7
depends only on pg, not on p
(spin-3 field kg — the unit 2 X 2 spin matrix)
The coordinate-space propagator
x
Static electron does not move
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Feynman rules
Leading order in 1/M

* 1 v
L = SOOZDOSOO I O,uZ/F(éL - (a,uAg)Q

4
The usual photon propagator

1
2(10
The momentum-space free electron propagator

1
= o(p) o(p) P——T7
depends only on pg, not on p
(spin-3 field kg — the unit 2 X 2 spin matrix)
The coordinate-space propagator
x
Static electron does not move
Solving the equation

i0pSo(x) = 0(x)



Feynman rules

Vertex



Feynman rules

Vertex
1
:‘,}j:;: = ieovl‘
v* = (1,0)

The static field g (or hg) describes only particles,
there are no antiparticles.

No loops formed by static-electron propagators.

The electron propagates only forward in time;

the product of 6 functions for a loop vanishes.

In the momentum space: all poles of the propagators
are in the lower pgy half-plane;

closing the integration contour upwards, we get 0.



Wilson line
In an external field A*(z)
iDoS(w,2") = (i0y + eoA°(1))S(x,2") = §(z — o)
Solution
S(x,a") = S(w, 2)0(T—7") S(wo, ) = So(zo—20)W (0, 77)
Wilson line from 2’ to x (along v)

W (xg, ) = expieo/A“(t,a_f)vudt

!
o
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Solution
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Quantum field (operator Af(x)): Pexp



Wilson line
In an external field A*(z)
iDoS(w,2") = (i0y + eoA°(1))S(x,2") = §(z — o)
Solution
S(x,a") = S(w, 2)0(T—7") S(wo, ) = So(zo—20)W (0, 77)

Wilson line from 2’ to x (along v)

Zo

W (xg, ) = expieo/A“(t,a_f)vudt
0

Quantum field (operator Af(x)): Pexp
DoW (z, 2")o(x) = W(z, 2")0opo(x)



Wilson line
In an external field A*(z)
iDoS(w,2") = (i0y + eoA°(1))S(x,2") = §(z — o)
Solution
S(x,a") = S(w, 2)0(T—7") S(wo, ) = So(zo—20)W (0, 77)

Wilson line from 2’ to x (along v)

Zo

W (xg, ) = expieo/A“(t,f)vudt
o
Quantum field (operator Af(x)): Pexp
DoW (z, 2")o(x) = W(z, 2")0opo(x)

The HQET Lagrangian has been introduced as a device to
investigate of Wilson lines



Gauge A" =0

The field ¢o(x) does not interact with the electromagnetic
field (and thus becomes free).

However, this gauge is rather pathological.

The static electron creates the Coulomb electric field E.
In the A = 0 gauge, A has to depend on ¢ linearly.



Gauge A" =0
We can formally express the field () in any gauge via a
free field ¢ (z):

po(z) = W (2)p(2)

T
W(xo,Z) = Pexpz/Ag(t,f)vudt

Zo

Io,f)

Then W~1(x)D = 0y, and
L = p0%i9,0



Residual momentum
The full-theory energy M is the HEET zero level
E=M+c¢

€ — the residual energy



Residual momentum
The full-theory energy M is the HEET zero level
E=M+c¢
€ — the residual energy

P* = Mot 4 p#

» P* — 4-momentum of some state (containing a single
electron) in the full theory
» pt — its momentum in HEET (the residual
momentum)
v* — 4-velocity of a reference frame in which the electron
always stays approximately at rest



Reparametrization invariance

HEET is applicable if there exists such v that

<M pli< M



Reparametrization invariance

HEET is applicable if there exists such v that
< M phy <M

This condition does not fix v uniquely: v — v + dv,

dv ~ p/M.

Effective theories corresponding to different choices of v
must produce identical physical predictions:
reparametrization invariance.

Relations between quantities at different orders in 1/M.



Relativistic notation

Lagrangian
L = pjiv - Dy + (light fields)

Free propagator

Mass shell



Spin %

4-component spinor field

Phy = h,
Lagrangian
L = hygiv - Dhyg + (light fields)
Propagator
Solp) = 1;¢p-v1+z'0

Vertex tequ?



Qedland

M+Mp+p 1494 1 N
(Mv+p)2—M2+i0 2 p-v+i0
i)

= —————» O—
Mv+p P * (M

So(MU —l—p) ==




Qedland

M+ My + p I+¢y 1 p
M = = M
So( U+p) (MU+]9)2_M2+ZO 2 pU+ZO+O<M>
_ P
Mv +p _T+O(M>

1+¢W1+¢:1+¢W1+¢
2 2 2 2
We may insert the projectors (1 + 9)/2 before u(P;) and
after u(F;), too, because

pu(Mv +p) = u(Mv+p)+ O <%)



Qedland

We have derived the HEET Feynman rules from the QED
ones at M — oo. Therefore, we again arrive at the HEET
Lagrangian which corresponds to these Feynman rules.



Qedland

We have derived the HEET Feynman rules from the QED
ones at M — oo. Therefore, we again arrive at the HEET
Lagrangian which corresponds to these Feynman rules.

We have thus proved that at the tree level any QED
diagram is equal to the corresponding HEET diagram up to
O(p/m) corrections. This is not true at loops, because loop
momenta can be arbitrarily large. Renormalization
properties of HEET (anomalous dimensions, etc.) differ
from those in QED.



Exponentiation

1-loop correction to xz-space propagator, multiply by itself
Integral in ¢y, to, ¢, ¢, With 0 < t; <ty <t,0<t] <t <t
Ordering of primed and non-primed ¢’s can be arbitrary

6 regions corresponding to 6 diagrams

01ty tgt

“ﬁ’j&“ e ¢ e




Exponentiation

This is 2x the 2-loop correction
1-loop correction cubed is 3!x the 3-loop correction, ...

S(t) = So(t) expwy

2 . 2e
I _ 2 _
w, = (47T)d/2(2> F( 8) (1+d—3 CLQ)

In the d-dimensional Yennie gauge the exact propagator is
free



Exponentiation

No corrections to the photon propagator Z4 = 1: a = ay,

€ =€
Zp =exp |—(a— 3)%E
e
Th = 2(“ - 3)@

exactly!



Current

Jo = poo Qo = /dd_lfJo(xo,f) =1



Current

Jo = poo Qo = /dd_lfJo(xo,f) =1



Current

Jo = poo Qo = /dd_lfJo(xo,f) =1

Ward identity
Green function

<05() Jo(0)o(2)|0> = 6(Z)8(z") G (o, ()

X /

xo t &85 t/ 'rO

Vertex I'(t,t') = 0(t' —t) + A(t,t') and 2 full propagators



Coordinate space

Each diagram for > = a set of diagrams for A

/

t. 0t t ot . 0 1 t
'1 2 i ?2




Coordinate space

Regions t <0< t; <ty <t t<t; <0<ty <t
<t <t <0<t
union — the region for X (t < t; <ty <)

A(t,¢) = —i0(—1)0(# )2t — t)



Coordinate space

Regions t <0< t; <ty <t t<t; <0<ty <t
<t <t <0<t
union — the region for X (t < t; <ty <)

A(t, ') = —i0(—t)0(t)S(t' — 1)
Or we can start from diagrams for S(t,t’)

G(t,t) = i0(—t)0(t)S({H —t)



Coordinate space

Regions t <0< t; <ty <t t<t; <0<ty <t

t<t; <t <0<

union — the region for X (t < t; <ty <)
A(t, ') = —i0(—t)0(t)S(t' — 1)

Or we can start from diagrams for S(t,t’)

G(t,t) = i0(—t)0(t)S({H —t)

LHS = ZhZJGT, RHS = 7,5, = Z;=1



Momentum space

oo

Glw,w') = e = iS(w) T(w,w') iS(w)

w S
MNw,w) =1+ Alw,w') Gpo=w —w

Each diagram for ¥ = a set of diagrams for A




Momentum space

| |
W Yq /+w Yq z/
|
q ..

Y



Momentum space

7
= — X

lwm
VAT S s
v v akiewow s sl




Momentum space

l
= — X

F—w
[/ a ] /W]

w' —




Momentum space

l

T —w %
.
) - S =571

(also Fourier from coordinate space)



Momentum space

l

= — ; X
w —w
Yw) -2
Moas) = -2 =2
W —w
—1(,/\ _ g1
o) = 79 =571)
W —w
(also Fourier from coordinate space)
G(w,w') _ S(W )/ — S(OJ)
w —w

also from all diagrams for GG, or Fourier



Vertex

L

e— = iegv'T'(w, W)
w w

M
R

Zrsy =1
Zo=(ZrZy) 22 =2 =1



Operators

Full QED operators — series in 1/M
via HEET operators

O(n) = C(n)O(n) + ﬁ D> Bim)O:(p) + -+

Matching on-shell matrix elements



Electron field

bolx) = e~ Mva 12 0y o ]



Electron field

wo(x) — e—in-x |:Zé/2hv0<x) + - ]

On-shell matrix elements

<Oleole(p)> = (23) " u(p)
<Olhuole(p)> = (Z°) u, (k)
1

Bare decoupling Zp*° =
os 1
Zy ()
os 0
Z (e(() ))

Z0 —



Electron field

wo(x) — e—iM’U~x |:Z(])~/2hv0(x) + . ‘i|
On-shell matrix elements

<Oleole(p)> = (23) " u(p)

(
<0lhuole(p)> = (Z)"* u, (k)
Bare decoupling Z;° = 1

Zy ()
Z(ey”)

Z0 —

Renormalized decoupling
Zn(a O (p),a® (1))
Zy(a5" (), a M (p))

2(p) = 20



Gauge dependence of QED propagators

1 k. k,
D) = 5 (s - 257

S(x) = Si(x)



Gauge dependence of QED propagators

1 k. k,
D) = 5 (o = 255 + AR,

S(z) = Sp(x) e A @-A0)

. qd
Aw) = [ A5



Gauge dependence of QED propagators

1 k. k,
Dok = L (gw - “—) ARk,

2

S(z) = Sp(x) e A @-A0)




Gauge dependence of QED propagators

1 k,k,
D0 = 75 (90— 252) + B0,

S(z) = Sp(x) e A @-A0)

d
1= [ et

A(0) = 0 in dim. reg.

Qg

(K2)?

A(k) =

Landau, Khalatnikov (1955)
Fradkin (1955)
Bogoliubov, Shirkov (1957)
Zumino (1960)



Gauge dependence of Zy, vy

Massless electron

S(x) = So(z)e”™



Gauge dependence of Zy, vy
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Gauge dependence of Zy, vy

Massless electron
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= log Zy + 0,




Gauge dependence of Zy, vy

Massless electron

S(x) = So(z)e”™

= log Zy + 0,
log Zy(ov,a) = log Zr(a) — a%m




Gauge dependence of Zy, vy

Massless electron

S(x) = So(x)e”™
7(a) = o1(@) + a0 M (%) (-
- <>+a<u>—(’ﬁl )ewr( )

afp
T
= log Zy + 0,
a
log Z = logZ —a—
08 Zy(01,0) = log Z1(0) — a7~

(%
Tp(a,a) = 2@4— +7z(e)
™

dlog(a(p)a(p))/dlog i = —2¢ exactly
vr(a) starts from o?



Gauge dependence of Zy, vy

Massless electron

S(x) = So(x)e”™
7(a) = o1(@) + a0 M (%) (-
- <>+a<u>—(’ﬁl )ewr( )

afp
T
= log Zy + 0,
a
log Z = logZ —a—
08 Zy(01,0) = log Z1(0) — a7~

(%
Tp(a,a) = 2@4— +7z(e)
™

dlog(a(p)a(p))/dlog i = —2¢ exactly
vr(a) starts from o?
known to 5 loops



Gauge independence of z(p) in QED

> 2o = Z,; gauge invariant

(0)
log 7 — (3 — )&
> logZy = (3 —a )47r€
) = s & 1/137
(1)
» log Zy = —a(l)(p)%m + (gauge invariant)
e

» Decoupling aMa® = a0 )
Gauge dependence cancels in log(Zy/Zy)



Result

3 55, 5957\ say?
v o e ) )
+(7T 82756 R’ i) \x) T



Electron propagator near the mass shell
On-shell mass M = My + oM, w < M

P=(M+w)v Y(P) =%o(w) + X1 (w)(p — 1)
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Electron propagator near the mass shell
On-shell mass M = My + oM, w < M

P=(M+w)v Y(P) =%o(w) + X1 (w)(p — 1)

B 1
~ p— My —X(p)

S(P)
1

M +w—%1(w)]p— M+ M — 3p(w) + X1 (w)

The denomunator
(M 4w — 3 (w)]> = [M = M + So(w) — By (w))
should vanish at w = 0:

SM = %(0)



Electron propagator near the mass shell

1
(M +w—31(w)]p — M — 3(w) + Xo(0) + X

S(P) =

w) 1(w)
_ M 4w =5 (W)]f + M+ ¥o(w) — %(0) — X (w)
(M +w — £y (w)]* = [M + Zo(w) — £o(0) — Tu(

1(w)]?



Electron propagator near the mass shell

1
M +w—31(w)]p — M — Zg(w) + 2p(0) + 2

S(P) =

M A w - (w)] P+ M A+ Ep(w) — Xe(0) = X
(M +w — Ty (w)]* = [M + T(w) — £o(0) =
The denominator at w — 0
[M —$1(0) + w — 21 (w) + 21(0))°
— [M = %1(0) + Zo(w) — Z6(0) — 21 (w) + 21(0)]?
~ 2 (M —%4(0)) [w — Xo(w) + Xo(0)]

(w)
1(w)
(

1(w)]?



Electron propagator near the mass shell

1

S(P) = M +w—31(w)]p — M — Zg(w) + 2p(0) + 2

_ M+ w—%1(w)]p+ M+ Xo(w) — 3p(0) — 5
[M +w = S1(@)]* = [M + Zo(w) = Zo(0) - =

The denominator at w — 0

(M — £1(0) + w — 21 (w) + 21(0))°

— [M = %1(0) + Zo(w) — Zo(0) — By (w) + Z4(0))?

~ 2 (M = £41(0)) [w — Zo(w) + o (0)]
The numerator at w — 0

(M —%4(0) (f + 1)

(w)
1(w)
(

1(w)]?



Electron propagator near the mass shell

1

S(P) = M +w—31(w)]p — M — Zg(w) + 2p(0) + 2

_ M+ w—%1(w)]p+ M+ Xo(w) — 3p(0) — 5
(M +w — 51 (w)]* = [M + Zo(w) — £o(0) —

The denominator at w — 0

[M —$1(0) + w — 21 (w) + 21(0))°

— [M = %1(0) + Zo(w) — Zo(0) — By (w) + Z4(0))?

~ 2 (M = £41(0)) [w — Zo(w) + o (0)]
The numerator at w — 0

(M —%4(0) (f + 1)

(w)
1(w)
(

1(w)]?

p+1 1

)~ S TS @) T 50(0)




Regions
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Regions

Yo(w) = n(w) + Xs(w)

Hard
- B -
SM = M i‘z‘f)d; D(e }
2e
2 = = <4]7\r4>d/2 rie)g

-
3



Regions

Yo(w) = Tp(w) + Xs(w)
Hard

277122
eg M d—1 w
) = g T g (3 )

ez M % d— 1
oM =M | -2 r
[(47r)d/2 €53+ }
1 M™% d—1
L S
A O) (e g3t

Soft

50501 (1+0(2)

e (—2w)ET(1420)(1 —¢) 2
=) =" d—4 (1 Ta=s “°>




Electron propagator in QED and HEET

149 1

S) = ———— SAUFEDAO 205 (w)
oS __ 1
AR BT
IREE
Sw) = 2 w—Xw)

S(w) — HEET propagator



Electron propagator in QED and HEET

1+ 1

Sb) = — oo (O)M_ZS(M)ZZOS(M)
oS __ 1

ZOZZw—T;l(O)
1+ 1

Sw) = 2 w—Xw)

S(w) — HEET propagator
» Higher terms in Y;, = corrections to ¥y via h,g

» Higher terms in X, = corrections to S(w) due to 1/M
terms in the HEET Lagrangian



Power counting

Small parameter (p — residual momentum)
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Power counting

Small parameter (p — residual momentum)

p
A~ L
M

Soft fields: @ ~ A\, A~ X, D ~ A

d*k

<Tlpla)e O} ~ [ e

k-v+10

© ~ )\3/2



Power counting

Small parameter (p — residual momentum)

p
A~ L
M

Soft fields: @ ~ A\, A~ X, D ~ A

Ak . 1
T + 0 ~ —ikr __ —
<Tlple)e 0> ~ [ e
© ~ )\3/2
@*iDop ~ A*

etD?p~ X oTB-Gp~

Action: main ~ 1, corrections ~ A



Heavy—heavy current

Jo = yotewo = Zy(a(p))J (1) coshp=v-0/
r(9) = dlog Z;
dlog

Exponentiation: 1-loop formula is exact



Cusp anomalous dimension

(I




Cusp anomalous dimension

(O[N]

Classical electrodynamics

2
dE = < (9cothd) — 1) dw
272
2
= % (Weothy — 1)-2

d
v 272 w



Cusp anomalous dimension

Unitarity
2
+/|% + ﬁ/' =1

Classical electrodynamics

2

dE = < (9cothd) — 1) dw
272

¢? dw

dw = 5 ~— (Jcothd) — 1)w1+25



Cusp anomalous dimension

Unitarity
2
+/|% + ﬁ/' =1

Classical electrodynamics

2

e
dE = ﬁ(ﬁcothﬂ —1)dw

2 o
dw = 5 (19(:0th19—1)w1+2E
1 [ &2 dw o
F:1—§/)\ 27T2(1900th79—1)w1+28 :1—24—71_6(19C0th19—1)

I = 4%@9 coth® — 1)



Cusp anomalous dimension

Unitarity
2
+/‘\\/ + f/' =1

Classical electrodynamics

2

dE = 5 2(1900th19— 1) dw

o o
dw = o (19(:0th19—1)w1+2E
1 [ €2 dw «
F:1_§/)\ 27T2(1900th19—1)w1+28 = 1—24—7‘_8(’[9C0th’l9—1)

I = 4%(19 coth® — 1)

The Guiness Book of Records: the anomalous dimension
known for the longest time (> 100 years)



Limiting cases
¥ < 1 Series in 92

T(Y) = %192 + O

9> 1 T(W) =0 + O(°)

o
-
T



Limiting cases
¥ < 1 Series in 9?
a
() = —? v
) = 292 4 O(")
v>>1TW) =T+ 0W°)
r,=2
T
Euclidean space cos¥g = v - v/

T(¥g) = 4%(% cot ¥ — 1)

‘ cos Vg

g ‘oi




19E—>7T

Heavy-particle pair production

—.

=1

-~
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Heavy-particle pair production

—.

T =t
=0
2
1
U(r) = ——



19E—>7T

Heavy-particle pair production

—.

=1t
=0
2
1
U(r) = —=



19E—>7T

Heavy-particle pair production

e 1
U(r) = T A opl-2e
T 2 2
, et T
W = exp {—2/0 dt U(ut)} = exp {ng}



19E—>7T

Heavy-particle pair production

e 1

T g pl-2e
T
W = exp {—z/ dt U(ut)} = exp [z
0

Zj = exp [zi]
2eu

a a
I'=—i— ) — E—
i u =1 [(m—9) 5

62 TZE :|

A7 2eul—2¢



Kinetic energy

i Ci(p)
L=Lo+—-L0%=1L
0+2M0 0t N

Ox(p)

Lo = ¢5iDogo

O} = ¢5D%p0 = —ps DY 00 = Zi(a(1)) Ze(n)
Mass shell
CRp?

Wi = CP =1 at tree level

e(p) =




Feynman rules

CO
e k2
p1
P P 2M
"
i
. / /
D p/ :Z2M€O(p+p)lj_
I v
CIS 12 _pv

~ o 09



Ward identity

Sum of 1PI diagrams at 1/M



Ward identity

Sum of 1PI diagrams at 1/M

Ne
- Z_kzk<waﬁi)

2M
_ W)

Sp(w,ph) = dw ph + Sro(w)




Ward identity

» 0¥ for v = v+ 6v (v-dv=0)
» propagators 1/(p-v +1i0) = ip; - ov
> vertices ie,dvH
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Ward identity

» 0¥ for v = v+ 6v (v-dv=0)
» propagators 1/(p-v +1i0) = ip; - ov
> vertices ie,dvH
> 0% for py — pi +0pL
» 0-photon vertices i(CY/M)p; - dp..
» 1-photon vertices i(CP /M )e(dp!|

0%y, 0x

ap ow



Ward identity

» 0¥ for v = v+ 6v (v-dv=0)
» propagators 1/(p-v +1i0) = ip; - ov
> vertices ie,dvH
> 0% for py — pi +0pL
» 0-photon vertices i(CY/M)p; - dp..
» 1-photon vertices i(CP /M )e(dp!|

o 0%
apf, — “ovr

aEk ZaEk 0% dE
apl  Top? Vi o dw!
Oy ds

@_dw



Mass shell

_ CR [ _ dE(w)

Dy Tk
“ () oM [P dw

]72 + Eko(W) =0
Expand in w up to w?

0
_ Gk

= & = (P=1
w 2Mp k



On-shell scattering

Full theory

o " (PVE(P)(P + PYp(P) = [ n

2
F(@) =1+ F’(O)% T



On-shell scattering

Full theory

R R
F(¢?) =1+ 15”(0)]\(’4—22 +

Effective theory loops vanish

0

C
ey |v" + ﬁ(p +p')i]



Reparametrization invariance

v =v+ v
Ch
LU’ — *, S D o — —— */Dl2 o
P TV 2 2M<’0v 1¥
iM dv-x iov-D
v — ]_ v
© e ( + i )90

Ly =L,— (Cy—1)gridv- Dy,



Magnetic moment

_ Olg 0 C’% 0o _ Cr(p) Crn(p)

0V = hiD%hy = —hyyD? hyo = Zi(11)Ox(12)
o 1 - .
0% = —eohd By - 6thy = §eohU0FS,j0“ Poo = Zm (1) O (1)




Magnetic moment

_ Olg 0 07(7]1 0o _ Cr(p)

0V = hiD%hy = —hyyD? hyo = Zi(11)Ox(12)

— N 1 — v
0% = —eohd By - 6thy = §6ohv0FS,ja“ Poo = Zm (1) O (1)

Breaks spin symmetry

I

N (T T

2M



On-shell scattering
Full theory

ot () | B + () S )

= cat(P) | (B + Fale) o~ ) )

Pt E (i) + ) S i
q2

Fi(¢*) =1+ F(0)q 5+ Fae?) = Fa(0) + -

— cal(P) | Fie?




On-shell scattering
Full theory

ot () | B + () S )
= cat(P) | (B + Fale) o~ ) )

Pt E (i) + ) S i
B =1+ FOL 4o Fe) = F0)+ -

Foldy—Wouthuysen P = Mv + p

uP) = (14 347 ) wio

— cal(P) | Fie?




Matching

Full theory

g,

(p+p)}
VI i | )

2M

Cos Uy (P') [V* + + (1 + F»(0))



Matching

Full theory

o q,

(p+p)L
VR M41w@%

T (1+ F5(0))

€os ﬂ:; (pl> |:v“ +

Effective theory

0 0

C Con o w
equ(p) |:U“ + ﬁ(p + ') + WZUM C]u] uy(p)



Matching

Full theory

o q,

(p+ 7)1
s i ),

L+ (L+ F(0))

Cos U (D) {v“ +

Effective theory
0 0

— C C1m Y
L) [0+ o+ S0 ()

Cr=1 C? =1+ F»(0)

CY is finite = Z,, =1



Reparametrization invariance

, 0 idv-D
hv/: iM dv-x 1 - 2L )
e ( 5 + 5N >h

Lv/ = Lv - (Ck - 1)}_le ov - th



H
QET
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O - i
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HQET

Cy CY 1
L=1L k MO ~—m N0
0+ O+2M0m+@(M2>
LO = h+ZDOh0
Of) = h{ D*ho = Zr( (1)) Ox(11)

O?n = goho+B < Otaho = Zm(as(p1))Om (1)
Reparametrization invariance

Ch=1 Cup)=2'Cl=1



Propagator

H&.ﬁcgjg::%:

o L O
[Ea N 1 R

. 2e
it

S(t) = So(t) exp [%ﬁ (§> S

g (it\*"
+CF(47)d E (CASA—I—TFHZSZ)




Chromomagnetic interaction

_goM™* T(e)
F2(0) = (47)4/2 2(d — 3)
x [2(d — 4)(d — 5)Cp — (d* — 8d + 14)C 4]

IR divergent (unlike QED)




Chromomagnetic interaction

_goM™* T(e)
F2(0) = (47)4/2 2(d — 3)
x [2(d — 4)(d — 5)Cp — (d* — 8d + 14)C 4]

IR divergent (unlike QED)

o 4 a
=20, L 20, (17C, — 13T (-)
Y a3 A(17Cx — 13Tpmy) ym

as(M)
47r+

2
s

M
Co(p) =142 (—OA log m +Cr + CA>



Mass splitting

4 A
My = M = 307(’?)(“)“2@(4) () + 0O ( J?/ZD)
—-9/25
Mp. — My _ ot (M, / {1 +0 ( \QCD
- Qg, ——
Mp. — M, al? (M) M,



In the past

Only renormalizable theories were considered well-defined:
they contain a finite number of parameters, which can be
extracted from a finite number of experimental results and
used to predict an infinite number of other potential
measurements. Non-renormalizable theories were rejected
because their renormalization at all orders in
non-renormalizable interactions involve infinitely many
parameters, so that such a theory has no predictive power.
This principle is absolutely correct, if we are impudent
enough to pretend that our theory describes the Nature up
to arbitrarily high energies (or arbitrarily small distances).



At present

We accept the fact that our theories only describe the
Nature at sufficiently low energies (or sufficiently large
distances). They are effective low-energy theories. Such
theories contain all operators (allowed by the relevant
symmetries) in their Lagrangians. They are necessarily
non-renormalizable. This does not prevent us from
obtaining definite predictions at any fixed order in the
expansion in /M, where E is the characteristic energy and
M is the scale of new physics. Only if we are lucky and M
is many orders of magnitude larger than the energies we are
interested in, we can neglect higher-dimensional operators
in the Lagrangian and work with a renormalizable theory.



Conclusion

Practically all physicists believe that the Standard Model is
also a low-energy effective theory. But we don’t know what
is a more fundamental theory whose low-energy
approximation is the Standard Model. Maybe, it is some
supersymmetric theory (with broken supersymmetry);
maybe, it is not a field theory, but a theory of extended
objects (superstrings, branes); maybe, this more
fundamental theory lives in a higher-dimensional space,
with some dimensions compactified; or maybe it is
something we cannot imagine at present.



Conclusion

The only model-independent method to search for physics
beyond the Standard Model (without inventing arbitrary
scenarios) is to use SMEFT: add operators having higher
dimensions (5, 6) to the Standard Model Lagrangian with
unknown coefficients, and to try to measure these
coefficients experimantally. As soon as some coefficient(s) is
proved to be non-zero, we know that the Standard Model is
not exact. After measuring sufficiently many such
coefficients we can start inventing a more fundamental
theory which explains them.
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