

The Top Quark Physics

Lev Dudko Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (SINP MSU)

Reviews: Willenbrock; Han; Hill and Simmons; Bernreuther; Rainwater; Morrissey, Plehn, and Tait; Incandela, Quadt, Wagner, and Wicke; Boos, Dudko, and Slabospitsky;

History (I)

 By the 1960s physicists discover a lot of resonances (hadrons) from accelerator and cosmic ray experiments

 To describe the zoo of particles, in 1964 Gell-Mann and Zweig proposed idea of 3 quarks (u,d,s) with spin ½ and electric charge 2/3 (u), -1/3 (d,s) and masses of 300 MeV (u,d) and 500 MeV (s)

History (II)

- In 1970, based on the decays of K-mesons
 Glashow, Iliopoulos and Maiani predict the 4th quark c "charm" (u, d, s, c)
- In 1973, Makoto Kobayashi and Toshihide Maskawa predict the third generation of quarks to accommodate the observed violation of CP invariance in K⁰ decays
- In 1974, Sam Ting et al (BNL) and Burt Richter et al (SLAC) discover J/Ψ and the fourth charm quark;
- In 1975, τ lepton was discovered by Martin Perl et al (SLAC) providing support for a third generation of 3/46 fermions

History (III)

• In 1977, Leon Lederman et al (Fermilab) **discover** $\Upsilon(1s) \rightarrow \mu +, \mu$ interpreted as bound state of a new quark **b** (beauty or bottom, $m_b \approx 4.5$ GeV, spin $\frac{1}{2}$, el.charge -1/3)

• b weak isospin = $-\frac{1}{2}$, need $+\frac{1}{2}$ partner, **have to add top quark** to cancel chiral anomaly $\sum_{f} Y_{f} = \sum_{f} Q_{f} = 0$ $(Q_{t} + Q_{b}) \times N_{c} + Q_{tau} = (2/3 - 1/3) \times 3 - 1 = 0$

Top Quark in the Standard Model

$$Q_L^i = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{pmatrix} t_L \\ b_L \end{pmatrix} 3 \begin{pmatrix} 2U(2) & U(1)_Y \\ 0 & \frac{1}{6} \\$$

$$\mathcal{L}_{\rm SM} = -\frac{1}{\sqrt{2}} \sum_{q=u,c,t} \bar{t} \left(v_{tq}^H + \gamma_5 a_{tq}^H \right) q H - g_s \bar{t} \gamma^\mu t^a t G_\mu^a - \frac{g}{\sqrt{2}} \sum_{q=d,s,b} \bar{t} \gamma^\mu \left(v_{tq}^W - a_{tq}^W \gamma_5 \right) q W_\mu^+ - Q_t e \bar{t} \gamma^\mu t A_\mu - \frac{g}{2\cos\vartheta_W} \sum_{q=u,c,t} \bar{t} \gamma^\mu \left(v_{tq}^Z - a_{tq}^Z \gamma_5 \right) q Z_\mu + \text{h.c.}$$

$$\begin{array}{ll} v_{tt}^{H} = y_{t} = \sqrt{2} \frac{m_{t}}{v_{ew}}, & a_{tt}^{H} = 0, \ v_{ew} \approx 246 \ \Gamma \Im B \\ v_{tq}^{H} = a_{tq}^{H} = 0, & q \neq t \\ v_{tq}^{W} = a_{tq}^{W} = \frac{V_{tq}}{2} \\ v_{tt}^{Z} = \frac{1}{2} - 2Q_{t} \sin^{2} \vartheta_{W}, \ a_{tt}^{Z} = \frac{1}{2} \\ v_{tq}^{Z} = a_{tq}^{Z} = 0, & q \neq t \end{array}$$

5 / 46

Top Quark Mass (I)

- Top quark mass is not constrained by theory
- Mass is defined by Yukawa interaction with Higgs boson and Yukawa constant:

$$\lambda_{t} = 2^{3/4} G_{f}^{1/2} m_{t} = \sqrt{2} m_{t} / v_{ew}; v_{ew} \approx 246 \, GeV \\ (\approx 1 \text{ for } m_{t} = 173 \text{ GeV})$$

 Owing to high value of Yukawa constant top quark gives main contribution in many loop diagrams e.g.

Top Quark first (false) evidence

 In 1984 UA1 group (Carlo Rubbia et al.) claims of a discovery of the top quark with mass 40±10 GeV

$$W^{+} \rightarrow t + \bar{b}$$

$$\downarrow \qquad \downarrow jet$$

$$\downarrow 1^{+} + v + b$$

$$\downarrow jet$$

Physics Today 37, 8, 17 (1984); https://doi.org/10.1063/1.2916347

- UA2 never confirmed the evidence
- Poor modeling of W→τ,ν background was the reason of the mistake (T. Wyatt)

Evidence for top quark from UA1 group assumes the W decays into tb, that the b produces jet 1, and that t decays into a lepton, a neutrino and a b, which decays into jet 2. The peak at 70–80 GeV suggests W decay and the peak at 40–45 GeV suggests top decay. From the six events shown, UA1 obtains a top mass range 30–50 GeV.

Remark

- Enrico Fermi advised his colleagues never publish any new effect unless it had a significance of more than 3 standard deviations (3σ).
- Trying to maintain his sterling reputation, Fermi multiplied all uncertainties by a √2
- Modern agreement is to call "evidence" with 3σ deviation of the signal from the background and "observation" with 5σ statistical significance.

Top Quark Mass (II)

Observation of top quark

F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74, 2626 (1995) S. Abachi et al. [D0 Collaboration], Phys. Rev. Lett. 74, 2632 (1995)

Fermilab Tevatron Collider

3.0

Tevatron collider, D0 and CDF detectors

Top Quark Mass (III)

$$\frac{\sigma(pp \to t\bar{t}) = f(m_t)}{MS, m_t = 160.0 \pm 4.8 \ \Gamma \not B}$$

 $\Delta m_{\rm t} = m_{\rm t} - m_{\rm \bar{t}} = -0.15 \pm 0.19 ({\rm stat}) \pm 0.09 ({\rm syst})$

.....

165

Mixing with other quarks, Cabibbo-Kobayashi-Maskawa matrix

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
$$\frac{V_{CKM}}{V_{CKM}} = (U_L^u)^{\dagger} U_L^d \qquad \lambda = 0.2257^{+0.0009}_{-0.010}, \qquad A = 0.814^{+0.021}_{-0.022}$$
$$VV^+ = 1 \qquad \bar{\rho} = 0.135^{+0.031}_{-0.016}, \qquad \bar{\eta} = 0.349^{+0.015}_{-0.017}$$

 $V_{tb} \approx 0.9989 \div 0.9993, V_{ts} \approx 0.034 \div 0.046, V_{td} \approx 0.004 \div 0.014.$

$$tW^{\pm}q = \frac{e}{2\sqrt{2}\sin\vartheta_W} V_{tq}\gamma^{\alpha}(1-\gamma^5) \qquad [\sin^2\vartheta_W \approx 0.23]$$

4th generation is restricted by LEP precision measurements of Z decays, 14 / 46 mass of 4th neutrino should be greater than Z boson mass

Top Quark Decay Width

Top Quark production processes

tt pair production (QCD)

	$\sigma_{\rm NLO}~({\rm пб})$
Tevatron ($\sqrt{s} = 1.96$ TəB $p\bar{p}$)	$7.08\pm5\%$
LHC ($\sqrt{s} = 7$ TəB pp)	$165\pm6\%$
LHC ($\sqrt{s} = 8$ TəB pp)	$234 \pm 4\%$
LHC ($\sqrt{s} = 14$ TəB pp)	$920\pm5\%$

św⁺

~w

q

w*

(b)

s-channel

(d)

q

g acces

t(t) single production (electroweak)

Final signatures of the processes

- Top pair signatures:
 - lepton + jets
 - dilepton
 - all jets
- Single Top Signatures:

Main Background Processes

Pair Top Quark production Cross Section, Tevatron Nobe - Nobe

		σ -		· · DKg		
	• .		$-\frac{1}{\sum_{i} A_{i}}$	\mathcal{L}_{i}	—●— Data ///// System	atic uncertainty
Process	μ +jets	e+jets		80	<i>tī</i> (σ =	7.09 pb)
Multijet	31.1 ± 10.0	75.1 ± 56.3	GeV		$Z/\gamma^* + i$	n <i>1, d, s, g</i>
W+jets	164.9 ± 15.9	148.8 ± 14.3	s / 10		$Z/\gamma^* + $	b, c
Diboson	9.1 ± 0.8	10.5 ± 0.9	Jett	40		
$Z/\gamma^* + \text{jets}$	11.9 ± 1.2	12.4 ± 1.5		20		
Single top	16.1 ± 2.2	21.8 ± 3.0		₀└╷╴┙┍┯┥╤╴	╴╴╴╴╴╴╴╸	D + + + + + + + + + + + + + + + + + + +
$t\bar{t},\ell\ell$	22.6 ± 2.0	33.5 ± 2.9	/Pred.	2- 1	+ . + + + + .	
\sum bgs	254.4 ± 19.1	302.1 ± 58.3	Data	0.5 T	• 80 100 120 140	• 160 180 20
$t\bar{t}, \ell + jets$	838.7 ± 72.5	1088.7 ± 94.2 -			Jet E _T (GeV)	
$\sum (\text{sig} + \text{bgs})$	1093.1 ± 75.0	1390.8 ± 110.8		Tevatron Run I	I	
Data	1137	1403	CDF dilepton	<mark></mark>	$\begin{array}{c} \textbf{7.09} \pm \textbf{0.83} \\ \pm \ \textbf{0.49} \pm \textbf{0.67} \end{array}$	8.8 fb ⁻¹
			CDF ANN lepton+jets	*** **	$\begin{array}{c} \textbf{7.82 \pm 0.56} \\ \pm \ \textbf{0.38 \pm 0.41} \end{array}$	4.6 fb ⁻¹
	1 jet	$\geq 2 \text{ jets } (H_T + \text{OS})$	CDF SVX lepton+jets		7.32 ± 0.71	4.6 fb ⁻¹
Source	(Validation region)	(Signal region)	CDF all-iets		7.21±1.28	2.9 fb ⁻¹
WW	0.8 ± 0.2	0.6 ± 0.2			± 0.50 ± 1.18	
WZ	0.2 ± 0.0	0.1 ± 0.0	CDF combined	-	7.63 ± 0.50 + 0.31 + 0.39	
ZZ	0.1 ± 0.0	0.3 ± 0.1	DØ dilepton	<mark></mark> _	$\textbf{7.36} \pm \textbf{0.85}$	5.4 fb ⁻¹
$Z/\gamma^* + u, d, s, g$	2.1 ± 0.2	2.8 ± 0.3				1
$Z/\gamma^* + b, c$	1.8 ± 0.2	2.5 ± 0.2	DØ lepton+jets		7.90±0.74	5.3 fb ⁻¹
Other	1.9 ± 0.7	16 ± 5	DØ combined	F-1-1	7.56 ± 0.59	
Total background	6.9 ± 0.9	22 ± 5			$\pm 0.20 \pm 0.56$	
$t\bar{t} \ (\sigma = 7.09 \text{ pb})$	20.2 ± 1.4	224 ± 15	Tevatron combined	Her	7.60±0.41	
Total SM expectation	27.1 ± 2.2	246 ± 20	m _t = 172.5 GeV		$\pm 0.20 \pm 0.36$	
Observed	29	246	$p\overline{D} \rightarrow t\overline{t} cross$	7 8 9 section (nb) a	t\/s=1 96 TeV	
			$PP \rightarrow 0.0003$	section (hp) a		

Pair Top Quark production Cross Section, LHC

√s [TeV]

Large Hadron Collider (LHC)

I= 11700 A

LHC (II)

- Start 10.09.2008, 18.09.2008 at 10 TeV Quench incident
- 2009-2011, 7 TeV, 5 fb⁻¹
- 2012, 8 TeV, 20 fb⁻¹ (Higgs discovering)
- 2015–2018, 13 TeV, ≈100 fb⁻¹
- 1 proton at 7 T \ni B \approx 10⁻⁶ Joule \approx
- 2808 bunchs × 10¹¹ protons/bunch
 × 7 TeV/proton = 360 MJoule

Typical LHC event

Top Quark Production Cross section Measurments

September 2017

CMS Preliminary

All results at: http://cern.ch/go/pNj7

Top Quark Properties

- Spin ½. Spin 0 or 1 is excluded since t decays to W and b. For spin 3/2 the cross sections are completely different.
- Electric charge +2/3. ATLAS has measured $Q_{top} = 0.64 \pm 0.02(stat.) \pm 0.08(syst.)$ also, deviation from 2/3 violate cancelation of chiral anomalies and interactions with other particles
- Color triplet. Inherits color states from b-quark, since top decays to W (colorless) and b (triplet)
- Weak Isospin $\frac{1}{2}$. Requires precise measurements of electroweak top quark interactions and rare top decay channels.

Possible Beyond of Standard Model (BSM) Contributions

- Collision energy E is above production thresholds
 - New resonances decaying to top quark
 - New states produced in association with top
- Collision energy E is less than production thresholds
 - New effective anomalous interactions of the top quark with other SM particles (modification of top decay and production properties)
 Effective Field Theory approach 26/46 [W.Buchmuller, D.Wyler 1985]

Possible Beyond of Standard Model interactions of top quark (I)

 $\mathcal{L}_{SM}(t\,g\,t) = \bar{\psi}_t \hat{O}_g^{\mu,a} \psi_t \,G_{a,\mu}; \quad \hat{O}_g = g_s \,t^a \gamma^\mu$ $\mathcal{L}_{SM}(t\,W\,q) = \bar{\psi}_q \hat{O}_W \psi_t; \quad \hat{O}_W = \frac{e}{2\sqrt{2}\sin\theta_W} \,V_{tq} \gamma^\mu (1-\gamma^5) \,W_\mu$

$$\mathcal{L}_{\rm SM} = -\frac{1}{\sqrt{2}} \sum_{q=u,c,t} \bar{t} \left(v_{tq}^H + \gamma_5 a_{tq}^H \right) q H - g_s \bar{t} \gamma^\mu t^a t G_\mu^a - \frac{g}{\sqrt{2}} \sum_{q=d,s,b} \bar{t} \gamma^\mu \left(v_{tq}^W - a_{tq}^W \gamma_5 \right) q W_\mu^+ - Q_t e \bar{t} \gamma^\mu t A_\mu - \frac{g}{2 \cos \vartheta_W} \sum_{q=u,c,t} \bar{t} \gamma^\mu \left(v_{tq}^Z - a_{tq}^Z \gamma_5 \right) q Z_\mu + \text{h.c.}$$

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \kappa_4 \bar{\psi}_q \hat{O}^{(4)} \psi_t + \frac{\kappa_5}{\Lambda} \bar{\psi}_q \hat{O}^{(5)} \psi_t + \frac{\kappa_6}{\Lambda^2} \bar{\psi}_q \hat{O}^{(6)} \psi_t + \cdots$$

 Λ is a scale of "New Physics", e.g. Λ =1 TeV k are couplings constants to parameterize strength of anomalous interactions

Possible Beyond of Standard Model interactions of top quark (II)

$$\mathcal{L}_{EFT} = -g_s \sum_{q=u,c,t} \frac{\kappa_{tq}^g}{\Lambda} \overline{t} \sigma^{\mu\nu} t^a \left(f_{tq}^g + ih_{tq}^g \gamma_5 \right) q G_{\mu\nu}^a - \frac{g}{\sqrt{2}} \sum_{q=d,s,b} \frac{\kappa_{tq}^W}{\Lambda} \overline{t} \sigma^{\mu\nu} \left(f_{tq}^W + ih_{tq}^W \gamma_5 \right) q W_{\mu\nu}^+ - e \sum_{q=u,c,t} \frac{\kappa_{tq}^\gamma}{\Lambda} \overline{t} \sigma^{\mu\nu} \left(f_{tq}^\gamma + ih_{tq}^\gamma \gamma_5 \right) q A_{\mu\nu} - \frac{g}{2\cos\vartheta_W} \sum_{q=u,c,t} \frac{\kappa_{tq}^Z}{\Lambda} \overline{t} \sigma^{\mu\nu} \left(f_{tq}^Z + ih_{tq}^Z \gamma_5 \right) q Z_{\mu\nu} \right\} + \text{h.c.}$$

>

$$G^{q}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu}, \dots \qquad |f|^{2} + |h|^{2} = 1$$

$$\begin{aligned} \mathcal{L}_{tWb} &= -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} \left(f_{V}^{L} P_{L} + f_{V}^{R} P_{R} \right) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{\sigma^{\mu\nu} \partial_{\nu} W_{\mu}^{-}}{M_{W}} \left(f_{T}^{L} P_{L} + f_{T}^{R} P_{R} \right) t + \text{h.c.} \\ P_{L,R} &= (1 \mp \gamma_{5})/2, \ \sigma_{\mu\nu} = (\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu})/2 \\ \text{SM:} \ f_{V}^{L} &= V_{tb}, \ f_{V}^{R} = f_{T}^{L} = f_{T}^{R} = 0 \end{aligned}$$

Effective Field Theory interpretation of BSM top quark interactions

arXiv:1802.07237

Include all possible gauge invariant operators of dimension 6, e.g.

For some of the anomalous vertices there is a direct correspondence to EFT operators, e.g. Wtb:

$$\begin{aligned} \frac{ig}{\sqrt{2}} \Big[\gamma^{\mu} \big(F_{1L}^{W} P_L + F_{1R}^{W} P_R \big) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_t} \big(F_{2L}^{W} P_L + F_{2R}^{W} P_R \big) \Big] \\ F_{1R}^{W} &= \frac{m_t^2}{\Lambda^2} C_{\varphi u d}^{(33)*}, \\ F_{1L}^{W} &= 1 + \frac{m_t^2}{\Lambda^2} 2 \left[C_{\varphi q}^{3(33)} = \frac{1}{2} (C_{\varphi q}^+ - \frac{1}{2} [C_{\varphi q}^V - C_{\varphi q}^A]) \right], \\ F_{1L}^{W} &= 1 + \frac{m_t^2}{\Lambda^2} 2 \left[C_{\varphi q}^{3(33)} = \frac{1}{2} (C_{\varphi q}^+ - \frac{1}{2} [C_{\varphi q}^V - C_{\varphi q}^A]) \right], \\ F_{1L}^{W} &= \frac{m_t^2}{\Lambda^2} \left[C_{u W}^{3(3)} = s_W^2 C_{u A} + s_W c_W C_{u Z} \right] \\ &= \frac{29/46}{4} \end{aligned}$$

Do we see an experimental evidence for a deviation in top quark interactions?

$$A_{\rm FB}^{t\bar{t}} = \frac{N(\Delta Y > 0) - N(\Delta Y < 0)}{N(\Delta Y > 0) + N(\Delta Y < 0)}$$
$$Y_t - Y_{\bar{t}} = Q_\ell \cdot (Y_{t_\ell} - Y_{t_h})$$

Phys. Rev. Lett. 101, 202001 Tevatron, CDF 2006

Electroweak top quark production

Measurment of Vtb parameter of CKM

$$|\mathbf{f}_{\mathrm{LV}}\mathbf{V}_{\mathrm{tb}}| = \sqrt{\frac{\sigma_{t-\mathrm{ch.,t+t}}}{\sigma_{t-\mathrm{ch.,t+t}}^{\mathrm{th}}}},$$
$$|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$$

CMS, 13 TeV, arXiv:1610.00678 :

 $|f_{LV}V_{tb}| = 1.03 \pm 0.07 \,(exp) \pm 0.02 \,(theo)$ ATLAS, 8 TeV, arXiv:1702.02859

 $f_{\rm LV} \cdot |V_{tb}| = 1.029 \pm 0.048$

ATLAS, 13 TeV, JHEP04(2017)086

 $f_{\rm LV} \cdot |V_{tb}| = 1.07 \pm 0.09$

ATLAS+CMS Preliminary	LHC <i>top</i> WG	May 2017					
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{tboo}}}$ from single top qua	rk production						
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD 83 (2011) 091503, PRD 82 (20 PRD 81 (2010) 054028	10) 054018,						
$\Delta \sigma_{ ext{theo}}$: scale \oplus PDF		total theo					
$m_{top} = 172.5 \text{ GeV}$		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$					
t-channel:							
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊧ <mark>⊢∎¦−₁</mark>	$1.02\pm 0.06\pm 0.02$					
ATLAS 8 TeV ^{1,2} arXiv:1702.02859 (20.2 fb ⁻¹)	<mark>⊨} = ⊢ 1</mark>	$1.028 \pm 0.042 \pm 0.024$					
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	<mark> - 1⊕</mark> - 1	$1.020 \pm 0.046 \pm 0.017$					
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	F-tet-1	$0.979 \pm 0.045 \pm 0.016$					
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊢ + ♦ + →</mark>	0.998 \pm 0.038 \pm 0.016					
CMS 13 TeV ² arXiv:1610.00678 (2.3 fb ⁻¹)	⊢ ∔●∔─−1	$1.03 \pm 0.07 \pm 0.02$					
ATLAS 13 TeV ² JHEP 04 (2017) 086 (3.2 fb ⁻¹)	┠╸┼═┼╶╌┨	$1.07 \pm 0.09 \pm 0.02$					
Wt:							
ATLAS 7 TeV PLB 716 (2012) 142 (2.05 fb ⁻¹)	F	$1.03\ _{-\ 0.18}^{+\ 0.15}\pm 0.03$					
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	⊢ + • + − − − 1	$1.01^{+0.16}_{-0.13}$ + 0.03 - 0.04					
ATLAS 8 TeV ^{1.3} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	► <mark>► ► ► </mark>	$1.01 \pm 0.10 \pm 0.03$					
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	┝╼┼╸┤	$1.03 \pm 0.12 \pm 0.04$					
LHC combined 8 TeV ^{1,3} ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	┢╌┼╤╾┼╌┨	$1.02\ \pm\ 0.08\ \pm\ 0.04$					
ATLAS 13 TeV ² arXiv:1612.07231 (3.2 fb ⁻¹)	⊢ − − −	1.14 ± 0.24 ± 0.04					
s-channel:							
ATLAS 8 TeV ³ PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 \ _{- \ 0.20}^{+ \ 0.18} \pm 0.04$					
		¹ including top-quark mass uncertainty _{o thec} : NLO PDF4LHC11 ₃ NPPS205 (2010) 10, CPC191 (2015) 74 ₄ including beam energy uncertainty					
	! .						
0.4 0.6 0	0.8 1 1.2	1.4 1.6 1.8					
$ \mathbf{f}_{LV}\mathbf{V}_{tb} $							

Differential Cross Section Meauserments

Intermediate Summary (I)

- Top quark is the heaviest in SM and point like object with the mass close to EW scale and comparable with mass of gold nuclear
- There are no top hadrons => clean source of fundamental information $hh \Rightarrow -\frac{b}{\sqrt{2}}$

$$\tau_t = \frac{1}{\Gamma_{tot}} \approx 10^{-25} < \tau_{had} \approx 10^{-24}$$

- Mostly one decay channel => simplify analysis $t \rightarrow Wb;$ $Br(t \rightarrow other) < 10^{-3}$
- Wide range of New Physics to search with top quark

Intermediate Summary (II) possible measurements

- Top quark mass (Δm~0.3%) and other parameters
- Total and fiducial cross sections
- Differential cross sections
- Parameters of interactions with other particles, coupling constants, structure of interactions (gtt, Wtb, FCNC, ...)
- Search for new states (resonances) decaying to top quarks (M>m_t), in the decays of top (M<m_t) or produced in association with top (W', H⁺, T, ...)

Simulation issues, t-channel single top

- b-quark in the initial state comes from gluon splitting and direct sum of the above diagrams comes to double counting.
- Consider 5FS (left top diag.) or 4FS (right bottom diag.), or match different orders (5FS LO+NLO) to avoid double counting

Simulation Issues, tW and tt production

Leading order (LO) 2->2 process tW production

Next to leading order (NLO), O(1/log(mt/mb)), 2->3 processes, tWb

Simulation Issues, tW and $t\bar{t}$ production (II)

Diagram removal scheme S. Frixione et al., arXiv:0805.3067.

Diagram subtraction Scheme T. M. P. Tait, arXiv:hepph/9909352

Kinematic separation A.Belyaev, E. Boos, arXiv:hep-ph/0003260

How to simulate associative tWb production correctly?

Simulation of tWb, additional plots

Figure 5: Transverse momentum of top

Figure 7: Transverse momentum of W boson

Figure 6: Transverse momentum of b

Figure 8: Transverse momentum of system of W boson and b quark.

Simulation of tWb, angular variables

Figure 14: Cosine between W boson and top quark in rest frame of W and b Practical details and examples from real CMS analysis to search For deviations from SM in Wtb interactions JHEP 02 (2017) 028

Computations and simulations for LHC

A. SM processes (Backgrounds) as accurate as possible
 B. Computation and simulation of large variety of BSM processes

In many cases LO is not enough

NLO, NNLO computations of rates and distributions are needed but also not enough

One needs to have effective LO/NLO (in some cases NNLO) event generators which include (depending on physics case) spin correlations, finite particle masses, finite resonance widths, interferences, proper matching between parton production and hadronization

Two main approaches

1. Programs with implemented list or library of processes PYTHIA, HERWIG, ALPGEN, ARIADNE, WPHACT and PHASE, TAUOLA, TopREX, MC@NLO, MCFM, SANC

2. Automatic programs with implemented Lagrangians (Feynman rules) CompHEP, Calchep, GRACE, MadGRAPH/MadEvent, WHIZARD/O'MEGA, SHERPA, HELAC

Various interfaces, standards (LHE, SLHA.....), data bases (MCDB....)

Simulation steps

Hard process - Matrix Element 2->2÷7 (ME generator, parton levels events, LHEF)

- Showering, ISR, FSR, fragmentation, Hadronisation (SH generators, particle level events 100s, HepMC)
- Detector response (GEANT, digital signals)
- Reconstruction programs (physics objects: e,mu, jets, bjets, photon, MET)
- Analysis software (corrections, selection, high level analysis

BSM in CompHEP Why useful?

Simple structure of Feynman rules, easy to extend, LanHEP helps a lot

Symbolic and numerical computations and event simulation including BSM 2->2,3,...6 (1->2,3,...7) and even more using batch modes, new options for cascades, FORM based version

Symbolic ansewrs for ME squared

specially useful to get formulas for simple 2->2 and 1->2,1->3 processes including BSM contributions and parameters

Needed Interfaces, all LHA, LHEF, link to MCDB

To be continued