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Symmetries in 
physics

Applications to 
elementary particle 
interactions
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Symmetries in physics

• guiding principle for finding exact 
description of Nature

• help to exactly solve idealized models

• obvious versus hidden symmetries



Symmetry in important physical systems

 Kepler problem                              

 Hydrogen atom

 Interactions of 
elementary particles

classical 
mechanics

quantum 
mechanics

quantum 
field theory

Governed by the same hidden symmetry!



Regularity of orbits from symmetry

 orbits 
precess

regularity of orbits explained by      
conservation of Laplace-Runge-Lenz vector
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Hydrogen atom

• spectrum with degeneracy

• Hamiltonian H =
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n = 1, 2, . . .

• described by quantum mechanics

• formula explained by symmetry



Spectrum determined by symmetry

• hidden symmetry:
Laplace-Runge-Lenz-Pauli operator

• operator algebra allows to find spectrum

• Hamiltonian

• conserved quantity in quantum mechanics
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Hidden symmetry in key physical systems

• Kepler problem and hydrogen atom are 
important classical and quantum mechanics 
problems that can be exactly solved 

• at higher energies, quantum 
field theory (QFT) needed

• is there a QFT with the same symmetry?

• have the same hidden Laplace-Runge-
Lenz symmetry



• In the early days of relativistic QFT, 
Wick and Cutkowski considered the following 
model:

• This is the ladder approximation to ep → ep,
 ignoring the spin of the photon.

• In the nonrelativistic limit, for massless exchange, 
this reduces to the H Hamiltonian

10

massless...

massive

p1

p3

towards a relativistic QFT

• Wick-Cutkosky model

• ladder approximation to               , ignoring spinep ! ep

• In the non-relativistic limit, this reduces to the 
hydrogen Hamiltonian



symmetry of Wick-Cutkosky model
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• model possesses an exact O(4) symmetry, even 
away from the non-relativistic limit

• consider one rung

• symmetry obvious in Dirac’s embedding formalism
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L2 L3L1

Y3

Y1

· · ·
Z

“d4L2”
1

(L1·L2)(L2·Y1)(L2·Y3)(L2·L3)
· · ·

• rung in embedding formalism

• the two vectors Y1, Y3 reduce it to SO(4)

• manifest SO(6) symmetry

• contains the usual SO(3) as a subgroup

• the remaining 3 generators are the Runge-Lenz 
vector!



Beyond the ladder approximation
• ladder approximation is arbitrary

• misses multi-particle effects, problems with unitarity

• Is there a consistent QFT with the LRL symmetry?

L1

L2 L3

• Feynman rules would have to respect the SO(6) symmetry

• the simplest way to imagine this requires a planar limit:



Standard model of elementary particles

• as of July 4th, 2012 : discovery by 
CMS and Atlas experiments

• Higgs boson: predicted 
by theorists in the 60’s

gauge group SU(Nc), Nc=3

Aµ =
N2�1X

a=1

Aµ
a t
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ij
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4
Tr

Z
Fµ⌫F

µ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ]

• core part (gluons): non-Abelian gauge theory

• large Nc limit selects planar Feynman diagrams



maximally supersymmetric Yang-Mills theory

• conjectured holographic AdS description

• SU(3) Yang-Mills theory 
(gluons)

N=4 supersymmetric 
Yang-Mills theory

QCD

• fermions in fundamental 
representation

• SU(Nc) Yang-Mills theory
• 4 fermions, adjoint repr.
• 6 scalars

Particle content similar to QCD:

Bonus features:

• supersymmetry; vanishing beta function

picture from 0803.2475 [hep-th] (L. Dixon)



Zvi Bern & collaborators studied scattering 
amplitudes in this theory
Made it to Hollywood ! 

The Parking Spot Escalation 

Sheldon Cooper busy with 6 loops… 

• they used modern 
(generalized 
unitarity) methods

• millions of Feynman 
diagrams sum up to a 
few ‘effective integrals’

• why is this the case?



Hints for dual conformal symmetry

One-loop: ‘scalar box’ integral
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Change variables to go to a dual ‘coordinate space’ picture
(not a Fourier transform!) [ Broadhurst; Drummond,J. H.,Smirnov,Sokatchev]
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Integral is ’formally’ conformal in the dual space for D = 4
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All integrals contributing to A4 up to four (five) loops have this property!
[11/27]

Hidden symmetry N=4 sYM
planar N=4 sYM has dual conformal symmetry

[Drummond, JMH, Smirnov, Sokatchev 2006; Alday, Maldacena 
2007; Drummond, JMH, Korchemsky, Sokatchev 2007]

e.g. 1-loop four-particle amplitude:
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• symmetry explains simplicity

summary Laplace-Runge-Lenz symmetry

• LRL symmetry governs several problems

• helpful for finding exact answers

N=4 super Yang-Mills theory is the 
‘hydrogen atom of the 21st century’



Applications to elementary particle 
interactions

picture: Quanta Magazine



Multi-particle collisions as the next frontier

• at high energies, many particles produced

• challenge: 5-particle processes at 2 loops

• long experimenter’s wishlist for theorists, e.g.

• challenge to evaluate the virtual corrections

pp ! 3 jets pp ! H + 2 jets pp ! V + 2 jets

picture: Quanta Magazine



‘Ideal’ and ‘real’ scattering amplitudes

We need to 
obtain 
numerical 
results for 
cross sections 
at the LHC.

This talk: tools for ‘real’ QCD coming from ‘ideal’ amplitudes

 Is there some 
simpler version 
of QCD that 
allows to 
understand key 
properties of 
scattering 
amplitudes?



Scattering amplitudes

Final results much simpler than intermediate steps! Why?

J. Henn On gluon scattering amplitudes SFB talk April 28, 2009 - p. 2/18

Motivation and outline

✔ tree-level gluon scattering amplitudes in Yang-Mills theory

number of external gluons 4 5 6 7 8 9 10
number of diagrams 4 25 220 2485 34300 559405 10525900

Questions we want to ask:

✔ can we compute tree-level amplitudes for an arbitrary number of gluons?

✔ what are the symmetry properties of the amplitudes?
Forum de la Théorie au CEA, Apr 4, 2013 - p. 7/20

Conventional approach

Simplest example: Gluon scattering amplitudes
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+ . . .S =

Number of external gluons 4 5 6 7 8 9 10
Number of ‘tree’ diagrams 4 25 220 2485 34300 559405 10525900

✔ Number of diagrams grows factorially for large number of external gluons/number of loops

✔ If one spent 1 second for each diagram, computation of 10 gluon amplitude would take 121 days!

✔ ... but the final expression for tree amplitudes looks remarkably simple

Atree
n (1+2+3− . . . n−) =

⟨12⟩4

⟨12⟩⟨23⟩ . . . ⟨n1⟩
,

ˆ
spinor notations: ⟨ij⟩ = λα(pi)λα(pj)

˜

Computational recipe:
(1) draw all Feynman diagrams

(2) compute them!

Often difficult in practice! E.g. tree-level gluon scattering:



Simplicity of amplitudes from symmetry

Tree-level gluon amplitudes are ‘secretly’ supersymmetric!

They have the full symmetry of N=4 sYM

• conformal supersymmetry

• hidden dual conformal symmetry

combine to 
Yangian symmetry

symmetry & collinear behavior fixes tree-level amplitudes!
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State of the art loop amplitudes

• frontier of knowledge pushed forward continuously
• N=4 sYM a good prediction what we can hope to 
achieve next in QCD
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known
some helicity configurations
symmetry/bootstrap methods

plots refer to planar,
massless amplitudes



Bootstrapping scattering amplitudes

Can we fix amplitudes from 
general properties?

• symmetries

• analytic properties

• physical limits



Bootstrap (pre)history

• 1994: ‘One loop n point gauge theory 
amplitudes, unitarity and collinear limits’

• 1960’s: determine S-matrix 
from analytic properties

• 2017: first application to multi-loop QCD 
integrals, non-planar

[Bern, Dixon, 
Dunbar, Kosower]

[Chicherin, JMH, Mitev]

• 2011: bootstrap in planar maximally 
supersymmetric Yang-Mills theory

[Dixon,  Drummond, JMH]

many further developments [Almelid, Bartels, Bargheer, Caron-Huot, Del Duca, Dixon, Druc, 
Drummond, Duhr, Dulat, Gardi, Harrington, JMH, von Hippel, Marzucca, McLeod, Paulos,Pennington, 

Parker, Papathanasiou, Scherlis, Schomerus, Sprenger, Spradlin, Trnka, Verbeek, Volovich]



Bootstrap approach
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cijk
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~x
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kinematic dependence

dimension

• Laurent expansion in ✏

• rational/algebraic normalization factors       

• special functions                                                       

• unknowns: finite number of coefficients                                           



Constraints on rational factors

• controlled by leading singularities

• idea: information contained in loop integrand

• perform integral over closed cycles

• residue computation much simpler compared 
to space-time integration

[Cachazo `08; Arkani-Hamed, Bourjaily, Cachazo, Trnka `10]



Finding the space of special functions

• improved understanding of iterated integrals

• ‘symbol’ technology

• canonical differential equations defining 
special functions [JMH, 2013]

[Goncharov, Spradlin, Vergu, Volovich, 2010]

• singularities of functions from Landau equations

0-1 ∞

x = t/s

s = 0 , t = 0 , u = �s� t = 0

Example: massless 4-particle scattering

singular points correspond to



Constraints from symmetries and  
physical properties

• universal behavior in (singular) limits

• soft, collinear limits

• high-energy, Regge limit
1

2
3

4

5
1

2

3

4

5P −P

• impose all known symmetries on ansatz

• constraints on discontinuities (e.g. Steinmann relations)



Sample applications

• Applications to quantities in effective field theory

• Six-particle amplitudes in N=4 sYM known to 
high loop orders

• First application to non-planar five-particle 
integrals in QCD [Chicherin, JMH, Mitev, 2017]
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Table 3. The parent diagram numerators that give pure integrands for the two-loop five-

point amplitude. Each basis diagram is consistent with requiring logarithmic singularities

and no poles at infinity. The overline notation means [·] $ h·i.
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[Li, Zhu, 2017]

[Caron-Huot, Dixon, McLeod, von Hippel, 2016]



Comment on novel methods

• N=4 sYM exciting 
laboratory for 
developing ideas

• with refinements, 
applications to QCD 
possible

• e.g. open door to 2-loop 
QCD amplitudes, needed 
for LHC physics



Conclusion

• the same hidden symmetry governs 
several important problems:

 - motion of planets
 - hydrogen atom
 - elementary particle interactions

• amplitude bootstrap

scattering amplitudes determined 
from symmetries, analytic properties, 
and physical limits



Outlook lecture 2 &3

• symmetries of scattering amplitudes

• special functions in scattering amplitudes



Thank you!

(most) illustrations by Joy Katzmarzik, 
www.leap4joy.de

http://www.leap4joy.de

