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One must be prepared to follow up the consequence of theory,
and feel that one just has to accept the consequences

no matter where they lead.

Paul Dirac

"... all things physical are information-

theoretic in origin ..."

John A. Wheeler

We say that we find New Physics (NP) when either we find a phenomenon
which is forbidden by SM in principal - this is the qualitative level of NP -
or we find a significant deviation between precision calculations in SM of an
observable quantity and a corresponding experimental value.

In 1900, the British physicist Lord Kelvin is said to have pronounced:
"There is nothing new to be discovered in physics now. All that remains is
more and more precise measurement.” Within three decades, quantum
mechanics and Einstein’s theory of relativity had revolutionized the field.
Today, no physicist would dare assert that our physical knowledge of the
universe is near completion. To the contrary, each new discovery seems to
unlock a Pandora’s box of even bigger, even deeper physics questions.
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| always knew that sooner or later p -
adic numbers will appear in Physics -
André Weil.

In the Universe, matter has manly two geometric structures, homogeneous,
[Weinberg, 1972] and hierarchical, [Okun, 1991] . The homogeneous
structures are naturally described by real numbers with an infinite number of
digits in the fractional part and usual archimedean metrics. The hierarchical
structures are described with p-adic numbers with an infinite number of
digits in the integer part and non-archimedean metrics, [Koblitz, 1977].

A discrete, finite, regularized, version of the homogenous structures are
homogeneous lattices with constant steps and distance rising as arithmetic
progression. The discrete version of the hierarchical structures is
hierarchical lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics needs (almost) all
mathematics, and the progress of modern mathematics is stimulated by
fundamental problems of theoretical physics.
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Qvelementar particles

Let as consider the following formula

1
—= 1+2)1+22)1+2Y..., |z| <1 (1)
which can be proved as
K 1-— xZ(kH)
=0+ 1+22)1+2H...1+2%) = T
(k+1) 5
[Pkl < e+ [2*"), lim pp=c=1/(1- ). (2
—00

The formula (1) reminds us the boson and fermion statsums

1
Zb:lﬁ’ Zf:ﬂ,
—z N7

and can be transformed in the following relation

Zy(w) = Zf(w)Zp(2w) Zg(4w)... (4)

z = exp (—fhw) (3)
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Qvelementar particles

Indeed, [Makhaldiani 2018]

N7

Zb(w) = = vaf(w)Zf(2w)Zf(4w)...,

| = g8
1
a=1+1+2+2%+..) =1+ 17— =0, [2b=1/2<1L (5)
By the way we have an extra bonus! We see that the fermi content of the
boson wears the p-adic sense. The prime p = 2, in this case. Also, the
vacuum energy of the oscillators wear p-adic sense.
What about other primes p? For the finite fields,

2(p) = exp(2min/p), n=0,1,p—1, 3 2, =0,
n

p—1
Zexp —BE,/h), E, =2wh(n+ a),
Till= Z/p) = O p=2,3,5,..13...29...137... (6)
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Determinant of the Vandermonde matrix

In polynomial approximation of a function
f(z) ~ Py(z) = ag + a1z + ... + anz?,

ao + a1xo + CL2(L’(2) + ...+ aNxéV = f(zo) = fo,
ag + a1x1 + agx? + ... + ayzy = f(z1) = fi,

ao + a171 +a2x?\,+...+a]\/x% = f(zn) = fn, (7)

the coefficients a,,, n =0,1,..., N are defined as a solutions of the linear
system of equations

VA - F7 AT - (a/07a/17"'7aN)7 FT — (f07f17"'7fN)7

1 x x% xév
1 = x% x{v

V=|1 2o 3 .. ¥ (8)
1 xn x?v x%
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Determinant of the Vandermonde matrix

Determinant of the Vandermonde matrix
AN = [Insmens0(@m — @n), (A¢ =1, by definition). Indeed,

A1 = x1 — w0, (9)
1 =z x% 1 T a:g
Ao =det| 1 x% =det| 0 xz1—xg x% — x%
1 zo z5 0 zo—x0 73— 23
1 x1+ a9
= (z1 — @o) (22 — wo)det | s + T )

= (z2 — 21)(22 — 20) (21 — @0),

Ay = (N —2N—-1)-.(TN — 20)AN_1 = H Zn,
1<n<N

Zn = (T — Tp—1)-..(Tn — x0) (10)

There are two exceptional (simplest) case for discrete values of x: when

T =p" n=0,1,2,...,N, and x, = xg +nh, n=0,1,2,..., N.
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Determinant of the Vandermonde matrix

In the first, geometric progression, case

Zn _ (pn _ pn—l)(pn—l _pn—Z)m(pln . 1)
(1+2+...+n—1)(p _ 1)npn —1p" -1 p-—1

=p p—) p—l S
= p"* 2 (p — 1)"[nl,), (], = o M= A=)

No=p —p)P*—Dp—-1) =pp-— ) (p+ 1)
= Z2Z1 p(p — )2(P+ D(p—1),

= I Ze=r'w-1" ] Wt (11)

1<n<N 1<n<N
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Determinant of the Vandermonde matrix

1 1+e)Mt 1
a:§Znn—1 Zx )@ | 1——%\50
0
1 N+ 1)N N +1)N(N -1
:§(N+1+( z ) 6+( + )3'( )62+...)(2)|5:0
_ (N+1N(N -1) '
— ; :
N
=> n=N(N+1)/
0
Ay =plp—1)*p+1), a=1,b=3. (12)
Forp>1
[alp = p*71, [nlpl = p" 702,
N
. . N(N +1/2)(N +1
Ay o~ p2atd = pe oo ( /3)( ):lenz’
Al ~Dp, AQ 2])5. (13)
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Determinant of the Vandermonde matrix

For p < 1,Ax ~ (=1)%% a= N(N?—-1)/6, b= N(N +1)/2, [n], ~
1, Ay >~ —p. Having expression for Ay in p, it is ease to obtain
corresponding expression in arithmetic progression case by putting

p=1+4h: Ax(h) =h IV n!, b= N(N +1)/2, Ay = 2h3. We obtain
the same result by direct calculation:
Zn =hx2hx..xnh="h"n!, Ax(h)=1]]Z,.
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Fractal Calculus (H) and Some Applications

Let us consider the integer derivatives of the monomials

dn
d—nxm = m(m—1)..(m—(n—1))z™", n<m,
i
_ _Im+1)
'm+1-— n)x

L.Euler (1707 - 1783) invented the following definition of the fractal
derivatives,
d_axﬁ _ F(ﬁ + 1) ‘xﬁfa.
dx® r+1-a)
J.Liouville (1809-1882) takes exponents as a base functions,
dOé

dze

(14)

(15)

(16)
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Fractal Calculus (H) and Some Applications

The following Cauchy formula

I&Cf:/o dxn/o nil dxng.../o delf(xl): ﬁ/o dy(z — )" L f(y)

permits analytic extension from integer n to complex «,

18.f = ﬁ /0 “dy(e - ) () (18)
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Fractal Calculus (H) and Some Applications

J.H. Holmgren invented (in 1863) the following integral transformation,

D3ef = /r o (bt (19)

It is easy to show that

- I'(m+1)
D-Qpm m+a _  mta
cx F(m—l— 1 +a) (.%‘ c )7
D2e®™ = a=%(e™ — %), (20)

so, ¢ = 0, when m + « > 0, in Holmgren's definition of the fractal calculus,
corresponds to the Euler's definition, and ¢ = —oo, when a > 0,
corresponds to the Liouville's definition.
Holmgren's definition of the fractal calculus reduce to the Euler's definition
for finite ¢, and to the Liouvill's definition for ¢ = oo,

Dotf = Dif = Doif,
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Fractal Calculus (H) and Some Applications

We considered the following modification of the ¢ = 0 case
[Makhaldiani, 2003],

1

R _ bl
D2t = o O/ 1= 4" at)dt, = s Blo, 0a) (o)
— ol g @) fat) = fo) 22)

As an example, consider Euler B-function,

1 «
Bla§) = [ doft ~ ol ol ! = D(@)T(3)D5 D} "1 = %(m
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Negative Binomial Distribution

Negative binomial distribution (NBD) is defined as

P(n) = ”"—*?p"u —py, S P@) =1, (24)

I
n!T(r —

The Bose-Einstein distribution is a special case of NBD with r = 1.

NBD provides a very good parametrization for multiplicity distributions in
ete™ annihilation; in deep inelastic lepton scattering; in proton-proton
collisions; in proton-nucleus scattering. Hadronic collisions at high energies
(LHC) lead to charged multiplicity distributions whose shapes are well fitted
by a single NBD in fixed intervals of central (pseudo)rapidity 7.
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Multiplicative Properties of NBD and Corresponding Motion Equations

A Bose-Einstein, or geometrical, distribution is a thermal distribution for
single state systems. An useful property of the negative binomial
distribution with parameters

<n> k

is that it is (also) the distribution of a sum of k independent random
variables drawn from a Bose-Einstein distribution with mean < n > /k,

_ 1 ( <n> )n
" <n>4+l<n>+1 .
_ hw/2 —Bhw/2\  —Bhw(n+1/2 _
_ (P/2 _ o Bhw/2) o~ Bhu(n /)’T_MT“
<n>
1
ZPnzl, ZnPn:<n>:W,T:hw<n>,<n>>>1,
n>0
Pz) =) a"P,=(1+<n>(1-2)"" (25)
n
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Multiplicative Properties of NBD and Corresponding Motion Equations

Indeed, for
n=mny+ng+ ..+ ng, (26)

with n; independent of each other, the probability distribution of n is

P, = Z 5(n72ni)pn1...pnk,

ni,...,Ng

P(z) =) a"P, = p(x)* (27)

This has a consequence that an incoherent superposition of N emitters that
have a negative binomial distribution with parameters k, < n > produces a
negative binomial distribution with parameters Nk, N < n >.

So, for the GF of NBD we have (N=2)

F(k,<n>)F(k,<n>)=F(2k,2<n>) (28)
And more general formula (N=m) is

F(k,<n>)"=F(mk,m<n>) (29)
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Multiplicative Properties of NBD and Corresponding Motion Equations

We can put this equation in the closed nonlocal form
QuF = I, (30)

where

kd <n>d_x1d+%l (31)

D
— p=¢, >r~-%_ Ne
@ =47, dk Td<n>  du " dr

Note that temperature defined in (25) gives an estimation of the Glukvar
temperature when it radiates hadrons. If we take fiw = 100M eV, to

T ~ T, ~200MeV corresponds < n >=~ 1.5 If we take hw = 10M eV, to
T ~ T, ~200MeV corresponds < n >~ 20. A singular behavior of < n >
may indicate corresponding phase transition and temperature. At that point

we estimate characteristic quantum hw.
We see that universality of NBD in hadron-production is similar to the
universality of black body radiation.
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Riemann Zeta Function

The Riemann zeta function ((s) is defined for complex s = o + it and
o > 1 by the expansion

C(s) = Zn*s, Re s > 1,

n>1

az 1 & T
— 58 _ tsfl —0zt
T 17$‘x—11 F(S) /0 € 17$‘x—11

1 [ 1 1 [ lat
_ ts_l tO0r _ / — =7 32
I'(s) /0 e 1 Ir—o0 T(s) Jo et—1’ T=e"(32)

All complex zeros, s = o + if3, of ((o + it) function lie in the critical stripe
0 < 0 < 1, symmetrically with respect to the real axe and critical line

o =1/2. So it is enough to investigate zeros with a < 1/2 and § > 0.
These zeros are of three type, with small, intermediate and big ordinates.
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Riemann Zeta Function

The Riemann hypothesis states that the (non-trivial) complex zeros of ((s)
lie on the critical line o = 1/2.

At the beginning of the XX century Polya and Hilbert made a conjecture
that the imaginary part of the Riemann zeros could be the oscillation
frequencies of a physical system (¢ - (mem)brane).

After the advent of Quantum Mechanics, the Polya-Hilbert conjecture was
formulated as the existence of a self-adjoint operator whose spectrum
contains the imaginary part of the Riemann zeros.

The Riemann hypothesis (RH) is a central problem in Pure Mathematics
due to its connection with Number theory and other branches of
Mathematics and Physics.
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Functional Equation for Zeta Function

The functional equation is

61~ 5) = 55 cos(F)c(6) (33)

From this equation we see the real (trivial) zeros of zeta function:
¢(=2n)=0, n=1,2,.. (34)

Also, at s=1, zeta has pole with reside 1.

From Field theory and statistical physics point of view, the functional
equation (33) is duality relation, with self dual (or critical) line in the
complex plane, at s = 1/2 +if3,

. 2I0(s) s, 1
({5 i8) = Tt oo + i), (3)

we see that complex zeros lie symmetrically with respect to the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds to the infinite
value of the free energy,

F=-Th(. (36)
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Functional Equation for Zeta Function

At the point with 8 = 14.134725... is located the first zero. In the interval
10 < 8 < 100, zeta has 29 zeros. The first few million zeros have been
computed and all lie on the critical line. It has been proved that
uncountably many zeros lie on critical line.

The first relation of zeta function with prime numbers is given by the
following formula,

() =JJa-p*)"" Res>1. (37)

p

Another formula, which can be used on critical line, is

((s) = (1= 2771 3 (=)

n>1
1 1 [t ldt
_1—215F(s)/0 et+1’R65>0 (38)
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From Qlike to Zeta Equations

Let us consider the values ¢ = n,n = 1,2, 3, ... and take sum of the
corresponding equations (30), we find

F
—D)F = —— 39
(-D)F = —— (39)
In the case of the NBD we know the solutions of this equation.
Now we invent a Hamiltonian H with spectrum corresponding to the set of
nontrivial zeros of the zeta function, in correspondence with Riemann
hypothesis,

n . n
-D, =—=+iH,, H,=i(=+ D,),

2 2
n
Dn = $181 + .%‘282 + ...+ wnan, H;l’— = Hn = Z Hl(.%'m),
1 1 m
Hy = i( +20,) = —3{@p+ po), p=—id, (40)

The Hamiltonian H = H,, is hermitian, its spectrum is real. The case
n = 1 corresponds to the Riemann hypothesis.
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From Qlike to Zeta Equations

The case n = 2, corresponds to NBD,

F 1
14+iH)F = ——, ¢(1+iHa)|p = ——
¢(1 +iHa) 17574( tile)lr = T
F(z1,023h) = (1+ — (1 — b))~ (41)
x2
Let us scale zo — Az2 and take A — oo in (41), we obtain
1 1
Z g -Q-h)ez _
(5 +iff(@)e e
1 L e
i@y s -1
1 1
H($):i(§+x3x):—§(ﬂlﬁ+ﬁx)7 HT =He=1—h. (42)

Let us take an eigenvector |n > with eigenvalue E, of H, than

1 1
< n|<(5 + iH(z))e” =M= > = C(5 +iBn(z)) < nle” =M
1
For zeros of Zeta function, E,,, the eigenfunctions fulfils the following conditions

1 —(1—-h)z
<tl—gpye g >=0 <7le (A=hz ~ . (44)
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From Qlike to Zeta Equations

For eigenvalues of H, we have

1 1
Hln>=Ey|ln>, H= 2(5 +20y), |n >~z s, = =5 = iEy,
1 1
< n|€(1—h):r -1 > <(§ + ,LEn)a
1
< nle”(=Mz 5 L(5 + iEn). (45)
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Zeta functions

Let us consider the following finite approximation of the Riemann zeta
function

N
B 1 = e~t _ o~ (N+1)t
(n(s) = nz::ln =10 /0 it
=((s) — An(s), Res>1
1 o0 tsfl 1 0 tsfleth
O =1 ), W O =1 [ @ @)

Another formula, which can be used on critical line, is

((s) = (1= 2171 3 (=)

n>1
1 L =
_ R 0 47
1215F(8)/0 Fr1 07 (47)
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Zeta functions

Corresponding finite approximation of the Riemann zeta function is

N
CN(S) _ (1 . 2175)71 Z(il)nflnfs
n=1
1 1 [t 11— (—e H)N)dt
T 1_2-sT(s) /0 11 = () = An(s),
1 0o tsfl(_eft)N)
An(s)=—— | dt——"= 2 ' LLN"® 4
N(S) F(S)A 6t+1 ( 8)
at a (nontrivial) zero of the zeta function, sg, (n(so) = —An(so). In the

integral form, dependence on N is analytic and we can consider any
complex valued N.
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Zeta functions

It is interesting to see dependence (evolution) of zeros with N. For the
simplest nontrivial integer N = 2,

Gas) =(1-217*)71(1-279)
C1-27 221 27l2_1/\2 (49)
T 1_9l-s T 9s_9 2s—1/2 _ /2

we have zeros at s, = 2min/In2, n=0,£1,£2, ...

27/In2 = 9.06, so, in the interval Ims, € (0,100) we have 10 nontrivial
zeros. The first nontrivial zero of the zeta function, by Mathematica, is:
s1 = 1/2+1i14.1347. The last zero in the interval I'ms, € (0,100) is

S99 — 1/2 + 2988312

Another finite approximation of the zeta function is

N

Con(s) = H( prn ), Gpn(s) = (1 —p,°)" ! (50)

n=1

where py is IN-th prime number.
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We consider a novel method to generate a polynomial expression for each
of the Euler sums,

N
By=) n", ke ZT(k=0,1,2,..) (51)

n=1
One of the way of calculation of the sum
NkJrl
T k+1

we show by explicit calculation of Ej.
For particular values N =1, 2 and 3, we have

Er(N) + Py(N), Po=ax N* 4o N* 1+ 429 (52)

x2+x1+$0:1—1/3:2/3,
4$2+2$1+.’L’0:5*8/3:7/3,
Ozy + 371 + 30 = 14— 27/3 = 5 (53)

Subtracting from the second equation the first and from third the second,
we obtain
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3Ty + 11 = 5/3,
51’2 +x1 = 8/3 (54)

than we have
2$2:1:>$2:1/2U
.%‘125/3—3{122:1/6=>.%'o:2/3—.%'1—.%‘222/3—1/6—1/2:0,U
E>x(N) = N3/3+N?/2+ N/6
=NN+1)(2N+1)/6 =N(N+1/2)(N +1)/3 (55)

Note that, the right hand side have a sense also for NV < 0 and has zeros at
N=0,-1/2,-2.
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For general case Ej(NN) we have
2K(N) = detVi(N)/detWi(N),

1 N . NF

k
detWy(N) = det LN N ,

1 Nep1 - Ny

1 N Nf o
1 N2 . Nk T

detVi(N) =det | = = _ 2 , X =
etVy(IV) = de E(Ny) Ey(Na) . Ey(Ngyr) .
1 Niy1 - NE, Tk
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As a numbers N,, we can take any different integers, but the simplest
choice is: Np+1 = N, +1, Ny =1, as in considered explicit calculation for

Es. In this case, Ex(N +1) = Ex(N) + (N + 1),
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Finite Sums from Generating Function

We propose the following compact form for Ej.

k
Ei(N) = = P(z,N)lz=o = D*P = PO(0,N),

Tk
N e+l _
g = (57)

We take also the following slightly simpler form of P(x, N), for
k=1,2,3,..

e(N+1)x -1

N
P(z,N) =) e =——— (58)

et —1
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Finite Sums from Generating Function

As an example, let us calculate E;(N),

(N + 1)6(N+1)z (e(N+1)z _ 1)ez

Ev(N) = e* —1 B (e* —1)2
(N +1)eWVHDz(ez _ 1) — (e(N+D)z _ 1)z
- @17 '
(N + DA+ (N + D)@+ ) = (N + Do+ D22 44
(z+..)?
=(N+1)24+(N+1)/2—(N+1) — (N +1)%/2=N(N +1)/2 (59)
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Finite Sums from Generating Function

We can present the derivative operator in the complex integral form

F90) = o § L) (60)

2w Zk+1

In this form the calculation gives

1 dz (N4 1)z + (N +1)22%/2
S“’N)—z—m?{; o122
1 dz (N +1)+ (N +1)%z/2
T omi ) 22 14+ 2/2
:ﬁ %le)uz/2)+(N+1)2/2:N(N+1)/2 (61)

By this example we see that the second form of calculation is easier.
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Supermatematics

Why supersymmetry is
So universal?

Supermathematics unifies discrete and continual aspects of mathematics.
Boson oscillator hamiltonian is

Hy = hw(bTb +bb1) /2 = hw(btb+a), a =1/2. (62)
corresponding energy spectrum Ej,, and eigenfunctions |n, > are
Hb|nb >= Ebn|nb >, By, = hw(nb A a), ny,=0,1,2,... (63)

Fermion oscillator hamiltonian, eigenvectors and energies are
Hp=ho(f"f = ff1)/2=ho(f"f - a),
Hf:\nf >= Efn\nf >, Efn:hw(nf—a), ny=0,1. (64)
For supersymmetric oscillator we have
H = Hy,+ Hy, Hlny,ny >= hw(ny + nyg)|ny, ng >,
|nb,nf >=|ny > |7”Lf >, Enb,nf = hw(ny + nf) (65)
For background-vacuum |0,0 >, energy Ej o = 0. For higher energy states
In—1,1>, |n,0>, E,_11 = E, . Supersymmetry needs not only the
same frequency for boson and fermion oscillators, but also that 2a = 1.
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Supermatematics

A minimal realization of the algebra of supersymmetry

{Q.Q7}=H {Q,Q}={Q",Q"} =0, (66)

is given by a point particle dynamics in one dimension, [Witten 1981]
Q= f(—iP+W)/V2, QFt = fH(iP +W)/V2, P = —i0/da(67)

where the superpotential W (x) is any function of x, and spinor operators f
and fT obey the anticommuting relations

{f.f7r=1, f2=(f")?=0. (68)

There is a following representation of operators f, f* and o by Pauli spin

matrices
f_01—i02_ 00 f+_01+1'02_ 0 1
- 9 —\1 0 ) B 9 —\0 0 )

1 0
s=an=(§ %) (69)
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Supermatematics

From formulae (66) and (67) then we have
H=(P>+W?+oW,)/2. (70)

The simplest nontrivial case of the superpotential W = wzx corresponds to
the supersimmetric oscillator with Hamiltonian

H=Hy,+H;, Hy=(P*+w?2?)/2, H; =wo/2, (71)
The ground state energies of the bosonic and fermionic parts are
Ey =w/2, Ef=—-w/2, (72)
so the vacuum energy of the supersymmetric oscillator is

< 0|H|0 >= Ey = Ey + Ef =0, |0 >= ]nb,nf >=|np > ]nf >. (73)
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Supermatematics

Let us see on this toy - solution of the cosmological constant problem from
the quantum statistical viewpoint. The statistical sum of the
supersymmetric oscillator is

Z(B) = ZyZy, (74)
where
G = Z e BB — o=Pw/2 | —Bw(1+1/2) L _ S*Bw/2/(1 _ e*ﬁw)
Zp = Z e PEm — Pw/2 4 =Bw/2 (75)

In the low temperature limit,
Z()=1+0(e™™) =1, f=T7", (76)

so cosmological constant A ~ [nZ — 0. From observable values of 5 and
the cosmological constant we estimate w.
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Supermatematics

The Riemann zeta function (RZF) can be interpreted in thermodynamic
terms as a statistical sum of a system with energy spectrum:
E,=lnn, n=1,2,...:

()= n*=2Z(B) =) exp(—BEy),

n>1 n>1
B=s, E,=Inn, n=1,2,... (77)
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Path integral formulation of the quantum and classical dynamics

After formulation of the mathematical framework of quantum mechanics
(QM), operatorial formulation of QM, Koopman and von Neumann gave
operatorial approach to classical Hamiltonian mechanics [Koopman 1931],
[von Neumann 1932]. After Wiener introduction of the functional integrals,
Dirac and Feynman gave formal functional integral formulation of the
quantum theory [Feynman, Hibbs 1965]. Recently Gozzi invented functional
integral formulation of the classical theory [Gozzi et al 1989]. The
path-integral formulation of Hamiltonian classical mechanics.

For supersymmetric gauge theories stochastic quantization appears to have
one definite advantage: since a gauge fixing term is unnecessary,
supersymmetry will not be broken at any step. This holds both for the
Abelian and non-Abelian case. It appears at the moment as if stochastic
regularization is the only viable candidate for a regularization scheme which
manifestly conserves both supersymmetry, chiral symmetry and gauge
invariance. However, supersymmetry is related to stochastic quantization
also at a much deeper level. As an example, even purely scalar field theories
will, when quantized stochastically, display a "hidden" supersymmetry. This
issue, is intimately connected with the existence of a so-called 'Nicolai map’
for supersymmetric field theories [Nicolai 1980].
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Path integral formulation of the quantum and classical dynamics

Parisi-Sourlas 'dimensional reduction’ of scalar field theories in external
random fields [Parisi, Sourlas 1979], is closely related to both
supersymmetry and stochastic quantization. This becomes apparent when
one establishes the connection to the Nicolai map.

The phenomenon of dynamical 'dimensional reduction’ was first noted
within the context of critical phenomena associated with spin systems in
random external fields. Systems very close to such a situation can in fact
be created and studied in the laboratory. From renormalization group
theory, the detailed long-distance behaviour of, for example, Ising spin
systems can, sufficiently close to a critical point, be understood from the
behaviour of a scalar field theory

5= / Pr(Eo(=02 + mDp + V(@) V(o) = ag® + g0 (78)
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Path integral formulation of the quantum and classical dynamics

We start in the simplest possible way by considering the Langevin equation
associated with a point particle being subjected to random background
noise. This corresponds to the very real physical problem of the Brownian
motion of a (classical) particle in a heat bath. Surprisingly, this problem
turns out to be equivalent to a supersymmetric quantum mechanical
problem. Let us now see why. The Langevin equation for the particle reads

dzx . 0S
- T = 5 + n(t) (79)

where x represents the space coordinate of the particle. Expectation values
are, as usual, evaluated as the path integral

< a(tr)-.. 2(tn) >:/d77 (1), x(tn)exp(—i/dtn(t)Q) (80)

over a Gaussian noise, i.e.

< n(tl)n(tg) >= 2(5(t1 = tg) (81)
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Path integral formulation of the quantum and classical dynamics

we now attempt to make a change of variables: 7 — x. This involves the
Jacobian

det(dn(t)/6x(t')) = det((d/dt + V")o(t —t')) (82)

where we have introduced V' = §5/dz.
For partition function Z,

2= [ anexp(— [ dm(v?)

_ / dndadet(d/dt + V')5(& + V (1)) exp(~ / dtn(t)?)

= /dxdet(d/dt—irv’) exp(—i/dt(ﬂb—i— V)?)

= /dxd¢d2/_) exp(—9),

S = / dt(i(i« + V)2 = (d/dt + V') (83)

This system is recognized as Witten's example of supersymmetric quantum
mechanics.
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Analytic functions and massless particles

The theory of analytic functions of a complex variable occupies a central
place in analysis. Riemann considered the unique continuation property to
be the most characteristic feature of analytic functions. GPF do possess the
unique continuation property, and each class of GPF has almost as much
structure as the class of analytic functions. In particular, the operations of
complex differentiation and complex integration have meaningful
counterparts in the theory of GPF and this theory generalizes not only the
Cauchy-Riemann approach to function theory but also that of Weierstrass.
Such functions were considered by Picard and by Beltrami, but the first
significant result was obtained by Carleman in 1933, and a systematic
theory was formulated by Lipman Bers [Bers 1952] and llia Vekua
(1907-1977) [Vekua 1962]. For more resent results see [Giorgadze 2011].

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 29 July 45 /131



Analytic functions and massless particles

Analytic function f = w + v satisfy the partial differential equation
0z f = 0, where complex differential operators are defined as

0 1 , 0 1 ,
Generalized analytic functions f = u + iv satisfy the following generalized
Cauchy-Riemann equation [Vekua 1962]

Of=Af +Bf+J A= Ag+iA;, B=By+iBy, J=ji+ij2 (85)
or in terms of the real v and imaginary v components canonical form of the
elliptic systems of partial differential equations of the first order

Uy — Vy = au +bv + j1, a = Ag+ By, b= —A1 + By,
Uy + Uy = cu+dv+ jo, c= A1 + By, d= Ap — B, (86)

or in matrix form

O =

Dy =Ey+J, D= < gz i > — 8, — i020,,

- (2)0-(D)0-(2)
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Analytic functions and massless particles

In the classical sense by a solution of the system of equations (96) we
understand a pair of real continuously differentiable functions

u(z,y), v(x,y) of the real variables x and y which satisfy this system
everywhere in a domain GG. Such solutions, however, exist only for a
comparatively narrow class of equations.

The formal solution of the canonical equation for GPF (96) is

Yv=1vo+RJ, R=(D—-E)"}, (D—-E)y=0. (88)

Let us introduce a length parameter [ = h~!, which is of order of the
source J size, x,, — lx,. Then, for the resolvent R, we will have the
longwave and shortwave expansions,

Riw:=(D—-E)l'=—EF! Z I"(DE~Y)",
n>0

Rsww = (ID — E)™' = hD™' > " w"(ED™1)", (89)
n>0
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Analytic functions and massless particles

d

—C

E~l = *ab ) /AR, Ap = ad — be,

Dl =A7 ( O O ) = A0, +i02d,), Ap = 2+ H]90)
Yy T

There is a fairly complete theory of generalized analytic functions; it
represents an essential extension of the classical theory preserving at the
same time its principal features [Vekua 1962].

From the previous consideration it is natural to make the following four
dimensional extention

D=0, — i02ay = Dy =0, —io,Vy = 72’(8T + O'nVn) = —1D3,
OnOm = Onm + 1€nmkOk (91)
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Analytic functions and massless particles

In matrix form

(9 —id, —ido—-0, ) _,( 0 —0
D4—(z'am+ay 8, + i, )—2 o 9 )
=t+1iz, n=y+ix,

I

D o aq' ar az az 7 'Lay — 87 ag
B=\ o +i9, 0.-0, )\ 0 04 )°
Ay = 4(8?5 + 3,377), Az = 4(3E+ - 836)7
t=7+2 ¢=2x+1y, (92)

In the Minkowski spacetime for analytic functions in matrix form D31 = 0
or in components

O_u+0v =0, 0rv+0u=0= (0%, — 9%)u, =0,
up =u, Uy =" (93)

In euclidian space Dy = 0,

Ocu—Ozv =0, Orv+ hu =0= (3?5 + agﬁ)un =0, (94)
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Analytic functions and massless particles

So, u,, are harmonic or wave functions.

O_u + 0.v = au + bv + ji,
0+v + Ozu = cu + dv + jo, (95)

or in matrix form

Dy=Ey+J D= %j g< =0r + 0, Vi,
S aF

p=(oh)ou=(2)r=(2) oo

It is curious to imagine that Hamilton knew about neutrinos equation a
hundred years before Weil :) In the extended version, to the E—terms

corresponds neutrinos mass.
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Analytic functions and massless particles

Now SM is well established theory of fundamental physics with several
indications, aesthetical and theoretical, on father developments, on physics
beyond SM (BSM), on new physics. One well established step toward BSM
is neutrino masses. In SM the neutrinos are massless. In SM we have three
type of lefthanded neutrinos v,,, n = e, u, 7 which interacts weakly with
corresponding leptons, lepton number is conserved. Corresponding part of
the SM lagrangian is

LA VW, + 7 (10 = M)V, 7 = (7,7,7.) (97)

where M is a 3 x 3 matrix in flavor space. If the matrix is nondiagonal, we
diagonalize it by an unitary transformation:

v(v0 — M)v = Uy (70 — my)Vnp,

U~ 1MU diag(mi, mz, m3), v = UMy,
I v, Wy, = Ly Ungve W), (98)
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Analytic functions and massless particles

If the Koide formula works for lepton masses, may be it works also for
neutrino masses. If the lepton masses are an unique solution of the Koide
formula, than neutrino masses are proportional to the lepton masses:

Mp = an7 n=eWurT.

(Super)symmetry, stochastic dynamics and kaleidoscope effect. Time
reflection invariance and dynamical origin of spin.

The meromorphic functions form a field, in fact a field extension of the
complex numbers.

Weyl proposed the following 2-component equations for the zero mass spin
1/2 particles in 1929,

(Op — 8,00)W =0, W = (u,v)" (99)

for the wave functions of the left-neutrino-right-antineutrino pairs. At that
time they were rejected by Pauli because of their lack of invariance with
respect to space inversion. Indeed, it was always a basic principle that the
wave equations should be invariant under all Lorentz transformations, not
just those in the connected component. In particular, invariance under
space inversion, also called parity conservation, was demanded.
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Analytic functions and massless particles

In the mid 1950s, in experiments performed by Wu following a famous
suggestion by Yang and Lee that the neutrinos did not have the parity
conservation property, it was found that the neutrinos emitted during beta
decay had a preferred orientation. Experimental evidence further indicated
that the spin is always antiparallel to the momentum for the neutrinos so
that the neutrinos are always left-handed. After Wu's experiment, Landau
and Salam proposed that the Weyl equation for the left-handed
neutrino-right-handed antineutrino pairs be restored as the equation
satisfied by the neutrino. It is this equation that now governs massless
particles, not only in Minkowski spacetime but also in curved spacetime.
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Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by the following
system of the ordinary differential equations [Arnold, 1978]

En =vn(z), 1 <n <N, (100)

&, stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and
OH,
vp(x) = 6nm—0, 1<n,m<2M, (101)
Oz,

the system (100) is Hamiltonian one and can be put in the form

.’f’Jn = {$n,H0}0, (102)
where the Poisson bracket is defined as
04 OB 5 8
A B =A B 1
{ ’ }0 axngnm axm ’ ( 03)

= Enm
0%y, O,
and summation rule under repeated indices has been used.

29 July 54 / 131

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru )



Hamiltonization of the general dynamical systems

Let us consider the following Lagrangian
L = (&, — vp())Yn (104)
and the corresponding equations of motion
. . ov
Ep, = Un(T), P = —#wm. (105)
n

The system (105) extends the general system (100) by linear equation for
the variables 1. The extended system can be put in the Hamiltonian form
[Makhaldiani, Voskresenskaya, 1997]

iy = {Tn, Hi }1, %0 = {n, Hi 11, (106)
where first level (order) Hamiltonian is
Hy = vy (z)Yy, (107)
and (first level) bracket is defined as
— - — =

06 _0 0,

{4, B} = A( (108)
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Hamiltonization of the general dynamical systems

Note that when the Grassmann grading [Berezin, 1987] of the conjugated
variables z,, and 1, are different, the bracket (108) is known as Buttin
bracket[Buttin, 1996].

In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988] for the
Hamiltonian treatment of systems defined by first-order Lagrangians, i.e. by
a Lagrangian of the form

L = fo(x)an — H(z), (109)
motion equations
. 0H
fmnxn = %7 (110)
for the regular structure function f,,,, can be put in the explicit
hamiltonian (Poisson; Dirac) form
. _, 0H 0H
where the fundamental Poisson (Dirac) bracket is
{$n7$m} = n_nlw fmn = amfn - anfm (112)
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Hamiltonization of the general dynamical systems

The system (105) is an important example of the first order regular
hamiltonian systems. Indeed, in the new variables,

Yn = Tn, Y = Pn, (113)
lagrangian (104) takes the following first order form
L= (tn ~ n(@)ln = 3 (En¥n — Ynn) — vn(z)bn
= el — Hy)
= o) — H), fo = Sube™ H = valy")s?,
w _ Ofh  Ofn caby . (114)

" Oys o Oyh,
corresponding motion equations and the fundamental Poisson bracket are

0H

yg = 5ab5nm—b = {y27 H}? {ygw yfn} = €abOnm- (115)
WY
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Canonical Quantization of the general dynamical systems

To the canonical quantization of this system corresponds

a - . X . L 0
[yfuyfn] = theahOnm, y}L = yrlu yrQL = _Zhayl (116)
n

In this quantum theory, classical part, motion equations for y., remain
classical.
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Nambu dynamics

Nabu — Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories [Faddeev, Takhtajan, 1990]. But HM is
in a sense blind; e.g., it does not make a difference between two opposites:
the ergodic Hamiltonian systems (with just one integral of motion)

[Sinai, 1993] and (super)integrable Hamiltonian systems (with maximal
number of the integrals of motion).

Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is a proper
generalization of the HM, which makes the difference between dynamical
systems with different numbers of integrals of motion explicit (see,
e.g.[Makhaldiani, 2007] ).
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Nambu dynamics

In the canonical formulation, the equations of motion of a physical system
are defined via a Poisson bracket and a Hamiltonian, [Arnold, 1978]. In
Nambu's formulation, the Poisson bracket is replaced by the Nambu
bracket with n + 1,n > 1, slots. For n = 1, we have the canonical
formalism with one Hamiltonian. For n > 2, we have Nambu-Poisson
formalism, with n Hamiltonians, [Nambu, 1973], [Whittaker, 1927].
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Nambu dynamics, system of three vortexes

The system of IV vortexes can be described by the following system of
differential equations, [Aref, 1983, Meleshko,Konstantinov, 1993]

N

. . 0

Zn =1 E ﬁ, 1§’I’L§N, (117)
m;én n m

where z, = x,, + iy, are complex coordinate of the centre of n-th vortex,
for N = 3, and the quantities
2
Uy = l’I’L|22 - Z3|27
ug = In|zg — z1|°,
uz = In|z; — 2|2 (118)
reduce to the following system

U = 71(e"? — e3),
Uy = y2(e" —e"),
Us = y3(e"t — e"2), (119)
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Nambu dynamics, system of three vortexes

The system (119) has two integrals of motion
3 3

leze Uq
1=

Us

7H2 - -
= vy,

and can be presented in the Nambu—Poisson form, [Makhaldiani, 1997,2]

0H, O0H ® ql
! 2 _{$27H17H2} —wwkz_

Q:L'
© T Wik gy Ou; Oup, Y5 Ve

where
Wijk = €ijkPy P = 717273
and the Nambu—Poisson bracket of the functions A, B, C on the
three-dimensional phase space is
0A OB 0C
A, B, C 120
{ s Dy } wl]ka au] aUk ( )

This system is superintegrable: for N = 3 degrees of freedom, we have
maximal number of the integrals of motion N — 1 = 2.
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Toward the Finite Unified Field Theory

The reduction of the dimensionless couplings in GUTs is achieved by
searching for RD integrals of motion-renormdynamic invariant (RDI)
relations among them holding beyond the unification scale. Finiteness
results from the fact that there exist RDI relations among dimensional
couplings that guarantee the vanishing of all beta-functions in certain GUTs
even to all orders. In this case the number of the independent motion
integrals N is equal to the number of the coupling constants. Note that in
superintegrable dynamical systems the number of the integrals is < N — 1,
so the RD of the finite field theories is trivial, coupling constants do not
run, they have fixed values, the renormdynamics is more than
superintegrable, it is hyperintegrable. Developments in the soft
supersymmetry breaking sector of GUTs and FUTs lead to exact RDI
relations, i.e. reduction of couplings, in this dimensionful sector of the
theory, too. Based on the above theoretical framework phenomenologically
consistent FUTs have been constructed. The main goal expected from a
unified description of interactions by the particle physics community is to
understand the present day large number of free parameters of the SM in

terms of a few fundamental ones. In other words, to achieve reduction of
couplings at a more fundamental level.
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Nambu dynamics, extended quantum mechanics

As an example of the infinite dimensional Nambu-Poisson dynamics, let me
conside the following extension of Schrodinger quantum mechanics
[Makhaldiani, 2000]

2
V= AV — V?, (121)
iy = =AY+ V. (122)
An interesting solution to the equation for the potential (121) is
4(4 —d)

where d is the dimension of the spase. In the case of d = 1, we have the
potential of conformal quantum mechanics.

The variational formulation of the extended quantum theory, is given by the
following Lagrangian

L=V, — AV + %VQ)Q/). (124)
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Nambu dynamics, extended quantum mechanics

The momentum variables are

oL |

As Hamiltonians of the Nambu-theoretic formulation, we take the following
integrals of motion

H = /ddx(AV — %v%,

Hy = / d?z(P, — i),

Hs = / d%zPy. (126)
We invent unifying vector notation, ¢ = (¢1, ¢2, @3, 04) = (¥, Py, V, Py).

Then it may be verified that the equations of the extended quantum theory
can be put in the following Nambu-theoretic form

¢i(x) = {p(x), H1, Hy, H3}, (127)
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Nambu dynamics, extended quantum mechanics

where the bracket is defined as

: 0A; 0Ay bA3  0A4
Ay, Ay, As, Ay} = gy, d
(AL, Ao s, Add = ekt | 5 50, (0) 60Ly) Sa(y)

Al,Ag,Ag,A4) A
/ 1 00), 2), ba @), ale)) ¥ g ) (128)
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Nambu dynamics, M theory

The basic building blocks of M theory are membranes and M 5—branes.
Membranes are fundamental objects carrying electric charges with respect
to the 3-form C-field, and M5-branes are magnetic solitons. The
Nambu-Poisson 3-algebras appear as gauge symmetries of superconformal
Chern-Simons nonabelian theories in 2 4+ 1 dimensions with the maximum
allowed number of N = 8 linear supersymmetries.

The Bagger and Lambert [Bagger, Lambert, 2007] and, Gustavsson
[Gustavsson, 2007] (BLG) model is based on a 3-algebra,

[T, T, T = f§*T* (129)

where T%, are generators and fupeq is @ fully anti-symmetric tensor.
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Nambu dynamics, M theory

Given this algebra, a maximally supersymmetric Chern-Simons lagrangian is:
L= LCS + Lmattera

1 2
Los = §Euyk(fabchZbauAf\d + 3 fedag egfbAZbAidAif)’ (130)

1
Lmatter = §BZLGB£LI — B;{,GDHXC{

T~ T -
+ 5 T Dytpa + 0 Ty ba f
1

—Etr([XI,XJ,XK][XI,XJ,XK]), I=1,2,..,8  (131)

where Aff’ is gauge boson, 1% and X! = XIT® matter fields. If

a =1,2,3,4, then we can obtain an SO(4) gauge symmetry by choosing
fabed = feabed, [ being a constant. It turns out to be the only case that
gives a gauge theory with manifest unitarity and N = 8 supersymmetry.
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Nambu dynamics, M theory

The action has the first order form so we can use the formalism of the first
section. The motion equations for the gauge fields

0H

A (t, x) = SAD ()’ abod = € fabed (132)
take canonical form
; oH
ab abed ab cd ab
A = et e = 145 A}Acd {az,mY,
{AZb(t,x),Afg(t,y)}=6nmf‘“’0d5(2)( —y) (133)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

The quasi-classical description of the motion of a relativistic (nonradiating)
point particle with spin in accelerators and storage rings includes the
equations of orbit motion

Tn = fu(2), fo(x) =€nmOnH, n,m=1,2,...,6;

Tn = qny, Tn+3 = Pn, Enn+3 = 1, n=1,2,3;
e

H =ed + c\/p? +m2c2, o, =pn— —Ap (134)
c

and Thomas-BMT equations
[Tomas, 1927, Bargmann, Michel, Telegdi, 1959 | of classical spin motion

'én = €nkamSk = {H15H278n}5 Hl =0Q- S, H2 = 827
{4, B, CY = e ADm, BOC, (135)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

—€ (B-p)pn
Qn - —((1 k Bn — [p—— A"
m’yc(( + k) m2c2(1+7)
1+ k(1 +7)
_ E,, 1
mc(l T ’Y) Enmk @k) ( 36)

where, parameters e and m are the charge and the rest mass of the particle,
c is the velocity of light, & = (g — 2)/2 quantifies the anomalous spin g
factor, v is the Lorentz factor, p, are components of the kinetic momentum
vector, F, and B,, are the electric and magnetic fields, and A,, and ® are
the vector and scalar potentials;

1.
Bn = 5nmkamAka En = *an‘1> - EAna
H —ed 02
— —4/1 4+ = 137
v mc? o m2c? {25
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Nambu-Poisson dynamics of an extended particle with spin in an

accelerator

The spin motion equations we put in the Nambu-Poisson form.
Hamiltonization of this dynamical system according to the general approach
of the previous sections we will put in the ground of the optimal control
theory of the accelerator.
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Hamiltonian extension of the spinning particle dynamics

The general method of Hamiltonization of the dynamical systems we can
use also in the spinning particle case. Let us invent unified configuration
space ¢ = (%,D, ), Tn = qn, Pn = qnt3, Sn = Gnt6, T = 1,2,3; extended
phase space, (¢,,%,) and hamiltonian

H = H(Qﬂ/)) = vp¥n, n=1,2,..9;

(138)
motion equations
(jn = vn(Q),
. ’Um
n = ———m 139
= = G (139)

where the velocities v,, depends on external fields as in previous section as

control parameters which can be determined according to the optimal
control criterium.
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Electric Dipole Moments (EDM) of Protons and Deuterons

EDM are one of the keys to understand the origin of our Universe
[Sakharov, 1967]. Andrei Sakharov formulated three conditions for
baryogenesis:

1. Early in the evolution of the universe, the baryon number conservation
must be violated sufficiently strongly,

2. The C and CP invariances, and T invariance thereof, must be violated,
and

3. At the moment when the baryon number is generated, the evolution of
the universe must be out of thermal equilibrium.

CP violation in kaon decays is known since 1964, it has been observed in
B-decays and charmed meson decays. The Standard Model (SM)
accommodates CP violation via the phase in the
Cabibbo-Kobayashi-Maskawa matrix.

CP and P violation entail nonvanishing P and T violating electric dipole

moments (EDM) of elementary particles d = d.
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Electric Dipole Moments (EDM) of Protons and Deuterons

Although extremely successful in many aspects, the SM has at least two
weaknesses: neutrino oscillations do require extensions of the SM and, most
importantly, the SM mechanisms fail miserably in the expected baryogenesis
rate.

Simultaneously, the SM predicts an exceedingly small electric dipole
moment of nucleons 10732 < d,, < 1073'e - em, way below the current
upper bound for the neutron EDM, d,, < 2.9 x 10~%%¢ - ¢m. In the quest for
physics beyond the SM one could follow either the high energy trail or look
into new methods which offer very high precision and sensitivity.
Supersymmetry is one of the most attractive extensions of the SM and

S. Weinberg emphasized [Weinberg, 1993]: " Endemic in supersymmetric
(SUSY) theories are CP violations that go beyond the SM. For this reason
it may be that the next exciting thing to come along will be the discovery
of a neutron electric dipole moment.”
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Electric Dipole Moments (EDM) of Protons and Deuterons

The SUSY predictions span typically 1072 < d,, < 10~2%e - ¢m and
precisely this range is targeted in the new generation of EDM searches
[Roberts, Marciano, 2010]. There is consensus among theorists that
measuring the EDM of the proton, deuteron and helion is as important as
that of the neutron. Furthermore, it has been argued that T-violating
nuclear forces could substantially enhance nuclear EDM

[Flambaum, Khriplovich, Sushkov, 1986]. At the moment, there are no
significant direct upper bounds available on d,, or d;. Non-vanishing EDMs
give rise to the precession of the spin of a particle in an electric field. In the
rest frame of a particle

Sp = 5nmk(Qm5k + dek), Qm = *,U,Bm, (140)
where in terms of the lab frame fields

Bn = ’V(sz - 5nmk/8mE]lg)a
E, = ’Y(Eil + EnmkﬁmBlle) (141)

Now we can apply the Hamiltonization and optimal control theory methods
to this dynamical system.
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Reduction of the higher order dynamical system

Note that the procedure of reduction of the higher order dynamical system,
e.g. second order Euler-Lagrange motion equations, to the first order
dynamical systems, in the case to the Hamiltonian motion equations, can
be continued using fractal calculus. E.g. first order system can be reduced
to the half order one,

D'2q =y,
DY) =pe g=p (142)
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Digest of Quanputing

The idea of computations on quanputers is in finding of the needed (value of the) state (wave
function (¢, z)) from the initial, easy constructible, state (1(0, z),) which is superposition of
different states, including interesting one, with the same weight. During the computation the

weight of the interesting state is growing till the value when we can guess the solution of the

problem and then test it, which is much more easier then to find it.

Let us consider the following nonlinear evolution equation

1
Vi = AV — 5V2 +J, (143)
extended Lagrangian and Hamiltonian
1
L= /dzD(in — AV + V2 - Dy,

H= /dzD(AV = %V2 + J)ep (144)
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Digest of Quanputing

and corresponding Hamiltonian motion equations

1
inzAVfEVQJrJ:{V,H},

W = =AY+ Vi = £ ,HY,
{V(t,z),v(t,y)} =6 (z—y) (145)

The solution of the problem is given in the form

T
T) = U(T)[0), w(t,z) =< z|t), U(T) = Pexp(fi/o dtH(t)) (146)

Under the programming of the quanputer we understand construction of the potential V, or the
corresponding Hamiltonian. For the given potential, we calculate corresponding source J.
The discrete version of the system can be put in the form

Sm(n+1) = @n(S(n)) + Jm(n),

U (1= 1) = Aui (S() Wi (), A (S(n)) = 22EE@)

9Sm(n) (147)

or, in the regular case, when the matrix A is regular,
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Digest of Quanputing

we obtain explicit form of the corresponding discrete dynamics

Sm(n +1) = @n(S(n)) + Jm(n),

U (n+1) = AL (S(n + 1)) Tk(n), (148)
Now the state vector S(n) and wave vector ¥, (n) may correspond not only to the discrete
values of the potential V(n, m) = Sy, (n), and wave function ¢(n, m)
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GRID and Quanputing

As an example of GRID we take LHC Computing Grid. The LHC Computing Grid (LCG), is an
international collaborative project that consists of a grid-based computer network infrastructure
incorporating over 170 computing centers in 36 countries. It was designed by CERN to handle the
prodigious volume of data produced by Large Hadron Collider (LHC) experiments. The Large
Hadron Collider at CERN was designed to prove or disprove the existence of the Higgs boson, an
important but elusive piece of knowledge that had been sought by particle physicists for over 40
years. A very powerful particle accelerator was needed, because Higgs bosons might not be seen
in lower energy experiments, and because vast numbers of collisions would need to be studied.
Such a collider would also produce unprecedented quantities of collision data requiring analysis.
Therefore, advanced computing facilities were needed to process the data. A design report was
published in 2005. It was announced to be ready for data on 3 October 2008. It incorporates
both private fiber optic cable links and existing high-speed portions of the public Internet. At the
end of 2010, the Grid consisted of some 200,000 processing cores and 150 petabytes of disk
space, distributed across 34 countries.
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GRID and Quanputing

The data stream from the detectors provides approximately 300 GByte/s of data, which after
filtering for "interesting events”, results in a data stream of about 300 MByte/s. The CERN
computer center, considered " Tier 0" of the LHC Computing Grid, has a dedicated 10 Gbit/s
connection to the counting room. The project was expected to generate 27 TB of raw data per
day, plus 10 TB of "event summary data”, which represents the output of calculations done by
the CPU farm at the CERN data center. This data is sent out from CERN to eleven Tier 1
academic institutions in Europe, Asia, and North America, via dedicated 10 Gbit/s links. This is
called the LHC Optical Private Network. More than 150 Tier 2 institutions are connected to the
Tier 1 institutions by general-purpose national research and education networks. The data
produced by the LHC on all of its distributed computing grid is expected to add up to 10-15 PB
of data each year.

Today, without big efforts, we can modify (some) GRID elements in time-invertible form.
After development of the quanputer technologies, we can modify (some) GRID elements in
quanputer forms.
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Social profit of big collaborations

Nowadays there are several big collaborations in science, e.g. LHC. Scientific value of LHC
depends on three components, the highest quality of accelerator, highest quality of detectors and
distributed data processing. The first two components need good mathematical and physical
modeling. Third component and the collaboration as a social structure are not under (anther) the
control by scientific methods and corresponding modeling. By definition, scientific collaborations
(SC) have a main scientific aim: to obtain answer on the important scientific question(s) and
maybe gain extra scientific bonus: new important questions and discoveries. SC is more open
information system than e.g. finance or military systems. So, it is possible to describe and
optimize SC by scientific methods. Profit from scientific modeling of SC maybe also for other
information systems and social structures.
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Quantum field theory and Fractal calculus -

Universal language of fundamental physics

In QFT existence of a given theory means, that we can control its behavior
at some scales (short or large distances) by renormalization theory

[Collins, 1984].

If the theory exists, than we want to solve it, which means to determine
what happens on other (large or short) scales. This is the problem (and
content) of Renormdynamics.

The result of the Renormdynamics, the solution of its discrete or continual
motion equations, is the effective QFT on a given scale (different from the
initial one).

We can invent scale variable A and consider QFT on D + 1 + 1 dimensional
space-time-scale. For the scale variable A € (0, 1] it is natural to consider
g-discretization, 0 < ¢ < 1, A\, =q¢", n=0,1,2, ... and p - adic,
nonarchimedian metric, with ¢! = p - prime integer number.

The field variable ¢(x,t, \) is complex function of the real, x, t, and p -
adic, A, variables. The solution of the UV renormdynamic problem means,
to find evolution from finite to small scales with respect to the scale time
T =1In\A/Ao € (0, —00). Solution of the IR renormdynamic problem means
to find evolution from finite to the large scales, 7 =1In\/\g € (0, 00).
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Renormdynamic Functions (RDF)

We will call RDF functions g, = f,,(t) which are solutions of the RD
motion equations

gn = Bn(9);1 <n < N. (149)

In the simplest case of one coupling constant the function g = f(t) is
constant, g = g. when §(g.) = 0, or is invertible (monotone). Indeed,

g=f't)=f'(f""(9)) = Blg)- (150)

Each monotone interval ends by UV and IR fixed points and describes
corresponding phase of the system.

Note that the simplest case of the classical dynamics, the Hamiltonian
system with one degree of freedom, is already two dimensional, so we have
no analog of one charge renormdynamics.
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Renormdynamic Functions

The regular Hamiltonian systems of the classical mechanics are defined on
the even dimensional phase space, so there is no analog of the three
dimensional renormdynamics for the coupling constants of the SM. The
fixed points of renormdynamics belong to a set of solutions of the
polynomial system of equations 3,(g) = 0,1 < n < N, in the perturbative
renormdynamics. Describing the solutions is the task of contemporary
algebraic and computational geometry.
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Conformal Invariance and Classical Motion Equations

The quantitative values and qualitative content of the given field theory
depend on the scale (parameter, e.g. u—renormalization point,

g=9(n), A= A(n)). In QCD e.g. the effective action has the following
form:

5(0) = 5 | dPoL(AG), (151)
variation with respect to the change of scale gives
68 = —2%@5 + gig /deg—jéA (152)
and the following two statements are equivalent:
05=0, B(g) =0< 05 =0, gfl 0. (153)

So, from renorminvariance of the effective action follows that at the
conformal symmetric points, the motion equations for fields are satisfied.
Generalization for the several coupling constants and other models is
obvious.
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Conformal Invariance and Classical Motion Equations

In string theory, the connection between conformal invariance of the
effective theory on the parametric world sheet and the motion equations of
the fields on the embedding space is well known [Ketov, 2000]. A more
recent topic in this direction is AdS/CFT Duality [Maldacena, 1988]. In
this approach for QCD coupling constant the following expression was
obtained [Brodsky, de Téramond, Deur, 2010]

@44s5(Q?) = a(O)e*QQ/‘”“Q. (154)
A corresponding S-function is
dagds Q* 2 2 QAdS (Qz)
Blaads) = mQ? _@aAdS(Q ) = @a4s(Q”) In “a0) < 0(155)

So, this renormdynamics of QCD interpolates between the IR fixed point
a(0), which we take as a(0) = 2, and the UV fixed point a(co0) = 0.
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Low Energy QCD Coupling Constant

For the QCD running coupling considered in [Diakonov, 2003]

4
oAg) =~ (156)
9In(L5)
where mg = 0.88GeV, A = 0.28GeV, the f—function of renormdynamics is
a? k
Bla) = ~(1 — coxp(~2)),
4 m? -
k= =140, c=-F =e kle — (3.143)2 = 9.88,  (157)
for a nontrivial (IR) fixed point we have
arr =k/Inc=0.61 (158)

For a(m) = 2, at valence quark scale m we predict the gluon (or valence
quark) mass as

k
mg = Ae2e(m = 1.42A = mp/3, A =220MeV. (159)

Equality of the gluon and quark masses indicates on effective IR
supersymmetry in QCD.
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Valence Quark Coupling Constant

It is nice to have a nonperturbative S—function like (157), but it is more
important to see which kind of nonperturbative corrections we need to have
a phenomenological coupling constant dynamics.

It was noted [Voloshin, Ter-Martyrosian, 1984] that in valence quark
parametrization as(m) = 2, at a valence quark scale m.
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Stoney's and Planck’'s Fundamental Constants

In the 1870's G.J. Stoney [Stoney, 1881], the physicist who coined the term
"electron” and measured the value of elementary charge e, introduced as
universal units of Nature for L,T, M :
e e e
s 62\/5, s 03\/5’ ms = = (160)

M. Planck introduced [Planck, 1899] as universal units of Nature for L, T,

h b Ip
== = L o117, tp = £ = 25 (161)
C

Va
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Fundamental Constants and Deformations of Theories

Stoney's fundamental constants are more fundamental just because they
are less than Planck’s constants :) Due to the value of a=! = 137, we can
consider relativity theory and quantum mechanics as deformations of the
classical mechanics when deformation parameter ¢ = 137 (in units
e=1,h=1) and h =137 (in units e = 1,c = 1), correspondingly. These
deformations have an analytic sense of p-adic convergent series. The
number 137 has a very interesting geometric sense,

137 = 112 + 4%, (162)

so, /137 is the hypotenuse length of a triangle with other sides of lengths
11 and 4.
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Base of the Babylonians Number System

The Babylonians used a base 60 number system which is still used for
measuring time - 60 seconds in a minute, 60 minutes in an hour - and for
measuring angle - 360 degrees in a full turn. The base 60 number system
has its origin in the ration of the Sumerian mina (m) and Akkadian shekel
(s), m/s~60=3-4-5.

We also can consider base 137 system for fundamental theories.
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Base of the Fundamental Number System

For the nuclear physics strong coupling phenomena description we may take
as a base p = 13.

For the hadronic physics, valence scale QCD, and graphen strong coupling
phenomena description we may take as a base p = 2.

For the weak coupling physics SM mz scale and MSSM unification scale
phenomena description we may take as a base p = 29.
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Number of the Fundamental Constants

There are different opinions about the number of fundamental constants
[Duff, Okun, Veneziano, 2001].

According to Okun, there are three fundamental dimensionful constants in
Nature: Planck’s constant, &; the velocity of light, ¢; and Newton's
constant, G.

According to Veneziano, there are only two: the string length L, and c.
According to Duff, there are not fundamental constants at all.

Usually Ls = I, so, the fundamental area is L2 = 137i2.

The value s; = [2— Stoney area, is more like on a fundamental area :)
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Scale Dependent Number of Fundamental Constants

In mathematics we have two kind of structures, discrete and continuous
one. If a physical quantity has discrete values, it might have no dimension.
If the values are continuous - the quantity might have a dimension, a unit
of measure. These structures may depend on scale, e.g. on macroscopic
scale condensed state of matter (and time) is well described as continuous
medium, so we use dimensional units of length (and time). On the scale of
atoms, the matter has a discrete structure, so we may count lattice sites
and may not use a unit of length. If at small (e.g. at Plank) scale space
(and/or time) is discrete, then we do not need a unit of length (time) for
measuring, there is a fundamental length and we can just count.
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Time Inversion and Spin

Let us consider the following discrete dynamics:
Sn-i—l + Sp—1 = @(Sn), (163)

which is obviously a (discrete) time (n) invertible in this implicit form. In
the explicit form

Sn+1 = F(Sna Sn—l) = (ID(SH) - Sn—l (164)

it is not obviously time invertible. If we take two step time lattice-make
simplest discrete RD step and from one component-scalar S(n) construct
two component-spinor W (n), we obtain explicit time invertible dynamics

S Sn
Vi1 = Q(\Ijn)a Vi1 = ( Snii )a v, = < Sh_1 ) (165)

This dynamical mechanism of origin spin which connects time inversion
symmetry and spin was invented when was constructed the theory of
quanputers [Makhaldiani, 2011.2].
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Higgs Harticles

This mechanism indicates that with time inversion symmetry we can have
only composed scalar fields. With the discovery of the Higgs particle with
mass 125 GeV, a nice number myy/mp ~ 2/3 appear, which, at least for
me, indicates for composed nature of W and H, with a same mass of about
40 GeV two and three valence constituents correspondingly. The fermion
constituents 1% of W and scalar constituents ¢¢ of H compose scalar
super multiplet (¢%,1%) with a flavor index n and color index a. Another
notation is (h, sh)-(He, She:).
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Confinement, Space Dimension and Supersymmetry

With exact SUSY we have cofinement by dimentional counting: superspace
dimension is zero on the hadronic scale, hadrons are pointlike, color is
confined inside hadrons. For SM QCD this picture indicates that at the
hadronic scale we have effective SQCD, which contains scalar quarks.
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Composite Higgs Particles

The 40 GeV constituents may be good candidates in dark matter particles.
Coupling constant unification at a;;! = 29.0 and scale 10!GeV in MSSM
[Makhaldani, 2014] has a relict on the SM scale: a; '(m) = 29.0 at

m = 41GeV.

If we extrapolate the SM value of a~!(myz) to electron masse scale, we find
at(me) = 137.0

Recent (missing) discovery of the second Higgs particle with mass

My = 750GeV indicates an interesting structures. It is curious that

My /myp, = 750/125 = 6!

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 29 July 100 / 131



A Solvable Model of Renormdynamics

In the Standard Model of Particle Physics (SM), the values of the coupling
constants and masses of particles depends on the scale according to the
Renormdynamic motion equations. One charge a, one mass m RD
equations are

& = B(a),

m = y(a)m (166)
For the electron and nucleon masses, electrodynamic and pion-nucleon fine
structure constants we have an empirical relation:

Me/0 >~ My [CrN (167)

We take the relation m/a = const as an integral of renormdynamic motion
equations for m and «, find exact form of the 3 function in the minimal
mass parametrization

v(a) = na+720% + ... = nA4,
A= fﬁl(a) =a+ 72/’71Oé2 +73/’yloz3 + ...,
a=f(A)=A+ fA% + f3A3 + ... (168)
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A Solvable Model of Renormdynamics

From the integral of motion, in the minimal mass parametrization:
~v(a) = 1, we obtain
(lna) = (Inm) = 6(204)/04 = ()
=mna= p(a) = fa”, fo=m (169)
so, we have the following algebraic-diofant equations for the flavor and
color content of the theory
Bn =0, n>3,
B2=m (170)

and prediction for the dimension of space-time: D = 4. Solution of the
motion equations are

Oé(t) — 1 *040,821}’
m(t) = molog " — Bat| /P> = %a(t) (171)
0
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Multidimensional Renormdynamics

In the multidimentional renormdynamics, when we have several (V)
coupling constants and masses, we assume that there are maximal number
(N — 1) integrals of motion H,,. If the number of integrals is N, we not
have dynamics, we have only statics - finite field theory,

ay =const, n=1,..., N.

The idea of reduction to the one dimensional renormdynamics is simple:

doy,

doy,
¢ = Pnloa, ey (N —1), AN ) => <o = Brla, HQ(N-1),Q), O = QN
Bn(alv"'aa(N—l)aa) — ﬁn(alv"'aa(N—l)aa)//BN(ala "'7a(N—1)7a)’
an=> fuc®, n=1,2.,N-1 (172)
k>1
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Solitons are particlelike states, solutions of motion equations and they
quantum extensions. Examples are solitons of SinGordon motion equation
or barions-skirmions of Skyrme model. In particle theory, the skyrmion was
described by Tony Skyrme in 1962 and consists of a quantum superposition
of baryons and resonance states.

Skyrmions as topological objects are important in solid state physics.
Researchers could read and write skyrmions using scanning tunneling
microscopy. The topological charge, representing the existence and
non-existence of skyrmions, can represent the bit states "1" and "0".
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Solitons, Strings, Fractals, Fluctons, ..., Unparticles

QCD consists of quarks and gluons. Quarks possess both color (7, g,b) and
flavor (u,d, s,etc.), while gluons possess color (, g,b) and anti-color

(7,g,b), but not flavor. An open string (a string with two endpoints) is
ideally suited to account for such quantum numbers at its two ends. For
quarks, one end represents color and the other end flavor. For gluons, one
end represents color and the other anti-color. In string theory, there are
branes (higher dimensional extended objects that are generalized
membranes) to which the endpoints of an open string are confined.
Applying this idea to QCD, we introduce N, colored branes and Ny
flavored branes at which open strings corresponding to quarks and gluons
terminate. The energy of a string is given by the sum of the classical energy
stored inside the string and the excitation energies of vibration and rotation.
Because the classical energy of a string is proportional to its length and
because gluons are massless, N, colored branes should lie on top of one
another. On the other hand, quarks possess intrinsic masses, and therefore
the endpoints of a quark string, namely, a flavored brane and a colored
brane should be separated from each other by a nonvanishing distance U.
Then, the intrinsic quark mass m, can be represented as m, = U x(string
tension), where the string tension is the energy stored inside a unit length
of string and is represented: string tension=1/(27¢’) in terms of o ,
historically called the Regge slope.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

To describe QCD, we have to prepare Dp-branes and Dg-branes with p,
q>3 for colored branes and flavored branes, respectively, and these branes
should be located in the space of more than five dimensions. To evaluate
the amplitude for a certain process to occur in the above picture, we have
to sum up all the possible two-dimensional world sheets with the weight
exp(iS), where the action S is given by S=(energy)x (time)=(area of the
strings world sheet)/2ma/, following the Feymann path integral formulation.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Cumulative Effect: Production of particles from nuclei in a region,
kinematically forbidden for reactions with free nucleons is connected to the
existence of Fluctons - droplets of dense cold nuclear matter.

Classical fields have canonical, rational for integer D, (mass)dimensions e.g.
in electrodynamics

L= [ dPu(2(0 - ed) — m - 1)
dy =[] = (D~ 1)/2, da= (D~ 2)/2, d. = (4~ D)/2 (173)

Quantum corrections introduce (anomaly) corrections to the canonical
dimensions, so the fields and coupling constants become fractals. At fixed
points of RD, the fractals are self similar and their compositions present at
low energies unparticles.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Qualitative picture of the (un)particle(like) objects we will illustrate with
the simplest model of scalar field given by the following lagrangian

1 1
L=L(®, M\ n) = 2(0,9) - 5M?<I>2 ~V(®), p=0,1,2,...,D (174)

where self interaction usually we take in the form

V(@) =AD", n=-2,1,2,3,4,6 (175)
In renormalisible case,
2D 4
=—=7 D D)= —_
n D2_2 +€( )7 6( ) D4_27
n
— +e(n), e(n) — (176)

s?metimes we consider also intermediate values of n and D and other forms
of V.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

In the free (self non interacting) field (particle) approximation: A\ = 0, but
in external gravitational field we have

L(g, ®, M) = V=gL(®, M,0), g = detg, () (177)

Now we will see a nice composite particle mechanism :) Let us take a
substitute: ® = ", than we find

L(g,® M) = L((k¢*")'g, 0, M/E), g (@) = (k") P g (x) (178)
Indeed

L(g,®,M) = \/—_g(/f2<p2('“‘”%(8u<p)2 = %M%Z’“)
= Vgl 11 0u0)) — S (2)%) (179)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Now, having an experience with constituent - composite particle relation,
we turn attention on the self-interaction therm,

L= /—glkg*1)4(... — =N), N =kn —2(k —1) (180)

Most natural value of n for stable systems (1+1— 141, 2 — 2)is

n = 4. In this case, N = 2k + 2 and only natural value of constituents for
which we have a renormalizable interaction is £k = 2 = N = 6 with
corresponding spacetime dimension D = 3. The most natural value for
fission-fusion interaction (1 <> 2) isn =3 = N = k + 2, for which we have
realistic values k = 2 and N =4, D =4 :) Other interesting values of
naturally interpretable monomial (polynomial) interactions generally
corresponds to the non-integer, fractional-fractal dimensions of space(time)
D, with fractal-flucton-unparticle interpretations of the corresponding
states of matter.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

The size of particle-like states (solutions of the motion equations) are
defined as [ ~ M1, because at the boundary region, the linear part of the
motion equations dominates and the Yukawa-like asymptotic (I)(T) ~ e Mr
acts. In a pion-nucleon model for nucleon size we have Iy ~ m* ~ 1.43
fm. The amplitude of the state (at maximum) A ~ A7 a=1/(n —2).
Indeed, the motion equation do not contains the coupling constant after a
scaling substitution ® = A=%¢, so a particle-like solution ¢ dos not contains
A and corresponding solution ® = A7%p ~ A7,

AD + M?® 4+ And" 1 = A" A¢ + M2p + N —(=2apgn—1y — 0. (181)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

At not so low energies from string theory we may extract the following
scalar field theory

1 1
L= \/fg(i(amb)z - 5M2<1>2 — A0, u=0,1,..,D —1, D =6+ £182)
where ¢ € [0,20]. The one loop S—function is

Bla) = (D — 6)a — fa?, a ~ N2 (183)

and it has stable UV fixed point at a = (D — 6)/52 and IR fixed point
a = 0. Beyond this point we have an unparticle ® = ¢? with lagrangian

1 1 M A
L= 7gl(§(a,u¢)2 - 5(7)2¢2 - Z¢4)a n= Oa 17 a-D - 17
d=4—¢, €€][0,1]. (184)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

The one loop S—function is
BN = (d— 4\ + b2 (185)

and it has stable IR fixed point at A = (4 — d)/b. The UV fixed point is

A = 0. At this point we have reduction from higher dimentional ®3 to lower
dimentional ¢*.

Another possibilities is an unparticle ® = * with lagrangian

1 1 M A
L= +/—d'(= 2 (22,2 L8 =0,1,...,d—1. (1
9"(GO0up)” = 50" = 5#"), p=0,1,....d (186)
The one loop S—function is
BA)=(d—3)A+cX?, d=3—¢, £€]0,2] (187)

The IR fixed point is A = ¢/c. UV fixed point is A = 0.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Similar consideration gives reduction from higher energy ¢* model to lower
energy 5 one. Some technical questions remain. One of them concern to
the substitution ® = ¢2. It restricts ® as ® > 0. OK, we already have a
constraint, that the fields are real valued, we have a restriction

% / dPpexp(ipz)d(p) = ¢*(p) = 6(—p) (188)

To formulate positivity condition is not so easy. We will take another path,
we define the interaction as ®3 = (®2)3/2 > (0. Then the substitution

®2 = ¢* will works. Bytheway by this definition we made also another
improvement: the potential become bounded from below. For the reduction
the substitution ® = ¢* also works,

L=v—g(== )((‘auclﬂ)2 = §M2<I>2 — N@®*)V?, n =3,4. (189)

82
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Note that by substitution

(50)2 = 6%, &% = exp(In(®2/83)/k)
0

1 o
=14 1n(qT)2 +0(K™2), ¢ =41+ 0™ (190)
0
we reduce the field theory to a discrete theory, to a system of bits. Also,
changing dimension of space D and nonlinearity n restricted by condition
2D 2n 1 1 1
_ D= . -4 == 191
"D n—2n D 2 (191)
we assume that they are functions of scale or coupling constant, due to
monotonic property of the coupling constant. We have the following
relation

4
Bn - _m/@D7
dn dn dD dD
= - = = _— = — . ]_ 2
Br Md'u d)\ﬁh Bp 'ud,u ™ B (192)
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Discrete dynamical systems and Quanputers

Computers are physical devices and their behavior is determined by physical laws. The Quantum
Computations [Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ], Quantum Computing,
Quanputing [Makhaldiani, 2007.2], is a new interdisciplinary field of research, which benefits from
the contributions of physicists, computer scientists, mathematicians, chemists and engineers.
Contemporary digital computer and its logical elements can be considered as a spatial type of
discrete dynamical systems [Makhaldiani, 2001]

Sn(k+1) = &,(S(k)), (193)
where
Sn(k), 1<n<N(k), (194)

is the state vector of the system at the discrete time step k. Vector S may describe the state and
& transition rule of some Cellular Automata [Toffoli, Margolus, 1987].The systems of the type
(193) appears in applied mathematics as an explicit finite difference scheme approximation of the
equations of the physics [Samarskii, Gulin, 1989 |.
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Discrete dynamical systems and Quanputers

Definition: We assume that the system (193) is time-reversible if we can define the reverse
dynamical system

S (k) = ®,1(S(k + 1)). (195)
In this case the following matrix
09, (S(k))
= A, 196
e 9Sm (k) ’ (196)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case, for example, when
N(k+ 1) # N(k), we have an irreversible dynamical system (usual digital computers and/or
corresponding irreversible gates).
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Discrete dynamical systems and Quanputers

Let us consider an extension of the dynamical system (193) given by the following action function

A= I (k)(Sn(k +1) = Dn(S(K))) (197)
kn

and corresponding motion equations

Salh+1) = Ba(S(H) = 500
bn(k—1) = zm(k)% = L (k) My (S(K)) = 85(?jk)’ (198)
where
H =Y ln(k)®n(S(k)), (199)

kn

is discrete Hamiltonian. In the regular case, we put the system (198) in an explicit form

Sn(k+1) = &,(S(k)),
ln(k 4+ 1) = lm (k) M, L (S(k + 1)). (200)
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Discrete dynamical systems and Quanputers

From this system it is obvious that, when the initial value 5, (ko) is given, the evolution of the
vector [(k) is defined by evolution of the state vector S(k). The equation of motion for Iy, (k) -
Elenka is linear and has an important property that a linear superpositions of the solutions are
also solutions.

Statement: Any time-reversible dynamical system (e.g. a time-reversible computer) can be
extended by corresponding linear dynamical system (quantum - like processor) which is controlled
by the dynamical system and has a huge computational power,

[Makhaldiani, 2001, Makhaldiani, 2002, Makhaldiani, 2007.2, Makhaldiani, 2011.2].
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(de)Coherence criterion

For motion equations (198) in the continual approximation, we have

Sn(k+1) =zn(ty +7) = zn(tx) + Tn(tx)T + 0(7'2)7
Tn (ty) = vn(z(tr)) + O(1), tr = kT,
vn (2(tr)) = (Pn(z(tr)) — zn(ty))/T;

Mo (@(t)) = Smm + 722 @)

Bm (tr) (201)

(de)Coherence criterion: the system is reversible, the linear (quantum, coherent, soul) subsystem
exists, when the matrix M is regular,

detM = 1+ng% +0(r2) £ 0. (202)
n n

For the Nambu - Poisson dynamical systems (see e.g. [Makhaldiani, 2007])
OH, OH» 0Hp

..m. e
P 0xmy Otmy  OTm,

U'n(x):Enmlmz. , p=123,..,N—1,
1o}

S 220 = divw = 0. (203)
Oz

n

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 29 July 120 / 131



Construction of the reversible discrete dynamical systems

Let me motivate an idea of construction of the reversible dynamical systems by simple example
from field theory. There are renormalizable models of scalar field theory of the form (see, e.g.
[Makhaldiani, 1980])

1
L= S(0upd"e —m*e?) — g™, (204)

with the constraint

2d
_ 205
d—2"’ (205)

where d is dimension of the space-time and n is degree of nonlinearity. It is interesting that if we
define d as a function of n, we find

d= 206
p— (206)
the same function !
Thing is that, the constraint can be put in the symmetric implicit form [Makhaldiani, 1980]
1 1 1
ShS = 207
n d 2 (207)
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Generalization of the idea

Now it is natural to consider the following symmetric function
f@) + flz) =c (208)
and define its solution
y=F""e— fx)). (209)

This is the general method, that we will use in the following construction of the reversible
dynamical systems. In the simplest case,

flz) ==, (210)
we take
y=8(k+1), x=Sk—1), c=d(S(k)) (211)

and define our reversible dynamical system from the following symmetric, implicit form (see also
[Toffoli, Margolus, 1987])

S(k+ 1)+ Sk —1) = (S(k)), (212)
explicit form of which is

S(k+1)

(S(k), S(k—1))
(S(k)) — S(k — 1). (213)
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Generalization of the idea

This dynamical system defines given state vector by previous two state vectors. We have
reversible dynamical system on the time lattice with time steps of two units,

S(k +2,2) = B(S(k, 2)),
S(k+2,2) = (S(k+2), Sk + 1)),
S(k,2) = (S(k), Sk — 1))). (214)
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Internal, spin, degrees of freedom

Starting from a general discrete dynamical system, we obtained reversible dynamical system with
internal(spin,bit) degrees of freedom

_ Sn(k +2) O (P(S(K)) — Sk —1)) — S(k))
Sns(k+2) = ( S (k+ 1) ):( &1, (S(k)) — Sn(k — 1) )
= Dus(S(K), s=1,2 (215)
where
S(k) = (Sns (k) Sni(k) = Sn(k), Sna(k) = Sn(k — 1) (216)

For the extended system we have the following action

A= ZlnS(k)(SnS(k +2) — Pns(S(K))) (217)

kns
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Internal, spin, degrees of freedom

and corresponding motion equations

Sns(k +2) = B (S(k)) = c’)liik) 7
lns (k = 2) = lmt(k)aq;%(sii];))
= Lt (k) Mintns (S(k)) = %’ _—

By construction, we have the following reversible dynamical system

Sns(k +2) = Pns(S(k)),
lnS(k +2) = lmt(k)M;Ltlns(S(k + 2))7 (219)

with classical Sns and quantum I,s(in the external, background S) string bit dynamics.
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p-point cluster and higher spin states reversible dynamics, or pit string

dynamics

We can also consider p-point generalization of the previous structure,

fo(S(k+p) + fp-1(S(k+p—1) + ...+ fi(S(k + 1))
+f1(S(k—1)) + ... + fp(S(k —p)) = 2(S(k)),
S(k +p) = ®(S(k), S(k+p—1),..,5(k —p))

= £ (@(S(K) = fo—1(S(k +p — 1)) — ... = fp(S(k —p))) (220)

and corresponding reversible p-oint cluster dynamical system

S(k+p,p) = (S(k, p)),
S(k+p,p) = (S(k+p),S(k+p—1),..,S(k+1)),
S(k,p) = (S(k),S(k—1),...,S(k—p+1)), S(k,1)=S(k). (221)

So we have general method of construction of the reversible dynamical systems on the time
(tame) scale p. The method of linear extension of the reversible dynamical systems (see
[Makhaldiani, 2001] and previous section) defines corresponding Quanputers,

Sns(k +p) = ®ns (S(K)),
Ins (k +p) = bt (]) M1 (S(k + p)), (222)
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p-point cluster and higher spin states reversible dynamics, or pit string

dynamics

This case the quantum state function l,s, s = 1,2, ...p will describes the state with spin
(p—1)/2.

Note that, in this formalism for reversible dynamics minimal value of the spin is 1/2. There is not
a place for a scalar dynamics, or the scalar dynamics is not reversible. In the Standard model
(SM) of particle physics, [Beringer et al, 2012], all of the fundamental particles, leptons, quarks
and gauge bosons have spin. Only scalar particles of the SM are the Higgs bosons. Perhaps the
scalar particles are composed systems or quasiparticles like phonon, or Higgs dynamics is not
reversible (a mechanism for 'time arrow’).
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A way to the Solution of the Traveling salesman problem (TSP) with

Quanputing

The NP % P problem will be solved if for some NP— complete problem, e.g. TSP, a
polynomial algorithm find; or show that there is not such an algorithm; or show that it is
impossible to find definite answer to that question.

TSP means to find minimal length path between N fixed points on a surface, which attends any
point ones. We consider a system where N points with quenched positions z1,z2, ...,z are
independently distributed on a finite domain D with a probability density function p(z). In
general, the domain D is multidimensional and the points z,, are vectors in the corresponding
Euclidean space. Inside the domain D we consider a polymer chain composed of N monomers
whose positions are denoted by y1,¥2,...,yn. Each monomer y,, is attached to one of the
quenched sites z,, and only one monomer can be attached to each site. The state of the polymer
is described by a permutation o € ¥ where X is the group of permutations of N objecs.
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A way to the Solution of the Traveling salesman problem (TSP) with

Quanputing

The Hamiltonian for the system is given by

N
H = Z V(|yn - yn—ll) (223)

n=1

Here V is the interaction between neighboring monomers on the polymer chain. For convenience
the chain is taken to be closed, thus we take the periodic boundary condition xg = zn. A
physical realization of this system is one where the z,, are impurities where the monomers of a
polymer loop are pinned. In combinatorial optimization, if one takes V(z) to be the norm, or
distance, of the vector x then H (o) is the total distance covered by a path which visits each site
Zn exactly once. The problem of finding oo which minimizes H (o) is known as the traveling
salesman problem (TSP) [Gutin, Pannen, 2002].
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A way to the Solution of the Traveling salesman problem (TSP) with

Quanputing

In field theory language to the TSP we correspond the calculation of the following correlator

Gan(z1,%2,...,ZN) = Z;
2N F(J)
=——————~ _ F(J)=InZ(J

T2 0 N2 (J) =l Z(J),

Z(J) = /dtpe*%“p'A"ﬁLJ"” = e%J'A_l'J, ANz, y;m) = e~ M@=Vl

7 [ 4e@? @) @2)-. P @n)e )

d
Lmin(z1,..;on) = ——— InGans + O(e™ ™)
1 oo
<A l>= / dmmsflAfl(x,y;m) = —
I'(s) Jo |z —yl®

=LA x —y;s)
k(d)AgLs A~ (z;8) = 6%(x) = A(w;s) = k(d)AgLs,
s=d—2;p=¢(z,m). (224)
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A way to the Solution of the Traveling salesman problem (TSP) with

Quanputing

If we take relativistic massive scalar field, then A = Ay + m?,
A1 (@) ~ |af2=demIal, (225)

and for d = 2, we also have the needed behaviour. Note that G5y is symmetric with respect to
its arguments and contains any paths including minimal length one.
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