Introduction to reactions with heavy ion

1. Introduction (experimental and theoretical aspects)
2. Systematics
3. Scattering and direct reactions
4. Deep-inelastic collisions (properties and description)
5. Pecularities of fusion reactions
$50-60^{\text {th }}$ years - ion sourses heavy ion wave length $<0.1 \mathrm{fm}$ (classical particles)
$50^{\text {th }}$: linear accelerators in USA
$60^{\text {th }}$: cyclotron in Dubna
$70-80^{\text {th }}$: linear accelerator at GSI, cyclotron at GANIL and ...
beam of light nuclei: nuclear reactions / processes: elastic, inealastic scattering, nuclear transfer reactions, formation and decay of compound nucleus
beam of heavy ions:
the Coulomb fission of heavy nuclei and excitation of high-spin states, population of highly-deformed nuclear states, multinucleon transfer reactions, compound nucleus formation

Problems of synthesis of superheavy nuclei
Production of exotic nuclei, new isotopes
Study of various decay modes including fission, emission of delayed proton, p and $2 p$ radioactivity

High-spin states
Highly excited compound nuclei
Sub-barrier processes, astrophysical reactions
Cluster or molecule states

Classification of reactions by impact parameter. impact parameter $b=/ / k$

Reaction cross section

$$
\begin{aligned}
\sigma_{\mathrm{r}} & =\sum_{l} \sigma_{\mathrm{r}}(l) \\
\sigma_{\mathrm{r}}(l) & =\frac{\pi}{k^{2}}(2 l+1) T_{l}
\end{aligned}
$$

For large angular momenta

$$
\begin{aligned}
\sigma_{\mathrm{r}} & =\int_{0}^{\infty} d l \sigma_{\mathrm{r}}(l) \\
\sigma_{\mathrm{r}}(l) & =\frac{2 \pi}{k^{2}} l T(l)
\end{aligned}
$$

$T(l)=\left\{\begin{array}{ll}1 & \text { for } l<l_{\mathrm{gr}},\end{array} \quad l_{\mathrm{gr}}=k b_{\mathrm{gr}}\right.$

$$
0 \text { for } l>l_{\mathrm{gr}},
$$

$$
\sigma_{\mathrm{r}}(l)=\frac{2 \pi}{k^{2}} l
$$

between the values $l=0$ and $l=l_{\mathrm{gr}}$.
$0<l<l_{\mathrm{F}}$ fusion,
$l_{\mathrm{F}}<l<l_{\text {IC }}$ deep-inelastic collisions,
$l_{\text {IC }}<l<l_{\mathrm{gr}}$ quasi-elastic collisions.

Quantum scattering by short-range potential

$$
\begin{gathered}
H_{\mathrm{tot}}=\frac{\mathbf{p}_{1}^{2}}{2 m_{1}}+\frac{\mathbf{p}_{2}^{2}}{2 m_{2}}+V(r)=\frac{\mathbf{P}^{2}}{2 M}+H \\
\mathbf{P}=\frac{\hbar}{i} \nabla_{R}, \quad H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V(r),
\end{gathered}
$$

$M=m_{1}+m_{2}$ is the total, and $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ the reduced mass.

$$
\begin{gathered}
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{i \mathbf{K} \cdot \mathbf{R}} \psi(\mathbf{r}), \\
H \psi(\mathbf{r})=E \psi(\mathbf{r}) \\
\psi(\mathbf{r}) \rightarrow e^{i \mathbf{k} \cdot \mathbf{r}}+f(\Omega) \frac{e^{i k r}}{r} \text { for } r \rightarrow \infty ; \\
\mathbf{j}=\frac{\hbar}{2 \mu i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right),
\end{gathered}
$$

$\mathbf{j}_{\mathrm{in}}=\frac{\hbar \mathbf{k}}{\mu}=\mathbf{v}$,

$$
\begin{aligned}
j_{r} r^{2} d \Omega & =\frac{\hbar}{2 \mu i}\left[f^{*} \frac{e^{-i k r}}{r} \frac{\partial}{\partial r}\left(f \frac{e^{i k r}}{r}\right)-f \frac{e^{i k r}}{r} \frac{\partial}{\partial r}\left(f^{*} \frac{e^{-i k r}}{r}\right)\right] r^{2} d \Omega \\
& \rightarrow v|f(\Omega)|^{2} d \Omega \quad \text { for } r \rightarrow \infty
\end{aligned}
$$

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{j_{r} R^{2}}{\left|\mathbf{j}_{\mathrm{in} \mid}\right|}=|f(\Omega)|^{2} \quad f(\theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left(S_{l}-1\right) P_{l}(\cos \theta) \\
S_{l}=e^{2 i \delta_{l}} \\
\sigma_{\mathrm{el}}=2 \pi \int_{-1}^{1} d(\cos \theta) \frac{d \sigma}{d \Omega}=\frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1)\left|S_{l}-1\right|^{2},
\end{gathered}
$$

reaction cross section

$$
\begin{aligned}
\psi(r, \theta) \rightarrow & \frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left((-)^{l+1} \frac{e^{-i k r}}{r}+S_{l} \frac{e^{i k r}}{r}\right) P_{l}(\cos \theta) . \\
& \quad-\int d \mathbf{F} \cdot \mathbf{j}=-\frac{\hbar}{2 \mu i} R^{2} 2 \pi \int_{-1}^{1} d(\cos \theta)\left(\psi^{*} \frac{\partial \psi}{\partial r}-\psi \frac{\partial \psi^{*}}{\partial r}\right)_{r=R}, \\
- & \frac{\hbar}{2 \mu i} R^{2} 2 \pi \frac{1}{4 k^{2} R^{2}} \sum_{l=0}^{\infty} 2(2 l+1)\left\{\left[(-)^{l+1} e^{i k R}+S_{l}^{*} e^{-i k R}\right]\right. \\
\times & {\left.\left[(-)^{l+1}(-i k) e^{-i k R}+i k S_{l} e^{i k R}\right]-\text { c.c. }\right\}=\frac{\hbar \pi}{\mu k} \sum_{l=0}^{\infty}(2 l+1)\left(1-\left|S_{S}\right|^{2}\right) . } \\
\sigma_{\mathrm{r}}= & \frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1)\left(1-\left|S_{l}\right|^{2}\right) . \quad \sigma_{\mathrm{r}}=\frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) T_{l} . \quad T_{l}=1-\left|S_{l}\right|^{2},
\end{aligned}
$$

total cross section

$$
\begin{gathered}
\sigma_{\mathrm{tot}}=\sigma_{\mathrm{el}}+\sigma_{\mathrm{r}} \\
\sigma_{\mathrm{tot}}=\frac{2 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1)\left(1-\operatorname{Re} S_{l}\right)
\end{gathered}
$$

Classical scattering

$$
\begin{aligned}
E & =\frac{\mu}{2}\left(\frac{d r}{d t}\right)^{2}+\frac{L^{2}}{2 \mu r^{2}}+V(r) \\
L & =\mu r^{2} \frac{d \phi}{d t} .
\end{aligned}
$$

The deflection angle Θ
$\Theta(b)=\pi-2 \int_{a}^{\infty} d r \frac{b}{r^{2} \sqrt{1-V(r) / E-b^{2} / r^{2}}}$.
$d \sigma=\frac{\text { particle current into } d \Omega \text { in the direction } \Omega}{\text { particle current density of the incident particles }}$.

$$
d \sigma=\frac{J b d b d \varphi}{J}
$$

$$
\begin{aligned}
& d \Omega=|\sin \Theta d \Theta| d \varphi \\
& \quad \frac{d \sigma}{d \Omega}=\frac{b}{\sin \theta|d \Theta / d b|} ;
\end{aligned}
$$

The Coulomb potential has the form

$$
V(r)=\frac{Z_{1} Z_{2} e^{2}}{r}=\frac{2 \eta E}{k r}, \quad \eta=\frac{Z_{1} Z_{2} e^{2}}{\hbar v}
$$

$$
\frac{d \sigma}{d \Omega}=\frac{\eta^{2}}{4 k^{2} \sin ^{4}(\theta / 2)}
$$

Rutherford cross section

$$
\frac{d \sigma}{d \Omega}=\frac{b}{\sin \theta|d \Theta / d b|}
$$

Formal theory of reactions

Two-body channels

$$
x+A \rightarrow y+B
$$

$$
a=\left\{\alpha ; a_{x}, a_{A} ; \mathbf{k}_{a}\right\},
$$

$$
\mathbf{k}_{a}=\frac{m_{A} \mathbf{k}_{x}-m_{x} \mathbf{k}_{A}}{m_{x}+m_{A}}
$$

$$
\mathcal{E}_{a}=\frac{\hbar^{2} k_{a}^{2}}{2 \mu_{\alpha}}
$$

$$
H_{\alpha}=T_{\alpha}+h_{\alpha}, \quad T_{\alpha}=-\frac{\hbar^{2}}{2 \mu_{\alpha}} \nabla_{\alpha}^{2} \quad h_{\alpha}=h_{x}+h_{A}
$$

$$
\left(H_{\alpha}-E_{a}\right)|a\rangle=0
$$

$$
E_{a}=\mathcal{E}_{a}+\epsilon_{a}
$$

$$
h_{\alpha}\left|a_{x}, a_{A}\right\rangle=\epsilon_{a}\left|a_{x}, a_{A}\right\rangle \text { with } \epsilon_{a}=\epsilon_{x}+\epsilon_{A}
$$

$$
i \hbar \frac{d}{d t}\left|\Phi_{a}(t)\right\rangle=H_{\alpha}\left|\Phi_{a}(t)\right\rangle
$$

The total Hamiltonian H of the system is

$$
\begin{aligned}
& H=T_{\alpha}+h_{\alpha}+V_{\alpha}=H_{\alpha}+V_{\alpha} \\
& i \hbar \frac{d}{d t}\left|\Psi_{a}(t)\right\rangle=H\left|\Psi_{a}(t)\right\rangle
\end{aligned}
$$

For $t=0$ we have

$$
\left|\Psi_{a}^{+}(0)\right\rangle=e^{\frac{j}{\hbar} H t_{0}}\left|\Phi_{a}\left(t_{0}\right)\right\rangle \quad \text { with } t_{0}<-t_{\infty},
$$

the Lippmann-Schwinger equation

$$
\left|a^{ \pm}\right\rangle=|a\rangle+\frac{1}{E_{a}-H_{\alpha} \pm i \eta} V_{\alpha}\left|a^{ \pm}\right\rangle
$$

Cross section

$$
\begin{gathered}
\frac{d \sigma_{a \rightarrow b}}{d \Omega_{b}}=\left(\frac{2 \pi}{\hbar}\right)^{4} \mu_{\alpha} \mu_{\beta} \frac{k_{b}}{k_{a}}\left|T_{a \rightarrow b}\right|^{2} . \\
T_{a \rightarrow b}=\langle b|\left(V_{\alpha}+V_{\beta} \frac{1}{E-H+i \eta} V_{\alpha}\right)|a\rangle,
\end{gathered}
$$ Measurments of γ-multiplicities show that the γ-rays emitted after a DIC carry angular momentum, which is taken out of the relative motion of the collision partners. This shows that there is considerable transfer of angular momentum from the relative motion to the internal system.

- Coulomb-like collisions. Collision partners are higly charged and the incident energy is relatively low. The Coulomb repulsion dominates and the projectile is strongly reflected to large, backward angles.

- Focussing collisions. Higher energies or lighter nuclei. Scattering into a narrow angular region.

- Orbiting collisions. The attractive nuclear force dominates over the Coulomb force. This pulls the trajectory of the projectile around the target into the region of negative scattering angles.

End of $60^{\text {th }}$ - discovery of new type of nuclear reactions - DIC
Mechanism: dynamic \& statistic pecularities formation of DNS - result of nucler viscosity and microscopic effects
nuclear molecule \leftrightarrow DNS quasistationary states dynamics

Study of DIC
identification of the products
scattering chamber
radiochemistry
$\Delta \mathrm{E}-\mathrm{E}$ detectors
time of flight
magnetic spectrometra
two-shoulder detectors
detectors for n, p, α, and γ

Characteristics of DIC

- total dissipation of kinetic energy cas energy distribution has maxima at V_{b} for the fragments, independent on $\mathrm{E}_{\mathrm{c} . \mathrm{m} .}$.
- angular distributions have maxima at forward angles decrease of anisotropy with increasing number of transfered nucleon
- large variation of mass (charge) distributions (max. at A_{p}
$\left(A_{t}\right)$ and $Z_{p}\left(Z_{t}\right)$)
- N/Z ratio
- sharing of excitation energy and angular momentum

Illustration of the formation of two peaks in the energy spectrum
(

Contour diagram representing the transfer reaction data for ${ }^{232} \mathrm{Th}\left({ }^{40} \mathrm{Ar}, \mathrm{K}\right)$ at 388 MeV

Illustration of the dependence of the potential energy of the system of two touching nuclear drops on mass asymmetry and parameter $\left(Z_{1}+Z_{2}\right)^{2} /\left(A_{1}+A_{2}\right)$.

Set of coordinates for the description of DNS evolution:

$$
\eta_{Z}=\left(Z_{1}-Z_{2}\right) /\left(Z_{1}+Z_{2}\right), \quad \eta=\left(A_{1}-A_{2}\right) /\left(A_{1}+A_{2}\right), \quad R
$$

The potential energy of DNS:

$$
U\left(R, \eta, \eta_{Z}, \beta_{1,} \beta_{2,} J\right)=B_{1}+B_{2}+V\left(R, \eta, \eta_{Z}, \beta_{1,} \beta_{2,} J\right)
$$

The nucleus-nucleus potential:

$$
V\left(R, \eta, \eta_{Z}, \beta_{1}, \beta_{2}, J\right)=V_{c}\left(R, \eta_{z}, \beta_{1,} \beta_{2}\right)+V_{N}\left(R, \eta, \beta_{1,}, \beta_{2}\right)+V_{\text {rot }}\left(\eta, \beta_{1,}, \beta_{2,} J\right)
$$

$$
Q_{\mathrm{gg}}=\left(M_{1}+M_{2}\right)-\left(M_{3}+M_{4}\right)
$$

${ }^{232} \mathrm{Th}+{ }^{16} \mathrm{O} 137 \mathrm{MeV}$

DEEP INELASTIC TRANSFERS

$\delta(\mathrm{p})+\delta(\mathrm{n})=\sum$ pairing energy in acceptor nucleus
Illustration of the necessity of introducing corrections for non-pairing.

$232 \mathrm{Th}+16 \mathrm{O}$

The $Q_{\mathbb{B}}$ systematics for the reaction ${ }^{232} \mathrm{Th}+{ }^{22} \mathrm{Ne}$, corrected for non-pairing. $\sigma \omega \exp \left\{\left(Q_{\mathrm{Bs}}+\Delta E_{\mathrm{c}}\right) / T\right\}$

Fusion

stability of the formed compound nuclei fisility parameter

$$
x \approx \frac{1}{50} \frac{Z^{2}}{A} \approx \frac{Z}{120}
$$

$x>1$ - unstable $x<1$ - stable

Quadrupole deformation δ_{2}

The projectile moves in the field of the Coulomb-plus-nuclear potential $V(r)$. For a given impact parameter b the radial motion is governed by the potential

$$
\begin{gathered}
V_{b}(r)=V(r)+E \frac{b^{2}}{r^{2}}, \quad b=L / \sqrt{2 \mu E} \\
V_{\mathrm{B}}=V\left(R_{\mathrm{B}}\right)=V_{b=0}\left(R_{\mathrm{B}}\right) \\
V_{\mathrm{B}}+E \frac{b_{\mathrm{gr}}^{2}}{R_{\mathrm{B}}^{2}}=E \\
b_{\mathrm{gr}}=R_{\mathrm{B}} \sqrt{1-\frac{V_{\mathrm{B}}}{E}}
\end{gathered}
$$

Total fusion cross section

$$
\begin{aligned}
& \sigma_{\mathrm{F}}=\pi b_{\mathrm{gr}}^{2} . \\
& \sigma_{\mathrm{F}}(E)=\pi R_{\mathrm{B}}^{2}\left(1-\frac{V_{\mathrm{B}}}{E}\right) .
\end{aligned}
$$

Limitation by angular momentum

The compound nucleus becomes unstable against fission above the certain value of angular momentum $I_{\text {crit }}=l_{\text {crit }}^{f}, \quad b_{\text {crit }}=l_{\text {crit }} / k$.

$$
\begin{aligned}
& \sigma_{\mathrm{F}}= \begin{cases}\pi b_{\mathrm{gr}}^{2} & \text { for } b_{\mathrm{gr}}<b_{\mathrm{crit}} \\
\pi b_{\mathrm{crit}}^{2} & \text { for } b_{\mathrm{gr}}>b_{\mathrm{crit}}\end{cases} \\
& \sigma_{\mathrm{F}}= \begin{cases}\pi R_{\mathrm{B}}^{2}\left(1-V_{\mathrm{B}} / E\right) & \text { for } E<E_{\mathrm{crit}} \\
\pi \hbar^{2} l_{\mathrm{crit}}^{2} / 2 \mu E & \text { for } E>E_{\mathrm{crit}}\end{cases}
\end{aligned}
$$

$$
{ }^{20} \mathrm{Ne}+{ }^{27} \mathrm{Al}
$$

Sub-barrier fusion

transmission coefficient in the WKB approximation

$$
\begin{aligned}
& T=\exp \left(-\frac{2}{\hbar} \int_{b}^{a}\left|p\left(x^{\prime}\right)\right| d x^{\prime}\right) \\
& p(x)=\sqrt{2 \mu[E-V(x)]}
\end{aligned}
$$

For the parabolic barrier, Hill-Wheeler formula

$$
T=T(E)=\frac{1}{1+\exp \left[2 \pi\left(V_{\mathrm{B}}-E\right) / \hbar \omega\right]}
$$

$$
\begin{aligned}
T_{l}(E) & =\frac{1}{1+\exp \left\{2 \pi\left[V_{\mathrm{B}}+\hbar^{2} l(l+1) / 2 \mu R_{\mathrm{B}}^{2}-E\right] / \hbar \omega_{\mathrm{B}}\right\}}, \\
\omega_{\mathrm{B}}^{2} & =\left|\frac{1}{\mu} \frac{d^{2}}{d r^{2}}\left(V(r)+\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right)\right|_{R_{\mathrm{B}}} \\
\sigma_{\mathrm{F}}(E) & =\frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) T_{l}(E) \\
& \approx \frac{2 \pi}{k^{2}} \int_{0}^{\infty} \frac{l d l}{1+\exp \left\{2 \pi\left[V_{\mathrm{B}}+\hbar^{2} l^{2} / 2 \mu R_{\mathrm{B}}^{2}-E\right] / \hbar \omega_{\mathrm{B}}\right\}} .
\end{aligned}
$$

With the substitutions $y=l^{2}, a=\exp \left[2 \pi\left(V_{\mathrm{B}}-E\right) / \hbar \omega_{\mathrm{B}}\right]$ and $b=\pi \hbar / \mu R_{\mathrm{B}}^{2} \omega_{\mathrm{B}}$ we obtain

$$
\sigma_{F}(E)=\frac{\pi}{k^{2}} \int_{0}^{\infty} \frac{d y}{1+a \exp (b y)}=\frac{\pi}{k^{2}} \frac{1}{b} \ln \left(1+\frac{1}{a}\right) .
$$

Going back to the original parameters, we arrive at the Wong formula for the fusion cross section

$$
\begin{aligned}
& \sigma_{\mathrm{F}}(E)=\frac{\hbar \omega_{\mathrm{B}} R_{\mathrm{B}}^{2}}{2 E} \ln \left\{1+\exp \left[2 \pi\left(E-V_{\mathrm{B}}\right) / \hbar \omega_{\mathrm{B}}\right]\right\} \\
& \sigma_{\mathrm{F}}(E)= \begin{cases}\pi R_{\mathrm{B}}^{2}\left[1-\left(V_{\mathrm{B}} / E\right)\right] & \text { for } E>V_{\mathrm{B}} \\
\left(\hbar \omega_{\mathrm{B}} R_{\mathrm{B}}^{2} / 2 E\right) \exp \left[-2 \pi\left(V_{\mathrm{B}}-E\right) / \hbar \omega_{\mathrm{B}}\right] & \text { for } E<V_{\mathrm{B}}\end{cases}
\end{aligned}
$$

$+{ }^{238} U$

$10^{-\frac{23}{23}} \quad 10^{-2 \pi} \quad 10^{2 / 4} \quad 10^{-20} \quad 10^{04} 10^{-48} \mathrm{~S}$
Direct reactions
$6 \geqslant \mathrm{bg}$

DIC
(4)

ER

Fusion
beber
(4)
$z_{1} z_{2}$

$\begin{array}{l}\begin{array}{l}\text { reaction } \\ \text { type }\end{array} \\ \text { (a) Fusion } \\ \text { projectile } \\ \text { nucleus }\end{array}$ (bission $\left.\begin{array}{c}\text { target } \\ \text { nucleus }\end{array}\right)$

