
Methods of statistical physics in description 
of nuclear reactions at low energies

1. Langevin equations

2. Fokker-Planck equations

3. Master-equations



Characteristics of binary reactions under consideration

- total dissipation of kinetic energy in the entrance channel

- wide mass (charge) distributions of the reaction products in the      

  exit channel





  



          Relevant collective coordinates



  

Two main collective coordinates are used  for the 
description of the nuclear reactions: 

1. Relative internuclear distance R

2. Mass (charge) asymmetry coordinate for  
transfer of nucleons between interacting nuclei

=(A1-A2)/(A1+ A2)





  

  Relative motion of nuclei, capture of target and 
projectile into dinuclear system,            
decay of the dinuclear system: quasifission, 
deep-inelastic collisions (DIC)                        
                                                                  
                                                                  
       

  Transfer of nucleons between nuclei,   change of 
mass and charge asymmetries leading to fusion 
and quasifission (multinucleon transfer), DIC 



  

Langevin description

Two colliding nuclei with reduced mass M move in the field
of the interaction potential V(R), where R is the collective
coordinate. Lagrangian

The internal motion is described by a set of harmonic oscillators
of mass  m

i
  and frequency     with internal coordinate  q

i
. 

The internal Lagrangian:

The interaction between the collective motion and the internal
subsystem is assumed to be separable and linear in coordinate.
This drastic assumtion allows us to do analytic.



  

The full Lagrangian

where f
i
(R)  is the form factor of the coupling, it vanishes at R 

beyond which the reaction partners cease to interest and has
the same range as the potential V(R). The equations of motion:



  

The full Lagrangian
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i
(R)  is the form factor of the coupling, it vanishes at R 

beyond which the reaction partners cease to interest and has
the same range as the potential V(R). The equations of motion:



  

In order to get the equation in R alone, we must eliminate the 
internal coordinates. So,

where the first term is the solution of the homogeneous part 
with f

i
=0, and has the form

q
i0
 and p

i0
 are the values of the coordinates and momentum

of the oscillators of the bath at an initial time t
0
. The second

term incorporates the effect of coupling.



  

Substituting the solution for internal coordinates, we obtain
the differential equation for R

Integrating by parts in the second term,



  

The surface term contributes only at the upper limit s=t

As a result

The renormalized conservative force

The renormalized potential



  

We have defined the friction force

and the Langevin force

The renormalization term can be taken away by writing the full
Lagrangian in Caderia and Leggett form

The equation for R derived from such a Lagrangian contains only
the original potential V(R).



  

The friction force  (non-Markovian)

Here, we introduce the friction kernel (assume, for simplicity,
m

i
=m and f

i
(R)=f(R))

where The sum over i  is a sum of many 

terms with varying signs which effectively vanishes except when
all the cosines have nearly vanishing arguments, i.e. 
the small time interval    is the memory time determining the 
retardation of the friction force, i.e. its length of memory.Therefore,

where is a 'smeared-out  -function with a range  .



  

Integrating over t, we get

where the factor 2 is introduced for convenience. The friction kernel
then becomes

with the friction coefficient

The dependence of R(t) on t  is assumed to be weak, so that we can
set R(s)=R(t) for 
Let us introduce the spectral density         of the intrinsic excitations,
which allows us 



  

Langevin force

For simplicity, we assume the same form factors.

where

The oscillators are assumed to represent a 'heat bath' (Brownian 
motion). Owing to the implicit interactions of the oscillators of the
bath, the coordinates q

i0
 and momenta p

i0
 are treated as random

variables whose distributions has mean value zero,



  



  

Thus, 

We assume that the heat bath is in equilibrium and can be
characterized by a temperature T.



  

Then

m
i
=m

The normalized time-dependent variable

with Gaussian distribution.



  

The average of the Langevin force is

Its correlation function is



  

Fluctuation-dissipation theorem

connects the fluctuation strength coefficient D of the Langevin 
force with the friction coefficient   . It is a consequence of the fact
that the friction and Langevin forces have their origin in the 
coupling between the collective motion and the bath.

At low temperatures



  

Langevin equations, their applicability to DIC

The internal system equlibrates quickly, its equilibration time is
smaller than the correlation time    and also smaller than the
time scale of collective motion.



               Generalization to the multidimensional case.



Discretization of the Langevin equations





The discretized form of the Langevin 
equations



The Fokker-Planck description
 

The distribution of the solutions x(t)  of the Langevin        
equations, i.e.  the distribution function  d(x;t)   of the set 

of variables x as a function of the time t

It depends only on one previous time, it is called Markovian.
 





The Kramers-Moyal expansion:



Written explicitly in the N variables



The connection with the Langevin equations 





  

Fokker-Planck equation  for distribution function



  

Simple examples
1-dim., const. coefficients



  

The mean value and the variance are found from the first and 
second moments of the distribution function.



  



  



  

1-dim., variable drift coefficients

The equilibrium solution (           ) has the form of Boltzmann
distribution

where T is the temperature of the system.



  

In the first approximation



  



Two-dimensional Fokker-Planck equation 
with constant coefficients: Brownian motion



  

General case

d(R,P;t)











The multi-dimentional Gaussian solution of the 
Fokker-Planck equation with non-linear coefficients

Gaussian Ansatz (N variables)





The equations for the mean values and variances
(making use of integration by parts and the vanishing of the surface 

terms)
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The differential cross section for DIC



  

Rates depend on single-particle energies and 
temperature related to excitation energy.

Only one-nucleon transitions are assumed.

qf
Z,N  :   rate for quasifission

fis
Z,N  :   rate for fission of heavy nucleus 

Master-equation



  



Relation between master-equation 
and Fokker-Planck equation











  

Idea of Volkov (Dubna) to describe fusion 
reactions with the dinuclear system concept:

Fusion is assumed as a transfer of nucleons (or 
clusters) from the lighter nucleus to the heavier 
one in a dinuclear configuration.

This process is describable with the mass 
asymmetry coordinate =(A1-A2)/(A1+ A2).

A1 A2

If A1 or A2 get small, then ||1 and the system 
fuses. 
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