
On the divergences of 6D, N = (1, 0) supersymmetric

four-derivative gauge theory

Budekhina Alexandra

BLTP JINR

Problems of the Modern Mathematical Physics
Dubna, 2024

Budekhina Alexandra (Dubna) 6D, N = (1, 0) HD SYM 2024 1 / 21



Motivations

The main motivation for studying the quantum structure of maximally
extended supersymmetric gauge theories in dimensions larger then four is
basically motivated by the connection with the low-energy limit of superstring
theory and the interaction of D- and M-branes, which in principle allows the
study of low-energy effects of superstring theory using quantum field theory
methods.

Although supersymmetric gauge theories in higher dimensions are not
renormalizable by power counting, direct calculations sometimes show that
some divergences are reduced by supersymmetries.

Though models with higher derivatives usually have ghost states in their
spectrum, they are often used for different purposes in classical and quantum
field theory. There are various approaches to handle ghost fields in
interacting higher derivative supersymmetric (and non-supersymmetric)
theories, ensuring that they do not contribute to observable quantities. These
models considered as an effective field theories on the low energy limit.
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6D, N = (1, 0) supersymmetric gauge theories.

The 6D, N = (1, 0) supersymmetric higher-derivative gauge theory in
harmonic superspace formulation was firstly constructed in [Ivanov, Smilga and

Zupnik(2005)]

Harmonic superspace was originally developed by [Galperin, Ivanov, Ogievetsky,

Sokatchev (86’) ]

The ordinary 6D, N = (1, 0) supersymmetric Yang-Mills theory in has a
dimensionful coupling constant and for this reason is non-renormalizable.

The UV behavior of such a theory was studied by direct quantum calculations
in the component approach, by using the gauge and supersymmetry methods,
by applying the background field method in superspace [Buchbinder, Ivanov,
Merzlikin, Stepanyantz (86’) ] and by the modern amplitude techniques [Bork,
Kazakov, Kompaniets, Tolkachev (2015) ]

In contrast to the gauge theory with the standard kinetic term the
higher-derivative model with four space-time derivatives possesses a
dimensionless coupling constant and is renormalizable by power counting.
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Goals and methods

We review the higher-derivative 6D,N = (1, 0) supersymmetric gauge theory
[Ivanov, Smilga and Zupnik(2005)] and its quantum structure on the one-loop
level[Buchbinder, Ivanov, Merzlikin, Stepanyantz(2020)]

As a further generalization we consider the higher-derivative N = (1, 0)
supersymmetric gauge theory in six dimensions coupled to the conventional
6D,N = (1, 0) gauge theory and to the hypermultiplet.

The quantization procedure is carried out in the framework of the superfield
background method that ensures the manifest 6D, N = (1, 0) supersymmetry
and the classical gauge invariance of the quantum effective action.

Using the dimensional regularization and minimal subtraction scheme we
analyze the one-loop divergent contributions to the effective action.
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Notations

The central basis coordinates of the 6D,N = (1, 0) harmonic superspace [Galperin,
Ivanov, Ogievetsky, Sokatchev - Harmonic Superspace (2001) ]

(z, u) = (xM , θai , u
±i), M = 0, .., 5, a = 1, 2 i = 1, 2. (1)

The analytic harmonic superspace coordinates

(ζ, u) = (xM
A , θ+a, u±i), xM

A = xM +
i

2
θakγ

M
ab θ

b
lu

+ku−l, θ±a = u±
k θ

ak. (2)

The spinor and harmonic derivatives

D+
a = ∂−a, D−

a = −∂+a − 2iθ−b∂ab, (3)

where ∂±aθ
±b = δba, u

+iu−i = 1, and (γM )ab are the antisymmetric 6D Weyl
γ-matrices, (γM )ab = −(γM )ba , (γ̃

M )ab = 1
2ε

abcd(γM )cd , with εabcd being the
totally antisymmetric Levi-Civita tensor.
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The harmonic derivatives

D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θ+a∂+a − θ−a∂−a,

D±± = ∂±± + iθ±aθ±b∂ab + θ±a∂∓a, ∂±± = u±i ∂

∂u∓i
. (4)

The algebra of harmonic and spinor derivatives

{D+
a , D

−
b } = i(γM )ab∂M , [D++, D−−] = D0,

[D±±, D±
a ] = 0 , [D±±, D∓

a ] = D±
a . (5)

The full and analytic superspace integration measures are

d14z ≡ d6xA (D−)4(D+)4, dζ(−4) ≡ d6xA du (D−)4. (6)

where we have assumed the notation

(D±)4 = −
1

24
εabcdD±

a D
±
b D

±
c D

±
d . (7)
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A necessary ingredient is also a non-analytic harmonic connection V −− obtained
as a solution of the harmonic zero-curvature condition

D++V −− −D−−V ++ + i[V ++, V −−] = 0 . (8)

Using these superfields one can construct the gauge covariant harmonic derivative
∇±± = D±± + iV ±±. The superfield V −− is also used to define the spinor and
vector connections in the gauge-covariant derivatives

∇+
a = D+

a , ∇−
a = D−

a + iA−
a , ∇ab = ∂ab + iAab , (9)

where ∇ab =
1
2 (γ

M )ab∇M and ∇M = ∂M − iAM , with the superfield
connections defined as

A−
a = iD+

a V
−− , Aab =

1

2
D+

a D
+
b V

−−. (10)

The covariant derivatives (9) satisfy the algebra

{∇+
a ,∇

−
b } = 2i∇ab , [∇±

c ,∇ab] =
i

2
εabcdW

± d, [∇M ,∇N ] = iFMN .

(11)
where the superfield strength of the gauge multiplet are defined

W+a = −
i

6
εabcdD+

b D
+
c D

+
d V

−− (12)
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Model

The classical action of the higher-derivative 6D, N = (1, 0) supersymmetric gauge
theory [Ivanov, Smilga, Zupnik (2005) ] is written in the harmonic superspace as

S0 = ±
1

2g20
tr

∫
dζ(−4)du (F++)2 , (13)

where g0 is a dimensionless coupling constant. The covariant strength of the
analytic gauge superfield V ++ is defined by the expression

F++ = (D+)4V −− = −
1

24
εabcdD+

a D
+
b D

+
c D

+
d V

−−, (14)

where

V −−(z, u) =

∞∑

n=1

(−i)n+1

∫
du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+u+
1 )(u

+
1 u

+
2 ) . . . (u

+
nu+)

. (15)
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Background field method

Following the background field method, we split the superfields V ++ and q+A into
the sums of the background superfields V ++, Q+

A and the quantum ones v++, q+A ,

V ++ → V ++ + g0v
++, q+A → Q+

A + q+A , (16)

In what follows we will focus only on the gauge multiplet dependent sector of the
effective action and put Q+

A = 0.
Full action Stotal is constructed in the standard way as the sum of the classical
action, the action for the fermionic Faddeev-Popov ghosts Sfp, the action for the
bosonic real analytic Nielsen-Kallosh ghost Snk and gauge fixing term Sgf

Sgf [v
++, V ++] =

1

2ξ
tr

∫
d14zdu v++

τ,1

⌢

�
2v++

τ,2

−
1

2ξ
tr

∫
d14z

du1du2

(u+
1 u

+
2 )

2

{
v++
τ,1 (

⌢

� v++)τ,2

+
i

2
v++
τ,1 ∇

−−
2 [F++, v++]τ,2

}
, (17)

where ξ is the arbitrary real parameter.
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Effective action

Using the expression for gauge fixing term (17), taking into account that
e−ib∇−−eib = D−− we can write

S
(2)
total = ±

1

2g20ξ
tr

∫
dζ(−4)du v++

⌢

�
2v++

±
1

2g20
tr

∫
d14z

du1du2

(u+
1 u

+
2 )

2

{(
1−

1

ξ

)
v++
τ,1 (

⌢

� v++)τ,2

+iv++
τ,1 [(∇

−−F++), v++]τ,2

}

∓
i

2g20

(
1 +

1

ξ

)
tr

∫
d14zdu1du2

(u+
1 u

−
2 )

(u+
1 u

+
2 )

3
v++
τ,1 [F

++, v++]τ,2

+tr

∫
dζ(−4)du b(∇++)2c+

1

2
tr

∫
dζ(−4)duϕ(∇++)2ϕ , (18)

where the covariant super d’Alembertian is presented in the form

⌢

�= �+ iW+a∇−
a + iF++∇−− −

i

2
(∇−−F++). (19)

Budekhina Alexandra (Dubna) 6D, N = (1, 0) HD SYM 2024 11 / 21



After integration over quantum superfields we obtain the one-loop quantum
correction to the effective action

∆Γ(1)[V ++] =
i

2
Tr(2,2) ln

{1

ξ
(
⌢

�1)
2 (D+

1 )
4δ(−2,2)(u1, u2)

+
(
1−

1

ξ

)(D+
1 )

4
⌢

�2 (D+
2 )

4

(u+
1 u

+
2 )

2
eib1e−ib2

+
(D+

1 )
4(D+

2 )
4

(u+
1 u

+
2 )

2
eib1e−ib2

[
i(∇−−F++)−

i(u+
1 u

−
2 )

(u+
1 u

+
2 )

(
1 +

1

ξ0

)
F++

]

2

}

Adj

−iTr ln∇++
Adj .

(20)

where δ14(z1 − z2) = δ8(θ1 − θ2)δ
6(x1 − x2). The functional trace over harmonic

superspace is defined as

Tr (q,4−q)O = tr

∫
dζ

(−4)
1 dζ

(−4)
2 δ

(q,4−q)
A (2|1)O(q,4−q)(1|2), (21)

where δ
(q,4−q)
A (2|1) is an analytic delta-function and O(q,4−q)(ζ1, u1|ζ2, u2) is the

kernel of some operator O acting in the space of analytic superfields possessing
the harmonic U(1) charge q.

Budekhina Alexandra (Dubna) 6D, N = (1, 0) HD SYM 2024 12 / 21



We rewrite the first term of the expression (20) as the sum of two logarithms and
obtain

i

2
Tr(2,2) ln

{1

ξ
(
⌢

�1)
2(D+

1 )
4δ(−2,2)(u1, u2)δ

14(z1 − z2)
}

+
i

2
Tr(2,2) ln

{
(D+

1 )
4δ(−2,2)(u1, u2)δ

14(z1 − z2)

+
1

(
⌢

�1)2Adj

{
(ξ − 1)

(D+
1 )

4
⌢

�2 (D+
2 )

4

(u+
1 u

+
2 )

2
eib1e−ib2

+
(D+

1 )
4(D+

2 )
4

(u+
1 u

+
2 )

2
eib1e−ib2

[
iξ(∇−−F++)

−(ξ + 1)
i(u+

1 u
−
2 )

(u+
1 u

+
2 )

F++
]

2

}

Adj
δ14(z1 − z2)

}
. (22)

According to [Buchbinder, Ivanov, Merzlikin, Stepanyantz(2017)], the first term in this
expression vanishes. To calculate the divergent part of the second term in the
lowest order in (ξ − 1), we need to expand the logarithm up to a linear term only.
As a result, we arrive at the calculation of the divergent part of the expression

Γ
(1)
div[V

++] = (Γ1 + Γ2 + Γ3 + Γ4 + Γ)div. (23)

Using the dimensional regularization scheme we calculate each of this terms.
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The terms above are given as

Γ1 =
1

2
tr

∫
dζ

(−4)
1 du1

(ξ + 1)

(
⌢

�1)2
(D+

1 )
4(D+

2 )
4 (u+

1 u
−
2 )

(u+
1 u

+
2 )

3
eib1e−ib2F++

2 δ14(z1 − z2),

Γ2 = −
1

2
tr

∫
dζ

(−4)
1 du1

ξ

(
⌢

�1)2

(D+
1 )

4(D+
2 )

4

(u+
1 u

+
2 )

2
eib1e−ib2(∇−−F++)2 δ

14(z1 − z2),

Γ3 =
i

2
tr

∫
dζ

(−4)
1 du1

(ξ − 1)

(
⌢

�1)2
(D+

1 )
4

⌢

�2 (D+
2 )

4 1

(u+
1 u

+
2 )

2
eib1e−ib2δ14(z1 − z2)

Γ4 = −iTr ln∇++,

in the limit of coincident z points. Here tr stands for the usual matrix trace. We
briefly reproduce calculation of the first term as an example.
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Let us calculate the divergent contribution

Γ1 =
(ξ + 1)

2

∫
dζ

(−4)
1 du1 ((

⌢

�1)
−2)IJ (D+

1 )
4(D+

2 )
4 ×

(u+
1 u

−
2 )

(u+
1 u

+
2 )

3
(eib1e−ib2)JK(F++

2 )KIδ14(z1 − z2)
∣∣∣
2→1

. (28)

In this expression, we recommute the operator (
⌢

�)−2 to the right to
delta-function. Taking into account that the covariant d’Alembertian (19) acting
on harmonics only yields terms proportional to i(F++)IJD

−−, we conclude that
the this divergent contribution is proportional to the third inverse power of the
operator ∂2 = ∂M∂M acting on the space-time delta-function δ6(x1 − x2) where
the following identity is used,

1

(∂2)3
δ6(x1 − x2)

∣∣∣
2→1

=
i

(4π)3ε
, ε → 0 . (29)

Integrating over the Grassmann variables and taking into account (29), after some
transformations one obtains

Γ1, div = −
2(ξ + 1)C2

(4π)3ε
tr

∫
dζ(−4)du (F++)2 , (30)
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One-loop divergences

Similarly we calculate the divergent parts for the rest of the terms and get

∆Γ
(1)
div = −

11C2

3(4π)3ε
tr

∫
dζ(−4)du (F++)2 . (31)

For the arbitrary gauge ξ 6= 0 all divergent contributions depending on the
gauge-fixing parameter ξ cancel each other. This agrees with the general
statement that the renormalization of dimensionless coupling constants in
multiplicatively renormalizable gauge theories does not depend on the gauge
choice.

We can add the hypermultipllet term. Corresponding divergent contribution

Γ̃(1)
∞ [V ++] = −

11C2 + TR

3(4π)3ε
tr

∫
dζ(−4)du (F++)2 . (32)
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Generalization of the higher-derivative model

The classical action for the 6D N = (1, 0) SYM HD theory is represented as the
sum of the 6D N = (1, 0) SYM theory [B. M. Zupnik (1986)] and the term with
higher derivatives introduced in [Ivanov, Smilga, Zupnik (2005) ]

S0[V
++] =

1

f2
0

∞∑

n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

(u+
1 u

+
2 ) . . . (u

+
nu

+
1 )

V ++(z, u1) . . . V
++(z, un)

+
1

2g20
tr

∫
dζ(−4)(F++)2 −

1

2
tr

∫
dζ(−4) q+A∇++q+A , (33)

where g0 is a dimensionless constant, f0 is the second coupling constant of the
inverse dimension of mass. The indices of the Pauli-Gursey group SU(2) are
transformed according to the rule q+A = ǫABq

+B, where ǫ12 = 1. The analytic
superfields V ++ and q+ belong to the adjoint representation of the gauge group
G.
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One-loop divergences

Similarly we calculate the divergent parts for the rest of the terms and get

∆Γ
(1)
div = −

11C2 + TR

3(4π)3ε
tr

∫
dζ(−4)du (F++)2 . (34)

In the case when the hypermultiplet belongs to adjoint representation the
ghost field contribution is annihilated by the hypermultiplet contributions.

We pay attention that the one-loop divergences in the theory (33) do not
depend on presence or absence of the conventional Yang-Mills term in the
classical action, higher derivatives suppress lower ones in ultraviolet domain.
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Summary

We studied the quantum divergence structure of the higher-derivative
N = (1, 0) supersymmetric non-abelian gauge theory in six dimensions.

The model is formulated in harmonic 6D, N = (1, 0) superspace ensuring
manifest N = (1, 0) supersymmetry. The quantization was accomplished in
the framework of the background superfield method with a one-parameter
family of the quantum gauge-fixing conditions.

The corresponding gauge invariant and manifestly supersymmetric quantum
effective action was introduced and all possible divergent terms in such an
action were identified.

A manifestly supersymmetric and gauge invariant procedure to calculate the
one-loop divergences was developed and applied for the explicit calculation of
these divergencies.

As a further generalization we considered the higher-derivative N = (1, 0)
supersymmetric gauge theory in six dimensions coupled to the conventional
6D,N = (1, 0) supergauge theory and to the hypermultiplet.

The one-loop divergences of this theory was calculated.

Budekhina Alexandra (Dubna) 6D, N = (1, 0) HD SYM 2024 19 / 21



Further perspectives: Two-loop calculations

The multiloop calculations in theories formulated in harmonic superspace face
the certain difficulties. The harmonic supergraphs contain the harmonic
dependent propagators and integrals over harmonics, the number of which
increases with the number of loops.

At this point in time known, in the two-loop approximation there are two
types of supergraphs with different topologies. The first has topology of ’Θ’
and the second one possesses the ’∞’ topology.

The explicit calculation of such integrals corresponding to these diagrams
requires using the various non-trivial identities for harmonic distributions
which are not evident in each concrete case.

In some recent papers [Buchbinder, Ivanov, Merzlikin, Stepanyantz (2021,2023)] a
method which allows calculating the leading 1/ε2 divergences was developed.
It is hoped that by using this method, it will be possible to calculate two-loop
divergences.
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Thank you for your attention!
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