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Minkowski space and N = 1,4D superspaces
Poincaré invariance plays the central role in the modern physics: all theories
of interest are formulated in terms of Poincaré - covariant fields (scalars,
vectors, spinors,...) defined on 4-dimensional Minkowski space
{xm ∼ xαα̇},m = 0, 1, 2, 3;α, β̇ = 1, 2:

(Pm , L[mn]), [Pm,Pn] = 0 , [Pm, L[ns]] ∼ Pq , [L[mn], L[pq]] ∼ L[st] ,

xm ∝ P4

SO(1, 3)
, xm′

= xm + am

N = 1, 4D supersymmetry is an extension of the Poincaré symmetry by
spinor generators Qα, Q̄α̇

{Qα, Q̄β̇} = 4 Pαβ̇ , {Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0 , [Pm,Qα] = [Pm, Q̄α̇] = 0

N = 1, 4D superspace is an extension of Minkowski space by a doublet of
Grassmann anticommuting spinorial coordinates θγ , θ̄µ̇

xαα̇ ⇒ (xαα̇, θγ , θ̄µ̇) , θγ ′ = θγ + ϵγ , xαα̇′
= xαα̇ − 2i(θαϵα̇ − ϵαθ̄α̇)

N = 1, 4D superfields are functions on N = 1 superspace, Φ(x , θ, θ̄), with
the scalar transformation law,

Φ′(x ′, θ′, θ̄′) = Φ(x , θ, θ̄)



There is one very essential difference between Minkowski space and N = 1
superspace. While the former does not include any subspace where the
whole 4D Poincaré symmetry could be linearly realized, the latter contains
such smaller supermanifolds, N = 1, 4D chiral superspaces (xL, θ), (xR , θ̄)
with twice as less Grassmann coordinates:

xαβ̇
L = xαβ̇ + 2iθαθ̄β̇ , δxαβ̇

L = −4iθαϵ̄β̇ , xαβ̇
R = (xαβ̇

L )†

Just the chiral superfields are carriers of the basic matter N = 1 multiplet,
the chiral one

φ(xL, θ) = ϕ(xL) + θαψα(xL) + (θ)2F (xL) ,Sfree ∼
∫

d4xd2θd2θ̄ φ(xL, θ)φ̄(xR , θ̄)

The chiral superfields can be looked upon as complex general N = 1
superfields subject to the covariant Grassmann analyticity condition (A.
Galperin, E.I., V. Ogievetsky, 1981)

φ(xL, θ) = ΦL(xL, θ, θ̄) ,
∂

∂θ̄γ̇
ΦL = 0

The same constraint can be rewritten in the basis (x , θ, θ̄) in terms of spinor
covariant derivatives

D̄γ̇ΦL(x , θ, θ̄) = 0 , Dα =
∂

∂θα
+ 2i θ̄α̇∂αα̇ , D̄γ̇ = − ∂

∂θ̄γ̇
− 2i‘θα∂αγ̇ ,

{Dγ ,Dβ} = {D̄γ̇ , D̄β̇} = 0 , {Dγ , D̄β̇} = −4i∂γβ̇



The vanishing of anticommutators of the same chirality spinor derivatives is
just the integrability conditions for N = 1 chirality. This chirality underlies all
the gauge and supergravity N = 1 theories: the interacting case just
corresponds to replacing all covariant derivatives by the gauge-covariant
ones through adding proper superfield gauge connections

Dγ ⇒ Dγ , D̄γ̇ ⇒ D̄γ̇ , ∂γβ̇ ⇒ Dγβ̇ ,

still preserving the flat integrability constraints

{Dγ ,Dβ} = {D̄γ̇ , D̄β̇} = 0

The general N = 1 matter is also described by chiral superfields, implying a
general Kähler target geometry for bosonic fields (Zumino, 1979).

For extended supersymmetries (with few sorts of Q generators) new kinds of
Grassmann analyticities (different from chirality) can be defined and they just
form the basis of the Harmonic Superspace approach.



SO(2) vs SU(2) Grassmann analyticities

The simplest extended 4D supersymmetry is N = 2 one, with two
independent supercharges:

{Q i
α, Q̄β̇k} = 4δi

k Pαβ̇ , {Q i
α,Q

k
β} = {Q̄α̇i , Q̄β̇k} = 0 ,

where i, k = 1, 2. This superalgebra has the automorphism SU(2)R which
rotates supercharges as doublets. Equally, one can consider a theory in
which SU(2)R is reduced to SO(2)R ⊂ SU(2)R .

One can define the standard N = 2 superspace, (xαβ̇ , θαi , θ̄α̇i ) =: Z , as well
as chiral superspace (xαβ̇

L , θαi) =: ζL and its conjugate ζR . However, there
occur new possibilities for the invariant subspaces. Namely, one can define

(xαβ̇
an , θ

α1 + iθα2) or (x̃αβ̇
an , θ

α1 − iθα2)

Clearly, SU(2)R is broken to SO(2)R with such a definition. Indeed, these
subspaces are closed under N = 2 supersymmetry and internal SO(2)R

symmetry, but not under SU(2)R . Just such subspaces were called analytic
by Galperin, Ivanov and Ogievetsky, 1981 in order to distinguish them from
the simplest analytic subspaces, the chiral ones.



On the other hand, the constraints defining the gauge N = 2 theory and
N = 2 matter (as well as N = 2 supergravity) in the standard N = 2
superspace are known to be covariant under the whole SU(2)R symmetry

{D(i
α,D

k)
β } = {D̄(i

α̇, D̄
k)
β̇
} = {D(i

α, D̄
k)
β̇
} = 0 ,

D(i
αqk)(Z ) = D̄(i

α̇qk)(Z ) = 0,

where Di
α, D̄i

α̇ are properly gauge-covariantized spinor derivatives and q i(Z )
are hypermultiplet superfields in the “central basis”.
As compared to N = 1 SYM constraints, their N = 2 counterparts have
more complicated structure and include spinor derivatives of different
chiralities. Moreover, while the N = 1 chirality constraints on the matter
superfield Φ do not impose any dynamical restrictions on the component
fields, N = 2 constraints give rise to the free equations of motion for the
hypermultiplet superfield components.
What is the geometric meaning of these N = 2 constraints and how to solve
them in full generality? Mezincescu was first to find the explicit solution of the
N = 2 SYM constraints through an unconstrained superfield gauge
prepotential (1979) but only for abelian case. No any geometric meaning can
be ascribed to this prepotential. Also it remained unclear how to generalize
the hypermultiplet constraints to the general case, how to ensure their
off-shell realization and how to construct the invariant superfield actions.



SU(2) harmonic superspace

All these questions were answered and all problems were solved after
invention of the Harmonic Superspace in (1984) by Galperin, Ivanov, Kalitzin,
Ogievetsky, Sokatchev.
N = 2 harmonic superspace (HSS) is the product

(xm, θα i , θ̄
k
β̇)⊗ S2

Here, the internal two-sphere S2 ∼ SU(2)R/U(1)R is represented, in a
parametrization-independent way, by the lowest (isospinor) SU(2)R

harmonics

S2 ∈ (u+
i , u

−
k ), u+iu−

i = 1, u±
i → e±iλu±

i

The superfields given on HSS (harmonic N = 2 superfields) admit the
harmonic expansions on S2, with the set of all symmetrized products of
u+

i , u
−
i as the basis. Such an expansion is fully specified by the harmonic

U(1) charge of the given superfield.



The main advantage of HSS is that it contains an invariant subspace, the
N = 2 analytic HSS, involving only half of the original Grassmann
coordinates.
One can pass to the analytic basis in HSS

{
(
xm

A , θ
+
α , θ̄

+
α̇ , u

±
i

)
θ−α , θ̄

−
α̇ } ≡ {

(
ζM , u±

i

)
, θ−α , θ̄

−
α̇ } ,

xm
A = xm − 2iθ(iσmθ̄k)u+

i u−
k , θ±α = θi

αu±
i , θ̄±α̇ = θ̄i

α̇u±
i

Then the set of coordinates(
xm

A , θ
+
α , θ̄

+
α̇ , u

±
i

)
≡

(
ζM , u±

i

)
,

is just SU(2) covariantization of the O(2) analytic superspace. It is closed
under both N = 2 supersymmetry transformations and SU(2)R and it is real
with respect to the special involution defined as the product of the ordinary
complex conjugation and the antipodal map (Weyl reflection) of S2.
The superfields given on the analytic subspace can be defined in the
basis-independent way by the new Grassmann-analyticity conditions

D+
αΦ(Z , u) = D̄+

α̇Φ(Z , u) = 0 ↔
(

∂

∂θ−α
,
∂

∂θ̄−α̇

)
Φ(ζM , u±

i , θ
−
α , θ̄

−
α̇ ) = 0

D+
α = u+

i Di
α , D̄+

α̇ = u+
i D̄i

α̇ , Φ = φ(ζM , u±
i )

All N = 2 theories of interest (SYM, matter, supergravities,
superextension of higher spins,...) are underlain by analytic superfields
φ+q(ζM , u±

i ) as the fundamental geometric objects.



N = 2 SYM constraints are solved as follows. One projects

(Di
α, D̄i

α̇) ⇔ (D±
α , D̄±

α̇ ), D±
α = u±

i Di
α , D̄±

α̇ = u±
i D̄i

α̇ (1)

Then the constraints are rewritten as

{D+
α ,D+

β } = {D̄+
α̇ , D̄

+

β̇
} = {D+

α , D̄+

β̇
} = 0 (2)

After taking off u+i , the standard constraints are recovered in view of
arbitrariness of u+

i . How to reduce the procedure of converting with
harmonics to a new kind of differential constraint?
This can be done with the new differential operators, the harmonic derivatives

∂±± = u±i ∂

∂u∓i , ∂
0 = u+i ∂

∂u+i − u−i ∂

∂u−i ,

[∂++, ∂−−] = ∂0 , [∂0, ∂±±] = ±2∂±± , (3)

One adds to (2) new constraints

[∂++,D+
α ] = [∂++, D̄+

α̇ ] = 0 ⇒ D+
α,α̇ = u+

i D
i
α,α̇ , (4)

using ∂++u+
i = 0, ∂++u−

i = u+
i . Now one can treat D+

α,α̇ to have an
unconstrained dependence on u± while the linear dependence appears as a
result of imposing extra constraints (4).



The extended set of constraints (2) and (4), besides the standard SYM
constraints, admits a new solution. By making some similarity gauge-like
transformation (with a general harmonic suiperfield as a parameter, so called
“bridge”) and simultaneously passing to the analytic basis in HSS, one can
solve the integrability conditions (2) and (4) as

(D+
α , D̄+

α̇) ⇒ (∂+
α , ∂̄

+
α̇ ) , ∂++ ⇒ D++ + iV++(ζ, u), (5)

D++ = ∂++ − 2iθ+σaθ̄+∂a + θ+α∂+
α + θ̄+α̇∂̄+

α̇

In other words, (2) implies the spinorial connections in D+
α,α̇ to be a “pure

gauge” in the full HSS, while D++ in the new frame acquires some harmonic
connection V++ which is unconstrained analytic by the constraint (4),
V++ ⇒ V++(ζ, u). It is just the fundamental gauge prepotential of N = 2
SYM theory. It carries the analytic gauge freedom,

δV++ = D++Λ + i[V++,Λ],

which can be used to reduce V++ to the Wess-Zumino form

V++ = (θ+)2ϕ+ (θ̄+)2ϕ̄+ iθ+σmθ̄Am + [(θ+)2θ̄+α̇ψ̄
α̇iu−

i + c.c.] + (θ+)4D(ik)u−
i u−

k

These fields form off-shell N = 2 vector supermultiplet.



The off-shell action can be constructed using the second (non-analytic)
harmonic connection V−− related to V++ by the harmonic flatness condition

D++V−− − D−−V++ + i[V++,V−−] = 0

The action for the abelian case is

Sv ∼
∫

d12Zdu V++V−−

For non-abelian case the action looks more complicated since it contains
non-locality in harmonics (B. Zupnik, 1987). Its variation is much simpler

δSv ∼
∫

d12Zdu Tr(δV++V−−)



Hypermultiplet. The on-shell constraints on the hypermultiplet are rewritten
in HSS as

D(i
α,α̇qk) = 0 , ⇔ (a)D+

α,α̇q+ = 0, (b)D++q+ = 0 (6)

Indeed, eq. (6)(b) implies q+ = u+
k qk , then eq (6)(a) yields the standard

constraints for N = 2 superfield qk .
Once the standard hypermultiplet constraints have been rewritten as
differential conditions in HSS, one can pass to the analytic basis where D+

α,α̇

become “short” and (6)(a) simply imply that q+ is analytic in this basis:

(6)(a) ⇒ q+ = q+(ζ, u) (7)

As any analytic N = 2 superfield, q+(ζ, u) is off-shell and involves the ∞
number of fields. The whole dynamics proves to be concentrated in (6)(b)

(6)(b) ⇒ D++q+ = (∂++ − 2iθ+σaθ̄+∂a)q+ = 0 (8)

This equation nullifies all fields in q+(ζ, u) except for those entering at zero
and first degrees of θ+α , θ̄+α̇ and at first and zero powers in harmonics:

q+ ⇒ q i(x)u+
i + θ+αψ

α(x) + θ̄+α̇χ
α̇(x) (9)

These are just physical bosonic and fermionic fields and for them (8) implies
the standard free massless equations of motion.



The splitting of the hypermultiplet constraints into the kinematical and
dynamical parts in the analytic basis of HSS entails a remarkable
consequence. Now the dynamical constraint (6)(b) can ne derived as an
equation of motion from the off-shell action:

D++q+ = 0 from Sfree
q ∼

∫
dζ(−4)du

(
q+D++q̄+ − q̄+D++q+) (10)

Thus the Grassmann harmonic analyticity allowed to construct off-shell action
for the hypermultiplet which was not possible in the framework of standard
superspaces. It became possible just at cost of admitting an infinite number
of auxiliary fields, the cardinally new feature brought about by the harmonic
superspace formalism.
Now it is straightforward to write the most general action for interacting
hypermultiplets:

Sgen
q ∼

∫
dζ(−4)du

(
q+AD++q̄+

A − q̄+
A D++q+A + L+4(q+, q̄+, u±)

)
(11)

where L+4(q+, q̄+, u±) is an arbitrary function of its arguments, the “hyper
Kähler potential”, the true analog of Kähler potential of N = 1
supersymmetric matter. It was proven in Alvarez-Gaume, Freedman, 1980,
1981 that any N = 2, 4D supersymmetric matter Lagrangian contains as its
bosonic “core” just sigma model with hyper-Kähler target space. So any
Lagrangian (11) provides an efficient way of the explicit construction of HK
metrics (Galperin, Ivanov, Ogievetsky, Sokatchev, 1986).



SU(3) harmonic superspace
One more striking example of how HSS works is the HSS formulation of
N = 3 SYM theory (which is equivalent to the renowned N = 4 SYM theory
on shell). The N = 3 superspace constraints of this theory read

{D(i
α,D

j)
β} = {D̄(iα̇, D̄j)β̇} = 0 , {D(i

α, D̄j)β̇} = 0 (12)

Here lower and upper indices i, j, ... refer to the fundamental and
co-fundamental representations of N = 3 R-symmetry group SU(3)R . The
interpretation of these constraints as integrability conditions for a sort of
Grassmann analyticity was proposed by Rosly, 1983. Later, these were
realized as a natural generalization of N = 2 HSS Grassmann analyticity in
Galperin, Ivanov, Kalitzin, Ogievetsky, Sokatchev, 1985. The N = 3 HSS with
the SU(3)/[U(1)× U(1)] harmonic part was introduced there. It involves the
analytic subspace with two independent complex Grassmann coordinates
compared to three such coordinates in the full N = 3 HSS. The relevant
Grassmann analyticity conditions read

D(1,0)
α Φ = 0 , D̄(0,1)

α̇ Φ = 0 , {D(1,0)
α , D̄(0,1)

α̇ } = 0 , (13)

where D(a,b) are the proper projections of the original spinor covariant
derivatives. These projections commuute with the set of three harmonic
derivatives

(D(2,−1),D(−1,2),D(1,1)) , [D(2,−1),D(−1,2)] = D(1,1) , (14)

which is N = 3 analog of the N = 2 analyticity-preserving derivative D++.



After passing to the analytic basis, the spinorial Grassmann analyticity
conditions imply that the harmonic potentials appearing in the rotated
harmonic derivatives D(a,b) are N = 3 analytic superfields
V (2,−1)(ζ, u),V (−1,2)(ζ, u),V (1,1)(ζ, u), while the vanishing of the superfield
strengths appearing in the commutation relations between these
covariantized harmonic derivatives become just the equations of motion for
N = 3 SYM:

[D(2,−1),D(−1,2)] := D(1,1) + iF (1,1) , [D(1,1),D(2,−1)] := iF (3,0) ,

[D(−1,2),D(1,1)] := iF (0,3) , F (1,1) = F (3,0) = F (0,3) = 0

It is rather surprising that these equations of motion are derivable from the
Chern-Simons type off-shell action

SN=3 =

∫
dudζ(−2,−2)Tr {V (2,−1)F (0,3) + V (−1,2)F (3,0)

+V (1,1)(F (1,1) − i[V (2,−1),V (−1,2)])}

It is highly non-trivial and unique peculiarity that the U(1) charges and the
dimension of the measure ((−2,−2) and 0) precisely match those of the
Lagrangian ((2, 2) and 0)! The action is analogous to N = 2 action of q+ as
the gauge potentials involve infinite numbers of auxiliary fields off shell.



N = 2 supergravity in HSS
The fundamental gauge group of Einstein N = 2 supergravity in HSS is
general diffeomorphisms of the analytic superspace, such that the harmonics
themselves remain untouched

δζM = ΛM(ζ, u) , δu±
i = 0 , M := (αβ̇, 5 , α̂+), α̂ := (α, α̇)

We added one more coordinate x5, which is necessary for description of
massive q+a hypermultiplets. Nothing depends on x5 while the x5

dependence of q+a is assumed to be trivial, q+a → (eim x5σ3
)a

bq+b.
To ensure the gauge invariance of the q+ Lagrangian, we need to
gauge-covariantize the harmonic derivative D++:

1
2

q+aD++q+
a ⇒ 1

2
q+aD++q+

a , D++ = ∂++ + H++M∂M ,

(15)

The gauge transformation of H++M reads

δH++M = D++λM − λN∂NH++M (16)

It can be checked that the q+ Lagrangian 1
2 q+aD++q+

a is transformed by a
total derivative under (16) and the transformation
δq+a = − 1

2 (∂αα̇λ
αα̇ − ∂α̂λ

α̂)q+a − λN∂Nq+a, so the action is invariant.



Using these gauge transformations of H++M , one can pass to WZ gauge with
(40 + 40) off-shell degrees of freedom, which is just the off-shell content of
the so called “minimal” N = 2 supergravity Fradkin, Vasiliev, 1979; de Wit,
van Holten, 1979. The invariant superfield action for H++M can be also
constructed. In the linearized approximation:

SY ∼
∫

dud4xd8θ[G++αα̇G−−
αα̇ + G++5G−−5] ,

G±±αα̇ = h±±αα̇ + 2i(h±±α+θ̄−α̇ + θ−αh±±α̇+), G±±5 = h±±5 − 2ih±±α̂+θ−α̂ ,

H++αα̇ = h++αα̇ − 4iθ+αθ̄+α̇ , H++5 = h++5 + i(θ+̂)2 ,

D++G−−αα̇,5 = D−−G++αα̇,5 .

Also, conformal N = 2 supergravity was formulated in HSS and various
versions of N = 2 Einstein supergravities through the compensating
procedure by the appropriate compensating superfields were reproduced.
It was rather surprising that the unconstrained superfield formulations of the
higher-spin N = 2 supergravities could be formulated in HSS (for the first
time!) as a direct generalization of the HSS formulation of Einstein N = 2
supergravity (Buchbinder, Ivanov, Zaigraev, 2021 - 2024)



N = 2 higher spins

I will limit my presentation by the N = 2 spin 3. Like in N = 2 supergravity,
the basic analytic superfields form a triad, with additional spinorial indices:

h++(αβ)(α̇β̇)(ζ) , h++αα̇(ζ), h++(αβ)α̇+(ζ), h++(α̇β̇)α+(ζ) ,

δh++(αβ)(α̇β̇) = D++λ(αβ)(α̇β̇) + 2i
[
λ+(αβ)(α̇θ̄+β̇) + θ+(αλ̄+β)(α̇β̇)],

δh++αα̇ = D++λαα̇ − 2i
[
λ+(αβ)α̇θ+β + λ̄+(α̇β̇)αθ̄+

β̇

]
,

δh++(αβ)α̇+ = D++λ+(αβ)α̇ , δh++(α̇β̇)α+ = D++λ+(α̇β̇)α

The bosonic physical fields in the WZ gauge are collected in

h++(αβ)(α̇β̇) = −2iθ+ρθ̄+ρ̇Φ
(αβ)(α̇β̇)
ρρ̇ + . . .

h++αα̇ = −2iθ+ρθ̄+ρ̇Cαα̇
ρρ̇ + . . .

The physical gauge fields are Φ
(αβ)(α̇β̇)
ρρ̇ (spin 3), Cαα̇

ρρ̇ (spin 2) and ψ(αβ)(α̇β̇)i
γ

(spin 5/2). Other fields are auxiliary. On shell, (3, 5/2, 5/2, 2).



The linearized gauge action has the form quite similar to the spin 2 action

Ss=3 =

∫
d4xd8θdu

{
G++(αβ)(α̇β̇)G−−

(αβ)(α̇β̇)
+ G++αβ̇G−−

αβ̇

}
,

G++(αβ)(α̇β̇) = h++(αβ)(α̇β̇) + 2i
[
h++(αβ)(α̇+θ̄−β̇) − h++(α̇β̇)(α+θ−β)] ,

G++αβ̇ = h++αβ̇ − 2i
[
h++(αβ)β̇+θ−β − θ̄−α̇ h++(α̇β̇)α+],

D++G−−(αβ)(α̇β̇) − D−−G++(αβ)(α̇β̇) = 0 , D++G−−αβ̇ − D−−G++αβ̇ = 0

The actions for higher spins are constructed quite analogously. The on-shell
spin contents of N = 2 higher-spin multiplets can be summarized as

spin 1 : 1, (1/2)2, (0)2

spin 2 : 2, (3/2)2, 1

spin 3 : 3, (5/2)2, 2

.......

spin s : s, (s − 1/2)2, s − 1

Each spin enters the direct sum of these multiplets twice, in accord with the
general Vasiliev theory of 4D higher spins. The off-shell contents of the spin
s multiplet is described by the formula 8[s2 + (s − 1)2]B + 8[s2 + (s − 1)2]F .



Bosonic analogs

It is notable that there are bosonic analogs of the principle of preserving
Grassman analyticity as the basis of gauge supersymmetric theories. This
astonishing affinity was found out in Galperin, Ivanov, Ogievetsky,
Sokatchev,1988. In particular, it was shown that the general solution of
self-duality equation for Yang-Mills theory in the Euclidean
R4 ∼ xµ i , µ, i = 1, 2 is given by an analog of N = 2 potential V++(ζ, u) :

V++(xµ+, u±
i ), xµ+ = xµ iu+

i , u±
i ∈ SU(2)R/U(1)R , SO(4) ∼ SU(2)L × SU(2)R

Also, the general hyper-Kähler geometry in R4n ∼ xµ i , µ = 1, ...2n; i = 1, 2;
was solved in terms of general hyper-Kähler potential

L+4(xµ+, u±
i ) , SO(4n) → Sp(n)× SU(2)

Links between bosonic and supersymmetric avatars of the generic Analyticity
Preservation Principle are depicted in the Table.



ANALYTICITY 
PRESERVATION 

PRINCIPLE

N=0 bosonic

N=1 analyticity
(chirality)

N=0 complex

N=1 SYM Yang

N=1 SG

Kähler
N=1 matter

N=2 harmonic
analyticity

N=0 harmonic

N=2 SYM

N=2 SG

N=2 matter

Quaternion

Hyper-Kähler

N=0 
self dual YM

?
N=3 harmonic

analyticity

The Analyticity Preservation Principle reveals deep relationships 
between theories that are seemingly very different

GRASSMANN



Further prospects

▶ One of the unsolved important problems is construction of N = 3
supergravity in N = 3 HSS. The main question is as to how to describe
the relevant super Weyl multiplet in terms of unconstrained N = 3
superfields, like this has been done in HSS for conformal N = 2
supergravity. For the time being, we have no answer.

▶ A wide circle of problems arises in connection with the HSS description
of N = 2 supersymmetric higher spins. Some urgent ones are
generalizing the theory to AdS type backgrounds and developing the
appropriate quantization methods in N = 2 HSS, like those existing in
the case of N = 2 SYM theories.

▶ How to extend the linearized theory of N = 2 higher spins to its full
nonlinear version? The latter is known only for s ≤ 2 (N = 2 super
Yang - Mills and N = 2 supergravities). This problem will seemingly
require accounting for ALL higher N = 2 superspins simultaneously.
New supergeometries?
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