International Workshop FROBLEMS OF MODERN MATHEMATICAL PHYSICS

BLTP JINR, Dubna, Russia

19 - 23 February, 2024

SUPERSYMMETRY IN PARTICLE PHYSICS

DMITRY KAZAKOV JINR(DUBNA)

IS THERE ANOTHER SCALE EXCEPT FOR EW AND PLANK?

NEW SYMMETRIES

SUPERSYMMETRY

Supersymmetry is an extension of the Poincare symmetry of the SM

Poincare Algebra

$$[P_{\mu}, P_{\nu}] = 0,$$

$$[P_{\mu}, M_{\rho\sigma}] = i(g_{\mu\rho}P_{\sigma} - g_{\mu\sigma}P_{\rho}),$$

$$[M_{\mu\nu}, M_{\rho\sigma}] = i(g_{\nu\rho}M_{\mu\sigma} - g_{\nu\sigma}M_{\mu\rho} - g_{\mu\rho}M_{\nu\sigma} + g_{\mu\sigma}M_{\nu\rho})$$

Super Poincare Algebra
$$Q_i, \ \bar{Q}_i$$

$$\begin{split} &[Q_{\alpha}^{i}, P_{\mu}] = [\bar{Q}_{\dot{\alpha}}^{i}, P_{\mu}] = 0, \\ &[Q_{\alpha}^{i}, M_{\mu\nu}] = \frac{1}{2} (\sigma_{\mu\nu})_{\alpha}^{\beta} Q_{\beta}^{i}, \qquad [\bar{Q}_{\dot{\alpha}}^{i}, M_{\mu\nu}] = -\frac{1}{2} \bar{Q}_{\dot{\beta}}^{i} (\bar{\sigma}_{\mu\nu})_{\dot{\alpha}}^{\dot{\beta}}, \\ &\{Q_{\alpha}^{i}, \overline{Q}_{\beta}^{j}\} = 2\delta^{ij} (\sigma^{\mu})_{\alpha\beta} P_{\mu} \\ &\{Q_{\alpha}^{i}, Q_{\beta}^{j}\} = 2\epsilon_{\alpha\beta} Z^{ij}, \qquad Z^{ij} = Z_{ij}^{+}, \\ &\{\bar{Q}_{\dot{\alpha}}^{i}, \bar{Q}_{\dot{\beta}}^{j}\} = -2\epsilon_{\dot{\alpha}\dot{\beta}} Z^{ij}, \qquad [Z_{ij}, anything] = 0, \\ &\alpha, \dot{\alpha} = 1, 2 \qquad i, j = 1, 2, \dots, N. \end{split}$$

MOTIVATION FOR SUSY IN PARTICLE PHYSICS

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

Standard particles

μ

Ve

e

Squarka

Standard particles

SUSY particles

Sleptons

τ

W

Higgsino

SUSY force

- Unification with gravity!
- Unification of the gauge couplings
- Solution of the hierarchy problem Ş
- Explanation of the EW symmetry violation
- Provided the DM particle

Unification with gravity!

Higgs

SUPERSYMMETRY

$$\{Q_{\alpha}^{i}, \overline{Q}_{\beta}^{j}\} = 2\delta^{ij} (\sigma^{\mu})_{\alpha\beta} P_{\mu} \implies \{\delta_{\varepsilon}, \overline{\delta}_{\overline{\varepsilon}}\} = 2(\varepsilon \sigma^{\mu} \overline{\varepsilon}) P_{\mu}$$

$$\varepsilon = \varepsilon(x) \text{ local coordinate transf.} \implies (\text{super})\text{gravity}$$

Local supersymmetry = general relativity !

MOTIVATION FOR SUSY IN PARTICLE PHYSICS

Supersymmetry is a dream of a unified theory of all particles and interactions

Why SUSY?

The basis of a grand **Unified Theory**

Solution of the hierarchy problem

Cancellations of corrections and stabilization of the **Higgs** potential

Explanation of the EW symmetry violation

Provided the DM particle

$$\widetilde{\chi}^{0} = N_{1}\widetilde{\gamma} + N_{2}\widetilde{z} + N_{3}\widetilde{H}_{1}^{0} + N_{4}\widetilde{H}_{2}^{0}$$

Neutralino=DM

Violation of symmetry comes from radiative corrections

THE SIMPLEST (N=1) SUSY MULTIPLETS

Bosons and Fermions come in pairs

THE PARTICLE CONTENT OF THE MSSM

7

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$
Gauge G ^a V ^k V'	gluon g^a Weak W^k (W^{\pm}, Z) Hypercharge $B(\gamma)$	gluino \tilde{g}^{a} wino, zino $\tilde{w}^{k}(\tilde{w}^{\pm}, \tilde{z})$ bino $\tilde{b}(\tilde{\gamma})$	8 1 1	$egin{array}{c} 0 \ 3 \ 1 \end{array}$	0 0 0
Matter					
$egin{array}{c} \mathbf{L_i} \ \mathbf{E_i} \ \mathbf{N_i} \ \mathbf{Q_i} \end{array}$	sleptons $\begin{cases} L_i = (\tilde{\nu}, \tilde{e})_L \\ \tilde{E}_i = \tilde{e}_R \\ \tilde{N}_i = \tilde{\nu}_R \end{cases}$ $\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	leptons $\begin{cases} L_i = (\nu, e)_L \\ E_i = e_R \\ N_i = \nu_R \\ Q_i = (u, d)_L \end{cases}$	1 1 1 3	$2 \\ 1 \\ 1 \\ 2$	$-1 \\ 2 \\ 0 \\ 1/3$
$\mathbf{U_i}$	squarks $\left\langle \begin{array}{c} \tilde{U}_i = \tilde{u}_R \\ \tilde{U}_i = \tilde{u}_R \end{array} \right\rangle$	quarks $\left\{ \begin{array}{c} U_i = u_R^c \end{array} \right.$	3*	1	-4/3
Di	$D_i = d_R$	$D_i = d_R^c$	3*	1	2/3
Higgs	_				
$\mathrm{H_1}\ \mathrm{H_2}$	Higgses $\begin{cases} H_1 \\ H_2 \end{cases}$	higgsinos $\begin{cases} \tilde{H}_1 \\ \tilde{H}_2 \end{cases}$	15	2 2	-1 1
S	Singlet s	singlino s	1	1	0

THE R-PARITY

SUSY Particle :

The Usual Particle : R = + 1

 χ_0

R = -1

B - Baryon Number L - Lepton Number S - Spin

The consequences:

 $R = (-)^{3(B-L)+2S}$

The superpartners are created in pairsThe lightest superparticle is stable

The lightest superparticle (LSP) should be neutral - the best candidate is neutralino (photino or higgsino)
It can survive from the Big Bang and

form the Dark matter in the Universe

THE INTERACTIONS IN THE MSSM

SUPERPARTNERS PRODUCTION AT THE LHC

10

THE DECAY OF SUPERPARTNERS

squarks $\tilde{q}_{L,R} \rightarrow q + \chi_i^{\sim 0}$ $\tilde{q}_L \rightarrow q' + \chi_i^{\pm}$ $\tilde{q}_{L,R} \rightarrow q + g$ $\tilde{l} \rightarrow l + \tilde{\chi}$ sleptons $\tilde{l}_L \rightarrow v_I + \chi_I^{\pm}$ Final states neutralino chargino $\widetilde{\chi}_{i}^{\pm} \rightarrow e + v_{e} + \widetilde{\chi}_{i}^{0}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + l^{+} + l^{-}$ $\widetilde{\chi}_{i}^{\pm} \rightarrow q + \overline{q}' + \widetilde{\chi}_{i}^{0}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + q + \overline{q}'$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{\pm} + l^{\pm} + v_{l}$ $g \rightarrow q + \overline{q} + \overline{\gamma}$ gluino $\gamma + \not E_{\tau}$ $\tilde{g} \rightarrow g + \tilde{\gamma}$ $\widetilde{\chi}_{i}^{0} \rightarrow \widetilde{\chi}_{1}^{0} + v_{l} + v_{l}$ \mathbf{F}_{T}

11

SOFT BUSY BREAKING

$$-L_{Soft} = \sum_{\alpha} M_i \widetilde{\lambda}_i \widetilde{\lambda}_i + \sum_i m_{0i}^2 |A_i|^2 + \sum_{ijk} A_{ijk} A_i A_j A_k + \sum_{ijj} B_{ij} A_i A_j$$

gauginos scalar fields

Over 100 of free parameters !

SUSY Models and Signatures **T.Hebbeker**

13

Direct production at colliders at high energies

particle phys Indirect manifestation at low energies Rare decays ($B_s \to s\gamma, B_s \to \mu^+ \mu^-, B_s \to \gamma \nu$ g-2 of the muon

Search for long-lived SUSY particles

Relic abundancy of Dark Matter in the Universe DM annihilation signal in cosmic rays Direct DM interaction with nucleons

Nothing so far ...

CREATION AND DECAY OF SUPERPARTNERS¹⁵ IN CASCADE PROCESSES @ LHC

Typical SUSY signature: Missing Energy and Transverse Momentum

DETECTOR CONFIGURATIONS AT THE LHC: CMS & ATLAS 16

DETECTOR CONFIGURATIONS AT THE LHC: CMS & ATLAS 17

TYPICAL EVENT SIGNATURE

"The standard" signature, CMS example

EXP AND THEOR FRAMEWORK

Two ways to present and analyse data:

```
I. High energy input:
introduce universal parameters at high energy scale (GUT)
Example m_0, m_{1/2}, A_0, \tan\beta of MSSM
```

Advandage: small number of universal parameters for all masses Disadvantage: strictly model dependent (MSSM, NMSSM, etc)

2. Low energy input: use low energy parameters like masses of superpartners Example \tilde{m}_g , \tilde{m}_q , \tilde{m}_χ or m_A , $\tan \beta$

Advandage: less model dependent Disadvantage: many parameters, process dependent

Both approaches are used

WHAT IS THE LHC REACH?

Masses of superpartners

WHAT IS THE LHC REACH NOW?

Universal parameters

RECENT LHC LIMITS ON MSSM '23 23

RUN2 LHC limits om MSSM, ATLAS&CMS

2HDM AND HMSSM LIMITS, RUN2

2HDM hMSSM combined results, RUN2

Much more details see in a talk by <u>Adam Bailey</u> (+ comprehensive list of analyses for ATLAS & CMS)

RUN2 LHC LIMITS ON GMSB MSSM, CMS

25

SUPERSYMMETRY @ LHC

Chargino / neutralino production

Direct production of "electroweakino" pairs

- decays via sleptons / sneutrinos
- using benchmarks to illustrate different scenarios (depend on mixings and nature of lightest slepton)

No light EWkinos

26

 χ_1^{\perp}

ATLAS AND TEMS UN THE TO 2023

27

y.	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$	0 ε,μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	140 140	<pre></pre>		1.0 0.9	1.8	85	m(kt̃1)<400 GeV m(q)-m(kt̃1)=5 GeV	2010.14293 2102.10874
Inclusive Searche	$\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}\bar{\chi}_{1}^{0}$	0 ε,μ	2-6 jets	E_T^{miss}	140	R R		Forbidden	1.15-1	2.3	$m(\tilde{k}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{k}_{1}^{0})=1000 \text{ GeV}$	2010.14293 2010.14293
	$\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}W\bar{\chi}_{1}^{0}$	1 e, µ	2-6 jets		140	Ĩ.				2.2	m(k̃_1)<600 GeV	2101.01629
	$gg, g \rightarrow qq(\ell\ell) \tilde{\chi}_1^0$	ее, µµ	2 jets	E_T^{miss}	140	R				2.2	m(\tilde{k}_{1}^{0})<700 GeV	2204.13072
	§§, §→qqWZ $\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{max}	140 140	R R		1	.15	1.97	m(ℓ i) <600 GeV m(ℓ)-m(ℓi)=200 GeV	2008.06032 2307.01094
	$\ensuremath{\check{g}}\ensuremath{\check{g}},\ensuremath{\check{g}}\ensuremath{\to}\ensuremath{\check{x}}\ensuremath{\check{u}}\ensur$	0-1 ε,μ SS ε,μ	3 b 6 jets	$E_T^{\rm miss}$	140 140	1981			1.25	2.45	m($\bar{\ell}_1^0$)<500 GeV m(\bar{g})-m($\bar{\ell}_1^0$)=300 GeV	2211.08028 1909.08457
arks tion	b_1b_1	0 ε,μ	2 b	E_T^{miss}	140	$ar{b}_1 \ ar{b}_1$		0.68	1.255		$m(\tilde{k}_{1}^{0}) < 400 \text{ GeV}$ 10 GeV< $\Delta m(\tilde{b}_{1}, \tilde{k}_{1}^{0}) < 20 \text{ GeV}$	2101.12527 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 ε,μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	140 140	δ ₁ Forbidden δ ₁		0. 0.13-0.85	23-1.35	$\Delta m(\tilde{k}_2^0, \tilde{\chi}_1^0) = \Delta m(\tilde{k}_2^0, \tilde{\chi}_1^0)$)=130 GeV, m(\tilde{k}_{1}^{0})=100 GeV \tilde{k}_{1}^{0})=130 GeV, m(\tilde{k}_{1}^{0})=0 GeV	1908.03122 2103.08189
ng ng	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 ε,μ	≥ 1 jet	E_T^{miss}	140	î ₁			1.25		m(t ² 1)=1 GeV	2004.14060, 2012.03799
Q	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e,µ	3 jets/1 b	E_T^{mes}	140	î ₁	Forbidden	1.05			m($\tilde{t}_{1}^{''}$)=500 GeV	2012.03799, ATLAS-CONF-2023-043
ge ge	$I_1I_1, I_1 \rightarrow \overline{\tau}_1 bv, \overline{\tau}_1 \rightarrow \tau G$	1-2 T	2 jets/1 b	ET	140	71		Forbidden	1.4		m(r ₁)=800 GeV	2108.07665
3'é đần	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \mathcal{O} \tilde{t}_1 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow \mathcal{O} \tilde{t}_1$	0 e,μ	mono-jet	E_T E_T	140		0.55	0.85			$m(\tilde{t}_1)=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{t}_1)=5 \text{ GeV}$	2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 ε, μ	1-4 b	E_T^{miss}	140	ĩ ₁		0.067-1	1.18		m($\tilde{\chi}_{2}^{0}$)=500 GeV	2006.05880
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 ε,μ	1 <i>b</i>	E_T^{max}	140	Ĩ2	Forbidden	0.86		m(\tilde{t}_1^0)=360	0 GeV, m(ℓ̃ ₁)-m(ℓ̃ ₁ ⁰)= 40 GeV	2006.05880
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	Multiple ℓ/jet: εε, μμ	s ≥ljet	E_T^{miss} E_T^{miss}	140 140	$\frac{\tilde{\chi}_{1}^{*}/\tilde{\chi}_{0}^{0}}{\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}}$ 0.205		0.96		m(i	$m(\tilde{\chi}_1^0)=0$, wino-bino $\tilde{\chi}_1^+)-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e, µ		E_T^{miss}	140	$\tilde{\chi}_{1}^{*}$	0.42				$m(\bar{k}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple ℓ/jet	8	E_T^{miss}	140	$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}$ Forbidden		1.06	6		$m(\tilde{\chi}_1^0)=70$ GeV, wino-bino	2004.10894, 2108.07586
. *	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{+}$ via $\tilde{\ell}_{L}/\tilde{\nu}$	2 e, µ		E ^{mes} T	140	\tilde{X}_1		1.0			$m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\ell}_{1}^{+}) + m(\tilde{\ell}_{1}^{+}))$	1908.08215
i ev	ττ, τ→τX1 5 5 5	2 τ	0 inte	E T E miss	140	T [TR, TR,L]	0.34 0.48	0.7			$m(\tilde{x}_1)=0$	ATLAS-CONF-2023-029
- 6	$\ell_{\mathbf{L},\mathbf{R}}\ell_{\mathbf{L},\mathbf{R}}, \ell \to \ell \ell_1$	2 е, µ ее, µµ	≥ 1 jet	E_T	140	i 0.26		0.7			m(ℓ)-m(ℓ1)=0 m(ℓ)-m(ℓ1)=10 GeV	1911.12606
	ĤĤ, Ĥ→hĜ/ZĜ	0 e, µ	≥ 3 b 0 iete	E ^{miss} E ^{miss}	140	Ĥ	0.55	0.94			$BR(\tilde{\chi}_{1}^{0} \rightarrow h\bar{G})-1$	To appear
		0 e, µ	≥ 2 large jet	ts E_T^{Thiss}	140	H H	0.00	0.45-0.93			$BR(\tilde{x}_1^0 \rightarrow Z\tilde{G})=1$ BR($\tilde{x}_1^0 \rightarrow Z\tilde{G})=1$	2108.07586
		2 e, µ	≥ 2 jets	E_T^{miss}	140	Ĥ		0.77		BR(Ř	${}^{0}_{1} \rightarrow Z\overline{G}$)-BR($\tilde{\chi}^{0}_{1} \rightarrow h\overline{G}$)-0.5	2204.13072
ъ.,	Direct $\hat{\chi}_1^* \hat{\chi}_1^-$ prod., long-lived $\hat{\chi}_1^+$	Disapp. trk	1 jet	$E_T^{\rm max}$	140	$\frac{\tilde{X}_{1}}{\tilde{X}_{1}}$ 0.21		0.66			Pure Wino Pure higgsino	2201.02472 2201.02472
ive les	Stable § R-hadron	pixel dE/dx		E_T^{miss}	140	Ĩ				2.05		2205.06013
Pit	Metastable § R-hadron, $g \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		E_T^{miss}	140	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}]$				2.2	m($\tilde{\chi}_{1}^{0}$)=100 GeV	2205.06013
pa	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell G$	Displ. lep		E_T^{mass}	140	ē, µ ÷	0.24	0.7			$\tau(\ell) = 0.1 \text{ ns}$ $\tau(\ell) = 0.1 \text{ ns}$	2011.07812
1		pixel dE/dx		E_T^{miss}	140	Ť	0.36				$\tau(\tilde{\ell}) = 0.1$ Hs $\tau(\tilde{\ell}) = 10$ hs	2205.06013
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow \mathbb{Z} \ell \rightarrow \ell \ell \ell$	3 ε,μ			140	$\bar{\chi}_{1}^{\mp}/\bar{\chi}_{1}^{0}$ [BR(Z τ)=1, BR(Z e)=1]	0.	.625 1.05			Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 ε, μ	0 jets	E_T^{miss}	140	$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.95	1.55		m(𝔅 ⁰ ₁)=200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$		≥8 jets		140	[m(x ⁰ ₁)=50 GeV, 1250 GeV]			1.6	2.25	Large X'12	To appear
>	$i\tilde{i}, \tilde{i} \rightarrow i\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ibs$		Multiple		36.1	I [A" =20-4, 10-2]	0.55	1.05			m($\tilde{k}_1'')$ =200 GeV, bino-like	ATLAS-CONF-2018-003
5	$ii, i \rightarrow b \chi_1, \chi_1 \rightarrow b b s$		≥ 4b 2 inte + 2 k		140	1	Forbidden	0.95			m(ℓ_1^{-})=500 GeV	2010.01015
	$I_1I_1, I_1 \rightarrow DS$ $\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow d\ell$	2011	21013+21	,	36.1	11 [qq, bs]	0.42 0	.01	0.4-1.45		$BB(\tilde{l}_1 \rightarrow b_{\rm c}/b_{\rm c}) > 20\%$	1710.0/1/1
	statist site	1μ	DV		136	i [1e-10< X _{23k} <1e-8, 3e-10< λ	ť _{23k} <3e−9]	1.0	1.6		$BR(\bar{l}_1 \rightarrow q\mu) = 100\%, \cos\theta_l = 1$	2003.11956
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 e, µ	≥6 jets		140	X ₁ ⁰ 0.2-0	.32				Pure higgsino	2106.09609
					_					1		1
*Only phen	phenomena is shown. Many of the limits are based on 10 Mass scale [TeV]											

LONG LIVED PARTICLES

"The non-standard" (Long-Lived Particle) signatures

LLP:

a proper lifetime $c\tau_o$ is greater than or comparable to the characteristic size of the (sub)detectors

 ✓ small ct₀ that comparable to the inner tracker size, no displaced tracks →
 "standard" prompt decay

✓ intermediate $c\tau_0$ → LLP

 ✓ very large/infinite large cτ₀ → stable particles, "standard" MET signatures

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497 LLP White Paper: arXiv:1903.04497 LLP theory motivations arXiv:1806.07396 displaced jets/leptons

Stealth supersymmetry model

29

Stealth supersymmetry idea

SUSY is natural, low-scale SUSY breaking, hidden sector with one chiral singlet supefield (singlino/singlet). The lightest supersymmetric particle – gravitino (GMSB), LOSP decay to gravitino through a hidden sector. R-odd singlino, R-even singlet. Masses in a hidden sector of order the EW scale, states approximately supersymmetric – mass splitting is much smaller than masses, states are closely degenerated by masses. Suppression of large missing E_T (connected with gravitino).

Stealth supersymmetry idea

Stealth supersymmetry idea

SUSY breaking – low-scale vs high-scale (large soft mass contributions to the stealth sector), mX_1X_2

Soft SUSY_breaking B-term (or M_{Pl} suppression in SUGRA)

$$\mathcal{L} \supset \int d^2\theta \ m \left(1 + \theta^2 m_{3/2}\right) X_1 X_2 \supset m_{3/2} m X_1 X_2$$

 $\delta m = m - \sqrt{m^2 - B} \approx \frac{B}{2m}$

splitting of about 10 GeV,

$$B = m_{3/2}m$$

 $m_{3/2} \lesssim 2\delta m \lesssim 20 \,\,\mathrm{GeV}$

Stealth masses of about the EW scale – accident or common underlying physics? Small $B\mu$ /dynamically generated masses

GMSB decay width

$$\Gamma(\tilde{g} \to g\tilde{G}) = \frac{m_{\tilde{g}}^5}{48\pi M^2 m_{\tilde{G}}^2} = 1.1 \times 10^{-9} \,\text{GeV} \, \left(\frac{m_{\tilde{g}}}{250 \,\,\text{GeV}}\right)^5 \left(\frac{m_{\tilde{G}}}{1 \,\,\text{eV}}\right)^{-2}$$

will be modified by new hidden sector

FUTURE SUSY SEARCHES

SUSY is certainly a compelling candidates of BSM physics, so we should keep searching for her without leaving any stone unturned.

* Taking the gauge coupling unification seriously, SUSY may have some chance to be seen at LHC, and a good chance at the FCC:

SUSY GUT

Crucial points:

- SUSY leads to unification
- SUSY solves the hierarchy problems for GUTs
- No GUT without SUSY

New properties:

- Later unification higher GUT scale
- Longer proton life-time $au \sim M_{GUT}^4$
- New modes of proton decay

EXTENDED HIGGS SECTOR

Perform direct search for

How to probe?

Probe deviations from the

One has to check the presence or absence of heavy Higgs bosons

PRECISION PHYSICS OF THE HIGGS BOSONS

34

CONCLUDING REMARKS

MLHC experiments are at the front line of mystery land: be patient

Mo sign of supersymmetry so far

More involved scenarios are under study

Image: Weigh States and the second se

SUSY might be much heavier (?!)

SUSY might be irrelevant in particle physics (!?)

What the future may bring?