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Supersymmetry and high energy physics

Although supersymmetry has not yet been discovered experimentally, at present
there are some indirect evidences that it is really present in high energy physics.
Namely,

In supersymmetric theories running coupling constants are uni�ed in
agreement with the prediction of Grand Uni�ed Theories, see PDG �gure

Supersymmetry forbids quadratically divergent quantum correction to the
Higgs boson mass and does not require its �ne tuning at the Grand
Uni�cation scale.

Supersymmetry predicts existence of a light Higgs boson with a mass
close to mZ .
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Supersymmetric theories at the quantum level

Investigation of quantum corrections in supersymmetric theories is very important
both for theory and for phenomenology.
In supersymmetric theories possible ultraviolet divergences are restricted by some
non-renormalization theorems. The most known of them are the following:

N = 1 superpotential does not receive divergent quantum corrections.

M. T. Grisaru, W. Siegel, M. Rocek, Nucl. Phys. B 159 (1979), 429.

N = 2 supersymmetric gauge theories are �nite starting from the
two-loop approximation.

M. T. Grisaru, W. Siegel, Nucl. Phys. B 201, 292 (1982);
P. S. Howe, K. S. Stelle, P. K. Townsend, Nucl. Phys. B 236, 125 (1984);
I. L. Buchbinder, S. M. Kuzenko, B. A. Ovrut, Phys. Lett. B 433, 335 (1998).

N = 4 supersymmetric Yang�Mills theory is �nite in all loops.

M. F. Sohnius, P. C. West, Phys. Lett. B 100, 245 (1981);
S. Mandelstam, Nucl. Phys. B 213, 149 (1983);
L. Brink, O. Lindgren, B. E. W. Nilsson, Nucl. Phys. B 212, 401 (1983).

Other non-renormalization theorems will be discussed below.
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Supersymmetric theories at the quantum level

The non-renormalization theorems allow constructing �nite theories with N < 4
supersymmetry. ForN = 2 supersymmetric theories it is made by a special choice
of a gauge group and representations for the matter super�elds

P. S. Howe, K. S. Stelle, P. C. West, Phys. Lett. B 124, 55 (1983).

For constructing �nite N = 1 supersymmetric theories in a similar way it is also
necessary to make a special tuning of a renormalization scheme,

A. Parkes, P. C. West, Phys. Lett. B 138, 99 (1984);
D. I. Kazakov, Phys. Lett. B 179, 352 (1986);
A. V. Ermushev, D. I. Kazakov, O. V. Tarasov, Nucl. Phys. B 281, 72 (1987);
C. Lucchesi, O. Piguet, K. Sibold, Helv. Phys. Acta 61, 321 (1988);
Phys. Lett. B 201, 241 (1988).

Also it is possible to construct �nite theories with softly broken supersymmetry,

I. Jack, D. R. T. Jones, A. Pickering, Phys. Lett. B 426, 73 (1998);
D. I. Kazakov, Phys. Lett. B 421, 211 (1998);
D. I. Kazakov, M. Y. Kalmykov, I. N. Kondrashuk, A. V. Gladyshev,
Nucl. Phys. B 471, 389 (1996).

Thus, supersymmetry is a step towards removing the ultraviolet divergences.
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Supersymmetric theories in N = 1 superspace

It is convenient to formulate N = 1 supersymmetric theories in N = 1
superspace, e.g.,

S =
1

2e20
Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ ϕ∗i(e2V )i

jϕj

+
{∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

}
.

Here V is the gauge super�eld, ϕi are the chiral matter super�elds in the
representation R of the gauge group G, and

Wa =
1

8
D̄2

(
e−2V Dae

2V
)

is the supersymmetric gauge �eld strength.

The gauge invariant theory is obtained if the Yukawa couplings and masses satisfy
the constraints

mim
0 (TA)m

j +mmj
0 (TA)m

i = 0;

λijm
0 (TA)m

k + λimk
0 (TA)m

j + λmjk
0 (TA)m

i = 0,

where (TA)i
j are the generators of the gauge group G in the representation R.
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Supersymmetric theories in N = 1 superspace

Most supersymmetric theories have ultraviolet divergences, although non-
renormalization theorems impose some restrictions on the renormalization group
functions (RGFs). For instance, due to the nonrenormalization of superpotential
the renormalizations of masses and Yukawa couplings are related to the
renormalization of the matter super�elds

mij = mmn
0

(√
Zϕ

)
m

i(√Zϕ

)
n

j ;

λijk = λmnp
0

(√
Zϕ

)
m

i(√Zϕ

)
n

j(√Zϕ

)
p

k,

where the renormalization constant for the chiral matter super�elds is de�ned as

ϕi =
(√

Zϕ

)
i

jϕR,j .

Consequently, the anomalous dimension of the matter super�elds is related to
the mass anomalous dimensions and, therefore, is gauge independent. Similarly,
the Yukawa β-function is also related to the anomalous dimension of the chiral
matter super�elds by the equation

(βλ)
ijk =

1

2

(
(γϕ)m

iλmjk + (γϕ)m
jλimk + (γϕ)m

kλijm
)
=

3

2
(γϕ)m

(iλjk)m.
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The exact NSVZ β-function

Wonderfully, the gauge β-function in supersymmetric theories can also be related
to the anomalous dimension of the matter super�elds.

The exact Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) β-function can
also be considered as a non-renormalization theorem.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277 (1986)
456; D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

It relates the β-function and the anomalous dimension of the matter super�elds
in N = 1 supersymmetric gauge theories,

β(α, λ) = −
α2

(
3C2 − T (R) + C(R)i

j(γϕ)j
i(α, λ)/r

)
2π(1− C2α/2π)

.

Here α and λ are the gauge and Yukawa coupling constants, respectively, and
we use the notation

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA = dimG.
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Explicit calculation and the problem of constructing an NSVZ scheme

Three- and four-loop calculations in N = 1 supersymmetric theories made with
dimensional reduction supplemented by modi�ed minimal subtraction (i.e. in the
so-called DR-scheme)

L.V.Avdeev, O.V.Tarasov, Phys.Lett. 112 B (1982) 356; I.Jack, D.R.T.Jones,
C.G.North, Phys.Lett B386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

revealed that the NSVZ relation in the DR-scheme holds only in the one- and two-
loop approximations, where the β-function is scheme independent. (The NSVZ
relation relates the two-loop β-function to the one-loop anomalous dimension,
which is also scheme independent.)

However, in the three- and four-loop approximations it is possible to restore
the NSVZ relation with the help of a specially tuned �nite renormalization
of the gauge coupling constant. Note that a possibility of making this �nite
renormalization is highly nontrivial.

This implies that the NSVZ relation holds only in some special renormalization
schemes, which are usually called �NSVZ schemes�, and the DR-scheme is not
NSVZ.
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The higher covariant derivative regularization

The exact NSVZ β-function can be derived in all loops by direct summation of the
perturbative series with the help of the higher covariant derivative regularization
proposed by A.A.Slavnov

A.A.Slavnov, Nucl.Phys. B31, (1971), 301;
Theor.Math.Phys. 13 (1972) 1064.

By construction, it includes insertion of the Pauli�Villars determinants for
removing residual one-loop divergencies

A.A.Slavnov, Theor.Math.Phys. 33, (1977), 977.

Unlike dimensional reduction, this regularization is self-consistent. It can be
formulated in a manifestly supersymmetric way in terms of N = 1 super�elds

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B268, (1986), 113.

The use of the higher covariant derivative regularization also allows constructing
all-loop renormalization prescriptions which give some NSVZ schemes.
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NSVZ relation for N = 1 supersymmetric electrodynamics

The simplest example of an N = 1 supersymmetric gauge theory is N = 1
SQED with Nf �avors, which in the massless limit is described by the action

S =
1

4e20
Re

∫
d4x d2θW aWa +

Nf∑
α=1

1

4

∫
d4x d4θ

(
ϕ∗
αe

2V ϕα + ϕ̃∗
αe

−2V ϕ̃α

)
,

where V is a real gauge super�eld, ϕα and ϕ̃α with α = 1, . . . , Nf are chiral
matter super�elds. The supersymmetric �eld strength in the Abelian case is
de�ned as Wa = D̄2DaV/4. For this theory C2 = 0, C(R) = I, T (R) =
2Nf , r = 1, where I is the 2Nf × 2Nf identity matrix.

In this case the NSVZ β-function takes the form

β(α) =
α2Nf

π

(
1− γ(α)

)
.

M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42 (1985) 224;
Phys.Lett. B 166 (1986) 334.

This equation relates the L-loop β-function to the (L − 1)-loop anomalous
dimension of the matter super�elds γ(α).
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The higher derivative regularization for N = 1 supersymmetric

electrodynamics

To regularize N = 1 SQED by higher derivatives, we �rst add to its action a
term containing higher derivatives. Then the regularized action takes the form

Sreg =
1

4e20
Re

∫
d4x d2θW aR(∂2/Λ2)Wa

+

Nf∑
α=1

1

4

∫
d4x d4θ

(
ϕ∗
αe

2V ϕα + ϕ̃∗
αe

−2V ϕ̃α

)
,

where R(∂2/Λ2) is a regulator function, e.g., R = 1 + ∂2n/Λ2n.

After the adding of the higher derivative term divergences survive only in the
one-loop approximation. To regularize the residual one-loop (sub)divergences,
we insert the Pauli�Villars determinants into the generating functional,

Z[J, j, j̃] =

∫
Dµ

(
detPV (V,M)

)Nf

exp
{
iSreg + iSgf + Ssources

}
.

Masses of the Pauli�Villars super�elds should satisfy the important condition
M = aΛ with a ̸= a(e0).
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Di�erent de�nition of renormalization group functions

It is important to distinguish RGFs de�ned in terms of the bare coupling constant
α0,

β(α0) ≡
dα0(α,Λ/µ)

d lnΛ

∣∣∣
α=const

; γ(α0) ≡ −d lnZ(α,Λ/µ)

d lnΛ

∣∣∣
α=const

,

and RGFs standardly de�ned in terms of the renormalized coupling constant α,

β̃(α) ≡ dα(α0,Λ/µ)

d lnµ

∣∣∣
α0=const

; γ̃(α) ≡ d lnZ(α0,Λ/µ)

d lnµ

∣∣∣
α0=const

.

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459.

RGFs de�ned in terms of the bare coupling constant do not depend on
a renormalization prescription for a �xed regularization, but depend on a
regularization.

RGFs defrined in terms of the renormalized coupling constant depend both on
regularization and on a renormalization prescription.
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The HD+MSL scheme. Integrals of double total derivatives.

Both de�nitions of RGFs give the same functions in the HD+MSL-scheme,
when a theory is regularized by Higher Derivatives, and divergences are removed
by Minimal Subtractions of Logarithms. This means that the renormalization
constants include only powers of lnΛ/µ, where µ is a renormalization point.

β̃(α)
∣∣∣
HD+MSL

= β(α0 → α); γ̃(α)
∣∣∣
HD+MSL

= γ(α0 → α).

A key observation needed for derivation of the NSVZ relation is that in the
case of using the higher derivative regularization the integrals giving the β-
function de�ned in terms of the bare coupling constant are integrals of double
total derivatives in N = 1 supersymmetric gauge theories.

A.A.Soloshenko, K.S., ArXiv: hep-th/0304083v1 (the factorization into
total derivatives);
A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445 (the
factorization into double total derivatives).
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The three-loop β-function of N = 1 SQED as an integral of double total

derivatives

β(α0)

α2
0

= Nf
d

d lnΛ

{
2π

∫
d4Q

(2π)4
∂

∂Qµ

∂

∂Qµ

ln(Q2 +M2)

Q2
+ 4π

∫
d4Q

(2π)4
d4K

(2π)4
e2

K2R2
K

× ∂

∂Qµ

∂

∂Qµ

(
1

Q2(K +Q)2
− 1

(Q2 +M2)((K +Q)2 +M2)

)[
RK

(
1 +

e2Nf

4π2
ln

Λ

µ

)
−2e2Nf

(∫
d4L

(2π)4
1

L2(K + L)2
−

∫
d4L

(2π)4
1

(L2 +M2)((K + L)2 +M2)

)]
+4π

∫
d4Q

(2π)4
d4K

(2π)4
d4L

(2π)4
e4

K2RKL2RL

∂

∂Qµ

∂

∂Qµ

{(
− 2K2

Q2(Q+K)2(Q+K + L)2

× 1

(Q+ L)2
+

2

Q2(Q+K)2(Q+ L)2

)
−

(
− 2(K2 +M2)

((Q+K)2 +M2)((Q+ L)2 +M2)

× 1

(Q2 +M2)((Q+K + L)2 +M2)
+

2

(Q2 +M2)((Q+K)2 +M2)((Q+ L)2 +M2)

− 4M2

(Q2 +M2)2((Q+K)2 +M2)((Q+ L)2 +M2)

)
+O(e6)

}
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Integrals of double total derivatives and a graphical interpretation of the

NSVZ relation for N = 1 SQED

The integrals of double total derivatives do not vanish due to singularities of the
integrands. Really, if f(Q2) is a non-singular function which rapidly decrease at
in�nity, then∫

d4Q

(2π)4
∂

∂Qµ

∂

∂Qµ

(f(Q2)

Q2

)
=

∫
S3
ε

dSµ

(2π)4

(
− 2Qµ

Q4
f(Q2) +

2Qµ

Q2
f ′(Q2)

)
=

1

4π2
f(0) ̸= 0.

Due to similar equations the double total derivatives e�ectively cut a loop of the
matter super�elds. As a result we obtain diagrams contributing to the anomalous
dimension of the matter super�elds, in which a number of loops is less by 1.

- + + . . .

This allows to give a simple graphical interpretation of the NSVZ relation for the
considered Abelian case.
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Graphical interpretation of the NSVZ relation for N = 1 SQED

For each vacuum supergraph the NSVZ equation relates a contribution to the
β-function obtained by attaching two external lines of the gauge super�eld to
the corresponding contribution to the anomalous dimension of matter super�elds
obtained by cuts of the matter line:

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.
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Three-loops RGFs of N = 1 SQED in an arbitrary renormalization scheme

RGFS de�ned in terms of the bare coupling constant obtained after calculating
the integrals of double total derivatives and the integrals which determine the
two-loop anomalous dimension are given by the expressions

β(α0)

α2
0

=
Nf

π
+

α0Nf

π2
− α2

0Nf

π3

(
Nf ln a+Nf +

NfA

2
+

1

2

)
+O(α3

0);

γ(α0) = −α0

π
+

α2
0

π2

(
Nf ln a+Nf +

NfA

2
+

1

2

)
+O(α3

0),

where

A ≡
∞∫
0

dx lnx
d

dx

1

R(x)
; a =

M

Λ
.

They do not depend on �nite constants bi and gi, which specify the
renormalization scheme and satisfy the NSVZ relation.
RGFs de�ned in terms of the renormalized coupling constant are written as

β̃(α)

α2
=

Nf

π
+

αNf

π2
− α2Nf

π3

(
Nf ln a+Nf +

NfA

2
+

1

2
+Nf (b2 − b1)

)
+O(α3)

γ̃(α) = −α

π
+

α2

π2

(
Nf ln a+Nf +

NfA

2
+

1

2
−Nfb1 +Nfg1

)
+O(α3).
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Finite constants determining a renormalization scheme

We see that RGFs de�ned in terms of the renormalized coupling constant depend
on a renormalization scheme due to the dependence of the �nite constants bi
and gi. The constants bi in the considered three-loop approximation are de�ned
by the equation

1

α0
=

1

α
− Nf

π

(
ln

Λ

µ
+ b1

)
− αNf

π2

(
ln

Λ

µ
+ b2

)
− α2Nf

π3

(Nf

2
ln2 Λ

µ

− ln
Λ

µ

(
Nf ln a+Nf +

NfA

2
+

1

2
−Nfb1

)
+ b3

)
+O(α3).

Similarly, the �nite constants gi appear in the two-loop expression for the
renormalization constant of the matter super�elds Z, which is not also uniquely
de�ned,

Z = 1 +
α

π

(
ln

Λ

µ
+ g1

)
+

α2(Nf + 1)

2π2
ln2 Λ

µ

−α2

π2
ln

Λ

µ

(
Nf ln a−Nfb1 +Nf +

NfA

2
+

1

2
− g1

)
+

α2g2
π2

+O(α3).

The choice of the constants bi and gi �xes a renormalization scheme in the
considered approximation.
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The HD+MSL scheme

In the HD+MSL scheme all these �nite constants vanish,

g2 = b1 = b2 = b3 = 0,

and both de�nition of RGFs give the same functions up to the formal replacing
of arguments. In particular, in the considered approximation

β̃(α)

α2
=

Nf

π
+

αNf

π2
− α2Nf

π3

(
Nf ln a+Nf +

NfA

2
+

1

2

)
+O(α3) =

β(α)

α2
;

γ̃(α) =
dlnZ

d lnµ
= −α

π
+

α2

π2

(
Nf +

NfA

2
+

1

2
+Nf ln a

)
+O(α3) = γ(α).

That is why in this scheme the NSVZ equation is valid. It turns out that it is so
in all orders of the perturbation theory.

Below we will compare explicit expressions for RGFs for some special
renormalization schemes. For the HD+MSL and MOM schemes they were
obtained in

A.L.Kataev, K.S., Phys.Lett. B730 (2014) 184; Theor.Math.Phys. 181 (2014) 1531;
A.E.Kazantsev, K.S., JHEP 06 (2020) 108.
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Renormalization group functions for di�erent renormalization prescriptions

The HD+MSL-scheme

γ̃HD+MSL(α) = −α

π
+

α2

π2

(1
2
+Nf ln a+Nf +

NfA

2

)
+O(α3);

β̃HD+MSL(α) =
α2Nf

π

(
1 +

α

π
− α2

π2

(1
2
+Nf ln a+Nf +

NfA

2

)
+O(α3)

)
.

The MOM-scheme (The result is the same of dimensional reduction and the
higher derivative regularization.)

γ̃MOM(α) = −α

π
+

α2(1 +Nf )

2π2
+O(α3);

β̃MOM(α) =
α2Nf

π

(
1 +

α

π
− α2

2π2

(
1 + 3Nf (1− ζ(3))

)
+O(α3)

)
.

The DR-scheme

I. Jack, D.R.T. Jones and C.G. North, Phys. Lett. B386 (1996) 138.

γ̃DR(α) = −α

π
+

α2(2 + 2Nf )

4π2
+O(α3);

β̃DR(α) =
α2Nf

π

(
1 +

α

π
− α2(2 + 3Nf )

4π2
+O(α3)

)
.
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The four-loop β-function for N = 1 SQED with Nf �avors

Similarly, it is possible to obtain the four-loop β-function of N = 1 SQED with
Nf �avors and the three-loop anomalous dimension

I. Shirokov and K.S., JHEP 04 (2022) 108;
I. Shirokov, V. Shirokova, arXiv:2310.13109 [hep-th].

The result (for RGFs de�ned in terms of the renormalized coupling constant) is

γ̃(α) = −α

π
+

α2

2π2
+

α2Nf

π2

(
ln a+ 1 +

A1

2
+ g1,0 − b1,0

)
− α3

2π3
+

α3Nf

π3

×
(
− ln a− 3

4
− C − b2,0 + b1,0 − g2,0 + g1,0

)
+

α3(Nf )
2

π3

{
−

(
ln a+ 1− b1,0

)2

+
A2

4
−D1 ln a−D2 + b1,0A1 − g2,1

}
+O(α4);

β̃(α)

α2
=

Nf

π
+

αNf

π2
− α2Nf

2π3
− α2(Nf )

2

π3

(
ln a+ 1 +

A1

2
+ b2,0 − b1,0

)
+
α3Nf

2π4
+

α3(Nf )
2

π4

(
ln a+

3

4
+ C + b3,0 − b1,0

)
+

α3(Nf )
3

π4

{(
ln a+ 1− b1,0

)2

−A2

4
+D1 ln a+D2 − b1,0A1 + b3,1

}
+O(α4).
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Notations

Here the notations are

A1 ≡
∞∫
0

dx ln x
d

dx

( 1

R(x)

)
; A2 ≡

∞∫
0

dx ln
2
x

d

dx

( 1

R(x)

)
;

C ≡
1∫

0

dx

∞∫
0

dy x ln y
d

dy

( 1

R(y)R(x2y)

)
; D1 ≡

∞∫
0

dx ln x
d

dx

( 1

R2(x)

)
;

D2 ≡
∞∫
0

dx ln x
d

dx

 1

R2(x)

[
−

1

2

(
1 − R(x)

)
ln x +

√
1 +

4a2

x
arctanh

√
x

x + 4a2

] .

and the �nite constants are de�ned by the equations

lnZ =
α

π

(
ln

Λ

µ
+ g1,0

)
− α2

2π2

(
ln

Λ

µ
+ g2,0 +Nfg2,1

)
− α2Nf

π2

(
ln a+ 1

+
A1

2
− b1,0

)
ln

Λ

µ
+

α2Nf

2π2
ln2 Λ

µ
+O(α3).

1

α0
=

1

α
− Nf

π

(
ln

Λ

µ
+ b1,0

)
− αNf

π2

(
ln

Λ

µ
+ b2,0

)
+

α2Nf

2π3

(
ln

Λ

µ
+ b3,0

+Nfb3,1
)
+

α2(Nf )
2

π3

(
ln a+ 1 +

A1

2
− b1,0

)
ln

Λ

µ
− α2(Nf )

2

2π3
ln2 Λ

µ
+O(α3).
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Minimal scheme for N = 1 SQED with Nf �avors

We see that the terms in the anomalous dimension without Nf and terms in the
β-function proportional to (Nf )

1 are scheme-independent in agreement with the
general all-loop statement proved in

A.L.Kataev and K.S., Phys. Lett. B 730 (2014), 184;
Theor. Math. Phys. 181 (2014), 1531.

From the explicit above expressions for RGFs we see that by a special choice
of the �nite constants bi and gi it is possible to remove all terms proportional
to (Nf )

k with k ≥ 1 in the anomalous dimension and all terms proportional
to (Nf )

k with k ≥ 2 in the β-function. Then we obtain the simplest, so-called
minimal scheme, in which

γ̃(α) = −α

π
+

α2

2π2
− α3

2π3
+O(α4);

β̃(α) =
α2Nf

π
+

α3Nf

π2
− α4Nf

2π3
+

α5Nf

2π4
+O(α6).

The minimal renormalization scheme for the considered theory can be chosen in
all orders of the perturbation theory. This scheme is NSVZ in all orders.
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The NSVZ β-function for N = 1 supersymmetric electrodynamics as a sum

of singularities

In all loops the expression for the β-function determined by singular contributions
has been calculated in

K.S., Nucl.Phys. B 852 (2011) 71.

The result is the NSVZ relation

β(α0)

α2
0

=
Nf

π

(
1− γ(α0)

)
.

Therefore, RGFs de�ned in terms of the bare coupling constant satisfy the NSVZ
relation in all orders for an arbitrary ξ-gauge and for an arbitrary renormalization
prescription which supplements the higher derivative regularization.

Consequently, for RGFs de�ned in terms of the renormalized coupling constant
the HD+MSL prescription gives some NSVZ schemes, so that

β̃(α)

α2
=

Nf

π

(
1− γ̃(α)

)
.
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A class of the NSVZ schemes for N = 1 supersymmetric electrodynamics

Di�erent subtraction schemes are related by �nite renormalizations

α′ = α′(α); Z′ = z(α)Z,

where α′(α) and z(α) are �nite functions of the coupling constant. Then RGFs
change as

β̃(α′) =
dα′

dα
β̃(α); γ̃(α′) = β̃(α)

d ln z

dα
+ γ̃(α).

A.A.Vladimirov, Sov.J.Nucl.Phys. 31 (1980) 558; Theor.Math.Phys. 25 (1976) 1170.

The �nite renormalizations relating various NSVZ schemes should satisfy the
constraint

1

α′(α)
− 1

α
− Nf

π
ln z(α) = B,

where B is a constant.

I. O. Goriachuk, A. L. Kataev, K.S., Phys. Lett. B 785 (2018), 561.

The on-shell scheme is also NSVZ in all orders

A. L. Kataev, A. E. Kazantsev, K.S., Eur. Phys. J. C 79 (2019) 477.
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Quantization of non-Abelian supersymmetric gauge theories

Renormalizable non-Abelian N = 1 supersymmetric gauge theories with matter
super�elds at the classical level are described by the action

S =
1

2e20
Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ ϕ∗i(e2V )i

jϕj

+
{∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

}
.

We assume that the gauge group is simple, and the chiral matter super�elds ϕi

lie in its representation R.

For quantizing the theory it is convenient to use the background �eld method.
Moreover, it is necessary to take into account nonlinear renormalization of the
quantum gauge super�eld

O. Piguet and K. Sibold, Nucl.Phys. B197 (1982) 257; 272;
I.V.Tyutin, Yad.Fiz. 37 (1983) 761.

This can be done with the help of the replacement e2V → e2F(V )e2V , where V
and V are the background and quantum gauge super�elds, respectively, and the
function F(V ) includes an in�nite set of parameters needed for describing the
nonlinear renormalization.
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The background super�eld method and the nonlinear renormalization

In the lowest order the function describing the nonlinear renormalization is given
by the expression

J.W.Juer and D.Storey, Phys.Lett. 119B (1982) 125; Nucl. Phys. B216 (1983) 185.

F(V )A = V A + e20 y0 G
ABCD V BV CV D + . . . ,

where y0 is one of the constants entering this set, and GABCD is a certain
function of the structure constants.

In the case of using the background (super)�eld method the original gauge
invariance produces two invariances, namely, the background gauge invariance
and the quantum gauge invariance.

The background gauge invariance

ϕi → (eA)i
jϕj ; V → e−A+

V eA
+

; e2V → e−A+

e2V e−A

parameterized by a chiral super�eld A remains a manifest symmetry of the
e�ective action.

The quantum gauge invariance is broken down to the BRST symmetry after the
gauge �xing procedure.
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The higher covariant derivative regularization

For constructing the regularized theory we �rst add to its action terms with
higher derivatives,

Sreg =
1

2e20
Re tr

∫
d4x d2θW a

(
e−2V e−2F(V )

)
Adj

R
(
− ∇̄2∇2

16Λ2

)
Adj

×
(
e2F(V )e2V

)
Adj

Wa +
1

4

∫
d4x d4θ ϕ∗i

[
F
(
− ∇̄2∇2

16Λ2

)
e2F(V )e2V

]
i

jϕj

+
[ ∫

d4x d2θ
(1
4
mij

0 ϕiϕj +
1

6
λijk
0 ϕiϕjϕk

)
+ c.c.

]
,

where the covariant derivatives are de�ned as

∇a = Da; ∇̄ȧ = e2F(V )e2V D̄ȧe
−2V e−2F(V ).

Gauge is �xed by adding the term

Sgf = − 1

16ξ0e20
tr

∫
d4x d4θ∇2V K

(
− ∇̄2∇2

16Λ2

)
Adj

∇̄2V.

Also it is necessary to introduce the Faddeev-Popov and Nielsen�Kalosh ghosts.
The regulator functions R(x), F (x), and K(x) should rapidly increase at in�nity
and satisfy the condition R(0) = F (0) = K(0) = 1.
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The Pauli�Villars determinants in the non-Abelian case

For regularizing residual one-loop divergences we insert into the generating
functional two Pauli�Villars determinants,

Z =

∫
DµDet(PV,Mφ)

−1Det(PV,M)c

× exp
{
i
(
Sreg + Sgf + SFP + SNK + Ssources

)}
,

where Dµ is the functional integration measure, and

Det(PV,Mφ)
−1 ≡

∫
Dφ1 Dφ2 Dφ3 exp(iSφ);

Det(PV,M)−1 ≡
∫

DΦ exp(iSΦ).

Here we use chiral commuting Pauli�Villars super�elds.
The super�elds φ1,2,3 belong to the adjoint representation and cancel one-loop
divergences coming from gauge and ghost loops. The super�elds Φi lie in a
representation RPV and cancel divergences coming from a loop of the matter
super�elds if c = T (R)/T (RPV). The masses of these super�elds are

Mφ = aφΛ; M = aΛ,

where the coe�cients aφ and a do not depend on couplings.
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The all-loop derivation of the NSVZ equation: the main steps

1. First, one proves the ultraviolet �niteness of triple vertices with two external
lines of the Faddeev�Popov ghosts and one external line of the quantum gauge
super�eld.
2. Next, it is necessary to rewrite the NSVZ relation in the equivalent form

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
.

K.S., Nucl.Phys. B909 (2016) 316.

3. After that, we prove that the β-function is determined by integrals of double
total derivatives with respect to loop momenta and present a method for
constructing this integrals.

K.S., JHEP 10 (2019) 011.

4. Then the NSVZ equation is obtained by summing singular contributions.
5. Finally, an NSVZ scheme is constructed.

K.S., Eur.Phys.J. C80 (2020) 10, 911.
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Non-renormalization of the three-point gauge-ghost vertices

An important statement needed for proving the NSVZ equation in the non-
Abelian case is the all-order �niteness of triple vertices in which two external
lines correspond to the Faddeev�Popov ghosts and one external line corresponds
to the quantum gauge super�eld.

K.S., Nucl.Phys. B909 (2016) 316.

The one-loop contribution to these vertices comes from the superdiagrams
presented below. The ultraviolet �niteness of their sum has been veri�ed by
an explicit calculation

c̄ or
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Example: a part of the one-loop expression for one of the triple gauge-ghost

vertices

A part of the e�ective action corresponding to the c̄+V c vertex is written as

ie0
4

fABC

∫
d4θ

d4p

(2π)4
d4q

(2π)4
c̄∗A(θ, p+ q)

(
f(p, q)∂2Π1/2V

B(θ,−p)

+Fµ(p, q)(γ
µ)ȧ

bDbD̄
ȧV B(θ,−p) + F (p, q)V B(θ,−p)

)
cC(θ,−q).

After the Wick rotation the sum of the tree and one-loop contributions to the
function F is given by

F (P,Q) = 1 +
e20C2

4

∫
d4K

(2π)4

{
− (Q+ P )2

RKK2(K + P )2(K −Q)2
− ξ0 P

2

KKK2(K +Q)2

× 1

(K + P +Q)2
+

ξ0 Q
2

KKK2(K + P )2(K +Q+ P )2
+

(
ξ0
KK

− 1

RK

)
×
(
− 2(Q+ P )2

K4(K +Q+ P )2
+

2

K2(K +Q+ P )2
− 1

K2(K +Q)2
− 1

K2(K + P )2

)}
+O(α2

0, α0λ
2
0).

We see that this expression is �nite in the ultraviolet region.
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Non-renormalization of the triple gauge-ghost vertices

The all-loop proof is based on the super�eld Feynman rules and the

Slavnov�Taylor identities. It is valid in the case of using the super�eld

quantization for an arbitrary ξ-gauge.

There are 4 vertices of the considered structure, c̄ V c, c̄+V c, c̄ V c+, and
c̄+V c+. All of them have renormalization constant Z

−1/2
α ZcZV . Therefore,

due to their �niteness

d

d ln Λ
(Z−1/2

α ZcZV ) = 0,

where the renormalization constants are de�ned by the equations

1

α0
=

Zα

α
; V = VR; V = ZV Z

−1/2
α VR; c̄c = ZcZ

−1
α c̄RcR.

The explicit two-loop veri�cation of the �niteness of the triple gauge-ghost

vertices has been done in

M. Kuzmichev, N. Meshcheriakov, S. Novgorodtsev, I. Shirokov, K.S.,
Phys. Rev. D 104 (2021) 025008;
M. Kuzmichev, N. Meshcheriakov, S. Novgorodtsev, V. Shatalova,
I. Shirokov, K.S., Eur. Phys. J. C 82 (2022) 69.
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Non-renormalization of the triple gauge-ghost vertices and the new form of

the NSVZ β-function

The non-Abelian NSVZ equation can be equivalently rewritten as

β(α0, λ0)

α2
0

= −3C2 − T (R) + C(R)i
j(γϕ)j

i(α0, λ0)/r

2π
+

C2

2π
· β(α0, λ0)

α0
.

The β-function in the right hand side can be expressed in terms of the charge
renormalization constant Zα:

β(α0, λ0) =
dα0(α, λ,Λ/µ)

d lnΛ

∣∣∣
α,λ=const

= −α0
d lnZα

d lnΛ

∣∣∣
α,λ=const

.

Using the �niteness of the gauge-ghost vertices we obtain

β(α0, λ0) = −2α0
d ln(ZcZV )

d lnΛ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0) + γV (α0, λ0)

)
,

where γc and γV are the anomalous dimensions of the Faddeev�Popov ghosts
and of the quantum gauge super�eld (de�ned in terms of the bare couplings),
respectively.
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The new form of the NSVZ β-function and its graphical interpretation

Substituting this expression into the the right hand side we obtain the equivalent
form of the NSVZ equation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
.

It relates the β-function in a certain loop to the anomalous dimensions of
quantum super�elds in the previous loop, because the right hand side does not
contain a denominator depending on couplings.

The new form of the NSVZ equation has a graphical interpretation similar to the
Abelian case:
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The β-function of N = 1 supersymmetric gauge theories as an integral of

double total derivatives

In the non-Abelian case the integrals giving the β-function are also integrals
of double total derivatives if a supersymmetric theory is regularized by higher
covariant derivatives. For instance, the expression for three-loop terms quartic in
the Yukawa couplings is

∆β(α0, λ0)

α2
0

= −2π

r
C(R)i

j d

d lnΛ

∫
d4K

(2π)4
d4Q

(2π)4
λimn
0 λ∗

0jmn
∂

∂Qµ

∂

∂Qµ

( 1

K2

× 1

FK Q2FQ (Q+K)2FQ+K

)
+

4π

r
C(R)i

j d

d lnΛ

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4

[
λiab
0

×λ∗
0kabλ

kcd
0 λ∗

0jcd

( ∂

∂Kµ

∂

∂Kµ
− ∂

∂Qµ

∂

∂Qµ

)
+ 2λiab

0 λ∗
0jacλ

cde
0 λ∗

0bde
∂

∂Qµ

∂

∂Qµ

]
× 1

K2F 2
K Q2FQ (Q+K)2FQ+K L2FL (L+K)2FL+K

= − 1

2πr
C(R)i

j(∆γϕ)j
i.

In all loops the factorization into integrals of double total derivatives has been
proved in

K.S., JHEP 10 (2019) 011.
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An example: a three-loop contribution to the β-function containing the

Yukawa couplings

Moreover, this proof demonstrated that the results for various contributions to
the β-function can be obtained by calculating only a specially mode�ed vacuum
supergraphs. For example, the above result is produced by the supergraphs

(1) (2) (3) (4) (5)

The standard calculation of the corresponding superdiagrams with two external
lines of the background gauge super�eld was done in

V.Yu.Shakhmanov, K.S., Nucl.Phys., B920, (2017), 345;
A.E.Kazantsev, V.Yu.Shakhmanov, K.S., JHEP 1804 (2018) 130.

Subsequently, a similar calculation was done with the help of a new method. It
allowed to verify if the new method correctly reproduces the results of the above
calculation of the β-function.
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The method for constructing integrals of double total derivatives

1. We consider a vacuum sipergraph. A contribution coming from all
superdiagrams obtained from it by adding two external lines of the background
gauge super�eld to the function

1

α2
0

(
β(α0, λ0)− β1-loop(α0)

)
can be obtained with the help of the following formal operations:
2. We insert a factor θ4(vB)2 to an arbitrary point of the supergraph.
3. The resulting expression is calculated. Terms in which derivatives act on vB

should be omitted.
4. We mark L propagators with the momenta Qµ

i which are considered as
independent. Their product is proportional to

∏L
i=1 δ

bi
ai
.

5. In the integrand we make the formal substitution

L∏
i=1

δbiai
→

L∑
k,l=1

∏
i ̸=k,l

δbiai
(TA)ak

bk (TA)al

bl ∂2

∂Qµ
k ∂Qµ

l

.

6. To the resulting expression we apply the operator

− 2π

rV4

d

d lnΛ
.

By construction, the result has the form of an integral of double total derivatives.
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An example: the two-loop contribution to the β-function of N = 1

supersymmetric gauge theories

The method described above simpli�es explicit calculations of the β-function in
a great extent. For instance, the total two-loop contribution to the β-function of
N = 1 supersymmetric Yang�Mills theory with matter super�elds in an arbitrary
ξ-gauge has been calculated in

K.S., Proceedings of the Steklov Institute of Mathematics 309 (2020) 284.

It is generated by the supergraphs

To obtain usual superdiagrams which determine the β-function, we need attach
two external lines of the background gauge super�eld in all possible ways.
However, the new method allows to calculate only (specially modi�ed) vacuum
supergraphs.
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The result for the two-loop β-function de�ned in terms of the bare couplings

The result (for the β-function de�ned in terms of the are couplings) is given by
the expression

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
+

α0

(2π)2

[
− 3C2

2 +
1

r
C2 trC(R)

+
2

r
tr
(
C(R)2

)]
− 1

8π3r
C(R)i

jλ∗
0jmnλ

imn
0 +O(α2

0, α0λ
2
0, λ

4
0).

The gauge dependence disappears, and the result agrees with the one found
earlier with the help of the dimensional technique. Moreover, it turns out that
the NSVZ equations

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)− 2C2γV (α0, λ0)

+
1

r
C(R)i

j(γϕ)ji(α0, λ0)
)
+O(α2

0, α0λ
2
0, λ

4
0);

β(α0, λ0)

α2
0

= −
3C2 − T (R) + C(R)i

j
(
γϕ

)
j
i(α0, λ0)/r

2π(1− C2α0/2π)
+O(α2

0, α0λ
2
0, λ

4
0).

are valid even for the loop integrals. However, in this approximation the scheme
dependence does not manifest itself.
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Deriving the new form of the exact NSVZ β-function by summing singular

contributions

The method for constructing integrals of double total derivatives described
above can be used for deriving the exact NSVZ β-function in all orders of the
perturbation theory

K.S., Eur.Phys.J. C80 (2020) 10, 911.

As a result of similar calculations we obtained

β(α0, λ0)

α2
0

− β1-loop(α0)

α2
0

=
1

π
C2γV (α0, λ0) +

1

π
C2γc(α0, λ0)−

1

2πr
C(R)i

j(γϕ)j
i(α0, λ0).

6 6 6

gauge propagators

Faddeev�Popov ghost propagators

matter propagators
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Conditions required for validity of the NSVZ relation in all loops

Thus, we obtain:

The NSVZ relation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γϕ)j

i(α0, λ0)/r
)
,

and, therefore, the NSVZ relation

β(α0, λ0) = −
α2
0

(
3C2 − T (R) + C(R)i

j(γϕ)j
i(α0, λ0)/r

)
2π(1− C2α0/2π)

.

are valid in all orders of the perturbation theory for RGFs de�ned in terms of the
bare couplings if a theory is regularized by higher covariant derivatives.

Consequently, for RGFs de�ned in terms of the renormalized couplings, similar
equations hold in the HD+MSL scheme in all orders of the perturbation theory.

Knowing the conditions under which the NSVZ equation is valid it is possible to
essentially simplify various multiloop calculations.
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The two-loop anomalous dimension of the matter super�elds with the higher

derivative regularization

The two-loop anomalous dimension de�ned in terms of the bare coupling constant
for N = 1 supersymmetric theories regularized by higher derivatives has been
calculated in

A.E.Kazantsev, K.S., JHEP 2006 (2020) 108.

(γϕ)i
j(α0, λ0) = −α0

π
C(R)i

j +
1

4π2
λ∗
0imnλ

jmn
0 +

α2
0

2π2

[
C(R)2

]
i

j − 1

16π4

×λ∗
0iacλ

jab
0 λ∗

0bdeλ
cde
0 − 3α2

0

2π2
C2C(R)i

j
(
ln aφ + 1 +

A

2

)
+

α2
0

2π2
T (R)C(R)i

j

×
(
ln a+ 1 +

A

2

)
− α0

8π3
λ∗
0lmnλ

jmn
0 C(R)i

l(1−B +A) +
α0

4π3
λ∗
0imnλ

jml
0

×C(R)l
n(1−A+B) +O

(
α3
0, α

2
0λ

2
0, α0λ

4
0, λ

6
0

)
,

where

A =

∞∫
0

dx lnx
d

dx

1

R(x)
; B =

∞∫
0

dx lnx
d

dx

1

F 2(x)
a =

M

Λ
; aφ =

Mφ

Λ
.
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Obtaining the three-loop β-function from the NSVZ equation

If the anomalous dimension of the matter super�elds de�ned in terms of the bare
couplings has been calculated in L-loops with the higher derivative regularization,
then it is possible to construct the (L + 1)-loop β-function from the NSVZ
equation without loop calculations. For example, in the three-loop approximation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
+

α0

4π2

{
− 3C2

2 +
1

r
C2 trC(R) +

2

r
tr
[
C(R)2

] }
− 1

8π3r
C(R)j

iλ∗
0imnλ

jmn
0 +

α2
0

8π3

{
− 3C3

2 +
1

r
C2

2 trC(R)− 2

r
tr
[
C(R)3

]
+

2

r

×C2 tr
[
C(R)2

] (
3 ln aφ + 4 +

3A

2

)
− 2

r2
trC(R) tr

[
C(R)2

] (
ln a+ 1 +

A

2

)}
− α0C2

16π4r
C(R)j

iλ∗
0imnλ

jmn
0 +

α0

16π4r

[
C(R)2

]
j

iλ∗
0imnλ

jmn
0

(
1 +A−B

)
− α0

8π4r

×C(R)j
iC(R)l

nλ∗
0imnλ

jml
0

(
1−A+B

)
+

1

32π5r
C(R)j

iλ∗
0iacλ

jab
0 λ∗

0bdeλ
cde
0

+O
(
α3
0, α

2
0λ

2
0, α0λ

4
0, λ

6
0

)
.

Certainly, RGFs de�ned in terms of the renormalized couplings can also be
calculated for an arbitrary renormalization prescription.
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Obtaining RGFs de�ned in terms of the renormalized couplings

To calculate RGFs de�ned in terms of the renormalized couplings, �rst, we
integrate the equations

β(α0, λ0) ≡
dα0

d lnΛ

∣∣∣
α,λ=const

; (γϕ)i
j(α0, λ0) ≡ −d(lnZϕ)i

j

d lnΛ

∣∣∣
α,λ=const

,

and obtain the expressions for the renormalized gauge coupling constant and
(lnZϕ)i

j . They depend on a set of �nite constants which determine a subtraction
scheme in the considered approximation. Next, we substitute the expressions
obtained in this way into the equations

β̃(α, λ) ≡ dα

d lnµ

∣∣∣
α0,λ0=const

; (γ̃ϕ)i
j(α, λ) ≡ d(lnZϕ)i

j

d lnµ

∣∣∣
α0,λ0=const

.

These RGFs will nontrivially depend on the �nite constants due to the scheme
dependence.

Here (at the next slide) we only present the result for one particular case, namely,
for one-loop �nite N = 1 supersymmetric theories, see

P.West, Phys.Lett. B 137 (1984) 371;
A.Parkes, P.West, Phys.Lett. B 138 (1984) 99.
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RGFs for the one-loop �nite theories

An important particular case is theories �nite in the one-loop approximation
which satisfy the conditions

T (R) = 3C2; λ∗
imnλ

jmn = 4παC(R)i
j .

In this case the two-loop anomalous dimension and the three-loop β-function
de�ned in terms of the renormalized couplings have the form

(γ̃ϕ)i
j(α, λ) = −3α2

2π2
C2C(R)i

j
(
ln

aφ

a
− b11 + b12

)
− α

4π2

( 1

π
λ∗
imnλ

jmlC(R)l
n

+2α
[
C(R)2

]
i

j
)(

A−B − 2g12 + 2g11
)
+O

(
α3, α2λ2, αλ4, λ6

)
;

β̃(α, λ)

α2
=

3α2

4π3r
C2 tr

[
C(R)2

] (
ln

aφ

a
− b11 + b12

)
+

α

8π3r

( 1

π
C(R)j

iC(R)l
n

×λ∗
imnλ

jml + 2α tr
[
C(R)3

] )(
A−B − 2g12 + 2g11

)
+O

(
α3, α2λ2, αλ4, λ6

)
.

We see that in this case the NSVZ equation is satis�ed in the lowest nontrivial
approximation for an arbitrary renormalization presription,

β(α, λ)

α2
= − 1

2πr
C(R)i

j(γϕ)j
i(α, λ) +O(α3, α2λ2, αλ4, λ6).
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The NSVZ equation for theories �nite in the lowest loops

For N = 1 supersymmetric theories �nite in the one-loop approximation it is
possible to tune a subtraction scheme so that the theory will be all-loop �nite

D.I.Kazakov, Phys. Lett. B 179 (1986) 352; A.V.Ermushev, D.I.Kazakov, O.V.Tarasov,
Nucl.Phys. B 281 (1987) 72; C.Lucchesi, O.Piguet, K.Sibold, Helv.Phys.Acta 61 (1988)
321; Phys.Lett. B 201 (1988) 241.

If a subtraction scheme is tuned in such a way that the β-function vanishes in the
�rst L loops and the anomalous dimension for the matter super�elds vanishes in
the �rst (L− 1) loops, then

K.S., Eur.Phys.J. C 81 (2021) 571.

for an arbitrary renormalization prescription the (L + 1)-loop gauge β-function
satis�es the equation

βL+1(α, λ)

α2
= − 1

2πr
C(R)i

j(γϕ,L)j
i(α, λ),

Therefore, if a theory is �nite in a certain approximation, its β-function vanishes
in the next order. This exactly agrees with the earlier known result of

A.J.Parkes, P.West, Nucl.Phys. B 256 (1985) 340;
M.T.Grisaru, B.Milewski and D.Zanon, Phys.Lett. 155B (1985) 357.
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The NSVZ relations for theories with multiple gauge couplings

The NSVZ equations can also be written for theories with multiple gauge
couplings. In this case a number of the NSVZ equations is equal to a number of
(simple or U(1)) factors in the gauge group G = G1 ×G2 × . . .×Gn. They can
be written in the form

D.Korneev, D.Plotnikov, K.S., N.Tereshina, JHEP 10 (2021) 046.

βK(α, λ)

α2
K

= − 1

2π(1− C2(GK)αK/2π)

[
3C2(GK)−

∑
a

TaK
(
1− γa(α, λ)

)]
,

where the subscript a numerates chiral matter super�elds in irreducible
representations of simple GI ,

TK(R) =
∑
a

TaK ,

and we use the notation

TaK =


δi1

i1 . . . δiK−1

iK−1TK(RaK) δiK+1

iK+1 . . . δin
in if GK is simple;

δi1
i1 . . . δiK−1

iK−1 q2aK δiK+1

iK+1 . . . δin
in if GK = U(1).
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The exact NSVZ β-functions for MSSM

For MSSM the all-order exact NSVZ β-functions are given by the equations

β3(α, λ)

α2
3

= − 1

2π(1− 3α3/2π)

[
3 + tr

(
γQ(α, λ) +

1

2
γU (α, λ) +

1

2
γD(α, λ)

)]
;

β2(α, λ)

α2
2

= − 1

2π(1− α2/π)

[
− 1 + tr

(3
2
γQ(α, λ) +

1

2
γL(α, λ)

)
+

1

2
γHu(α, λ)

+
1

2
γHd(α, λ)

]
;

β1(α, λ)

α2
1

= −3

5
· 1

2π

[
− 11 + tr

(1
6
γQ(α, λ) +

4

3
γU (α, λ) +

1

3
γD(α, λ)

+
1

2
γL(α, λ) + γE(α, λ)

)
+

1

2
γHu(α, λ) +

1

2
γHd(α, λ)

]
,

where the traces are taken with respect to the generation indices.

(In a di�erent form) they were �rst presented in

M. A. Shifman, Int. J. Mod. Phys. A 11 (1996), 5761.

and correctly reproduce the (scheme-independent) two-loop contributions.
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Three-loop MSSM β-functions for an arbitrary supersymmetric

renormalization prescription

Starting from the two-loop expressions for the anomalous dimensions of the
matter super�elds it is possible to �nd the three-loop MSSM β-functions for an
arbitrary supersymmetric renormalization prescription supplementing the higher
covariant derivative regularization

O.Haneychuk, V.Shirokova, K.S., JHEP 09 (2022), 189.

The result is very large and depends on both regularization parameters and �nite
constants �xing a subtraction scheme. For certain values of these �nite constants
it reproduces the DR result obtained earlier.

I.Jack, D.R.T.Jones, A.F.Kord, Annals Phys. 316 (2005), 213.

As an example, at the next slide we present the three-loop expression for the
function β̃3.

Therefore, the higher covariant derivative regularization can really be used for
making very complicated explicit multiloop calculations.
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MSSM, three-loop β3

β̃3(α, Y )

α2
3

= −
1

2π

{
3−

11α1

20π
−

9α2

4π
−

7α3

2π
+

1

8π2
tr
(
2Y +

U YU + 2Y +
D YD

)
+

1

2π2

[
137α2

1

1200

+
27α2

2

16
+

α2
3

6
+

3α1α2

40
−

11α1α3

60
−

3α2α3

4
+

363α2
1

100

(
ln a1 + 1 +

A

2
+ b2,31 − b1,1

)
+

9α2
2

4

×
(
− 6 ln aφ,2 + 7 ln a2 + 1 +

A

2
+ b2,32 − b1,2

)
− 24α2

3

(
3 ln aφ,3 − 2 ln a3 + 1 +

A

2
+

7

16
b2,33

−
7

16
b1,3

)]
+

1

8π3
tr
(
YUY +

U

)[3α1

20
+

3α2

4
+ 3α3 +

13α1

30

(
B −A+ 2b2,3U − 2jU1

)
+

3α2

2

×
(
B −A+ 2b2,3U − 2jU2

)
+

8α3

3

(
B −A+ 2b2,3U − 2jU3

)]
+

1

8π3
tr
(
YDY +

D

)[3α1

20
+

3α2

4

+3α3 +
7α1

30

(
B −A+ 2b2,3D − 2jD1

)
+

3α2

2

(
B −A+ 2b2,3D − 2jD2

)
+

8α3

3

(
B −A

+2b2,3D − 2jD3

)]
−

1

(8π2)2

[
3

2
tr
(
(YUY +

U )2
)(

1 + 4b2,3U − 4jUU

)
+

3

2
tr
(
(YDY +

D )2
)(

1

+4b2,3D − 4jDD

)
+ 3

(
tr(YUY +

U )
)2(

1 + 2b2,3U − 2jUtU

)
+ 3

(
tr(YDY +

D )
)2(

1 + 2b2,3D

−2jDtD

)
+ tr

(
YEY +

E

)
tr
(
YDY +

D

)(
1 + 2b2,3D − 2jDtE

)
+ tr

(
YDY +

D YUY +
U

)(
1 + 2b2,3U

+2b2,3D − 2jUD − 2jDU

)]}
+O(α3, α2Y 2, αY 4, Y 6).
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N = 2 supersymmetric gauge theories in N = 1 superspace

The above results can be applied to the particular case of N = 2 supersymmetric
theories which can certainly be formulated in N = 1 superspace. In this formulation
one supersymmetry is manifest, while the other is hidden. The action in the massless
limit is written as

S =
1

2e20
Re tr

∫
d4x d2θWaWa +

1

2e20
tr

∫
d4x d4θΦ+e2V Φe−2V

+
1

4

∫
d4x d4θ

(
ϕ+e2V ϕ+ ϕ̃+e−2V T

ϕ̃
)
+

(
i

√
2

∫
d4x d2θ ϕ̃TΦϕ+ c.c.

)
.

The chiral matter super�elds ϕi =
(
ΦA, ϕi, ϕ̃

i
)
belong to the reducible representation

R = Adj +R0 + R̄0. Taking into account that

i
√
2

∫
d4x d2θ ϕ̃TΦϕ =

ie0√
2
(TA)i

j

∫
d4x d2θ ϕ̃iΦAϕj

we see that the Yukawa couplings are related to the gauge coupling constant by the
equations

(λ0)i
jA = (λ0)i

Aj = (λ0)
j
i
A = (λ0)

A
i
j = (λ0)

jA
i = (λ0)

Aj
i =

ie0√
2
(TA)i

j ,

where (TA)i
j are the generators of the representation R0.
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N = 2 nonrenormalization theorems in N = 1 superspace

It appears that for an arbitrary N = 1 renormalization prescription the anomalous
dimensions and the higher order contributions to the β-function do not vanish starting
from the two- and three-loop approximations, respectively.

S.S.Aleshin, K.S., Phys. Rev. D 107 (2023) no.10, 105006.

However, the anomalous dimensions of chiral matter super�elds vanish for such
renormalization prescriptions that

1. The renormalization prescription does not break the N = 2 relation between the
gauge and Yukawa couplings,

d

d lnµ

(λA
i
j

e

)
= 0.

2. The renormalization prescription is compatible with the structure of quantum
corrections.

3. Moreover, all contributions to the β-function beyond the one-loop approximation
vanish if the conditions 1 and 2 are satis�ed and the renormalization prescription is
NSVZ. Then

γΦ = 0; (γϕ)i
j = 0;

β(α)

α2
= −

1

π

(
C2 − T (R0)

)
.

Note that for N = 2 supersymmetric theories DR-scheme is NSVZ, at least, in the
lowest loops.
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Higher derivative regularization for N = 2 supersymmetric theories

A higher derivative term SΛ invariant under both supersymmetries has been
constructed in

I.L.Buchbinder and K.S., Nucl.Phys. B883 (2014) 20.

However, with the help of the N = 1 super�eld technique it is impossible to
quantize a theory in the N = 2 supersymmetric way. Therefore, in this case
quantum corrections can break the hidden supersymmetry. That is why it is
convenient to use the formulation of N = 2 supersymmetric theories in the
harmonic superspace

A.Galperin, E.Ivanov, S.Kalitzin, V.Ogievetsky and E.Sokatchev,
Class.Quant.Grav. 1 (1984) 469.

with the coordinates (xµ, θia, θ̄iȧ, u
±
i ), where u−

i = (u+i)∗ and u+iu−
i = 1.

With the help of the harmonic superspace one can quantize the theory in a
manifestly N = 2 supersymmetric way. That is why the harmonic superspace
technique together with the background super�eld method allow having manifest
N = 2 supersymmetry and gauge invariance at all steps of calculating quantum
corrections.

A.S.Galperin, E.A.Ivanov, V.I.Ogievetsky and E.S.Sokatchev,
Harmonic superspace. Cambridge University Press (2001) 306p.
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N = 2 non-renormalization theorem and the NSVZ β-function

The higher covariant derivative regularization can also be formulated in the
harmonic superspace

I.L.Buchbinder, N.G.Pletnev and K.S., Phys.Lett. B751 (2015) 434.

It allows to prove simply the N = 2 non-renormalization theorem starting from
the NSVZ β-function.
The degree of divergence (for the non-regularized theory) in the harmonic
superspace is written as

I.L.Buchbinder, S.M.Kuzenko and B.A.Ovrut, Phys.Lett. B433 (1998) 335.

ω = −Nϕ −Nc −
1

2
ND,

where Nϕ is a number of external hypermultiplet lines, Nc is a number of external
ghost lines, and ND is a number of spinor derivatives acting on external lines.
Therefore, all superdiagrams containing hypermultiplet external lines are �nite,
so that γϕ(α0) = 0. Consequently, from the NSVZ equation we obtain

β(α0)

α2
0

= − 1

π

(
C2 − T (R)

)
.

This implies that the β-function is non-trivial only in the one-loop approximation.
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Exact (?) results for the P = 1
3Q theories

Some interesting properties of quantum corrections exist in the so-called P = 1
3
Q

theories, which by de�nition satisfy the relation

λ∗
imnλ

jmn − 4παC(R)i
j =

2πα

3
Qδji ,

where Q ≡ T (R)− 3C2. Really, it was demonstrated

I.Jack, D.R.T.Jones, C.G.North, Nucl. Phys. B 473 (1996), 308.

that in these theories in the �rst two orders of the perturbation theory the ratio of the
Yukawa couplings to the gauge coupling is RG invariant,

d

d lnµ

(λijk

e

)
= 0,

exactly as in N = 2 supersymmetric theories.

This presumably allows to reduce a number of couplings and is very interesting for the
phenomenology,

S. Heinemeyer, M. Mondragon, N. Tracas, G. Zoupanos, Phys. Rept. 814 (2019) 1.

K.V.Stepanyantz Quantum properties and exact results in supersymmetric



57

Exact (?) results for the P = 1
3Q theories

The renormalization group invariance of the ratio λijk/e is equivalent to the equation
relating the β-function to the anomalous dimension,(

γϕ
)
i
j =

β

3α
δji .

Together with the NSVZ equation it produces exact equations for the β-function and
for the anomalous dimension of the matter super�elds

β(α) =
α2Q

2π(1 + αQ/6π)
; (γϕ)i

j(α) =
αQ

6π(1 + αQ/6π)
δji ≡ γϕδ

j
i .

Using the �niteness of the triple gauge-ghost vertices the renormalization group
invariance of the ratio λijk/e can equivalently be rewritten as a relation between
anomalous dimensions of quantum super�elds in each order of the perturbation theory

M.D.Kuzmichev, K.S., Phys.Lett. 844 (2023), 138094.

Really, (as we saw above) the non-renormalization of the triple gauge-ghost vertices
leads to the relation

β = 2α(γc + γV ).
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Exact (?) results for the P = 1
3Q theories

Therefore, the above condition is equivalent to the all-loop relation between the
anomalous dimensions of quantum super�elds in the P = 1

3
Q theories

2
(
γc + γV

)
δji = 3

(
γϕ

)
i
j .

The one-loop expressions for the anomalous dimensions entering the above equation are
written as

γ
(1)
c = −

αC2(1− ξ)

6π
; γ

(1)
V =

αC2(1− ξ)

6π
+

Qα

4π
;(

γ
(1)
ϕ

)
i
j = −

α

π
C(R)i

j +
1

4π2
λ∗
imnλ

jmn =
Qα

6π
δji .

We see that they really satisfy the above relation, which is therefore valid in the one-
loop approximation. Also it is possible to demonstrate that for a certain renormalization
prescriptions the above relation is valid in the two-loop approximation. In particular,
it is valid in the DR-scheme. However, in the three-loop approximation some terms
proportional to ζ(3) do not satisfy the above relation

I.Jack, D.R.T.Jones, C.G.North, Nucl. Phys. B 473 (1996), 308.

K.V.Stepanyantz Quantum properties and exact results in supersymmetric



59

Conclusion

The higher covariant derivative regularization allows revealing some interesting
features of supersymmetric theories and deriving some all-loop results.

The β-function of N = 1 supersymmetric gauge theories is determined by
integrals of double total derivatives in the momentum space.

The triple gauge-ghost vertices are UV �nite in all orders. This allows to rewrite
the NSVZ relation in an equivalent form, which relates the β-function to the
anomalous dimensions of the quantum super�elds.

RGFs de�ned in terms of the bare couplings satisfy the NSVZ relation in
theories regularized by higher derivatives in all loops.

Some all-order NSVZ schemes are given by the HD+MSL prescription.

Validity of the NSVZ equation with the higher covariant derivative
regularization allows to essentially simplify some multiloop calculations.

The N = 2 non-renormalization theorems for N = 2 supersymmetric theories
formulated in N = 1 superspace are valid if a renormalization prescription is
compatible with a structure of quantum corrections, do not break the relation
between Yukawa and gauge couplings, and is NSVZ.

The best way to obtain the N = 2 non-renormalization theorem is to use the
higher covariant derivative regularization in the harmonic superspace.

The RG invariance of the ratio λijk/e in the P = 1
3
Q theories is equivalent to a

certain relation between the anomalous dimensions of the quantum super�elds,
which should be valid in each order of the perturbation theory.
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Thank you for the attention!
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