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Extremal principles

• What can we get from extemal principles?
Motion of particle on geodesics
- in flat space (trivial) and in curves space (nontrivial)
Least action principle
- in (Q)Mechanics and QFT
Discrete paths
Minimal knowledge to (almost) completely describe a system
- Paterns and codes , optimization

• Information about evolving in time complex systems (states/operators)
- example: for Krylov spaces, Lanczos coefficients give information about
behavior of the system

bn ∼ nδ, δ ≥ 1 - chaotic, 0 < δ < 1 - integrable

- for δ ≥ 1 one can obtain the Lyapunov exponents
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Notion of Complexity

Understanding qualitative change in behavior =⇒ need of minimal
amount of information which completely characterizes the system.
Informally, complexity, CF (X), quantifies the ”information content”,
the level of ”redundancy” and ”structures” within a quantity, X:

CF (X) = min
p

{|p| : F (p) = X},

Here, p = sequence of information/program, F = a computational
process or algorithm that generates X. The complexity measure = the
shortest program length (|p|) such that when processed by the
algorithm, it yields the desired output, X.
Due to its universality =⇒ many concepts and methods about how to
precisely define and measure complexity.
In our context - the naive notion of complexity C(t): as a correlator
for some time dependent operator A(t) (autocorrelation function)

C(t) = ⟨A(t)|A⟩, ⟨A|B⟩ = Tr(A†ρ1Bρ2) (1)
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Complexity= Volume conjecture

• Complexity=Volume [see for instace: cond-mat/0512165,
0905.1317, 1303.108 ]

- Complexity of a state |ψi⟩ can be obtained from the simplest state by
action of a unitary,

|ψi⟩ = Ui(t)|0⟩.

The complexity of |ψi⟩ is the minimum complexity of any unitary that
does the job!

Conjecture: Let AH is the area of horizon and the rate of change of
Complexity is Ċ ∼ κAH/G. Thus,

C ∼ (D − 3)V
GrH

.
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Complexity=Action conjecture

• Complexity=Action in holography [see for instance 1509.07876]

The rate of quantum complexity for the boundary quantum state is
exactly equal to the growth rate of the gravitational action on shell in the
bulk region in the WDW patch at the late time approximation. Then the
complexity-action duality can be defined by

C = S

πℏ
, (2)

- C is the complexity in quantum information theory, whose meaning is
that the minimum numbers of quantum gates are required to produce the
certain state from the reference state, and S is the total classical
gravitational action in the bulk region within the WDW patch.



Complexity Equals Anything

[see for instance 2111.02429, 2210.09647]

Main statements of the conjecture are:
- ”new infinite class of gravitational observables in asymptotically Anti-de
Sitter space living on codimension-one slices of the geometry, the most
famous of which is the volume of the maximal slice and any member of
this class of observables is an equally viable candidate as the extremal
volume for a gravitational dual of complexity.”
- variations of the codimension-zero and codimension-one observables are
encoded in the gravitational symplectic form on the semi-classical
phase-space, which can then be mapped to the CFT.
• Strong evidence that a wide class of observables are viable candidates for
complexity.



Geometric Complexity

• The allowed transformations U(σ) - as path ordered exponentials

V = i
dU

dτ
U † = TαV

α =⇒ U(σ) = Pe−i
∫ σ

si
V (s)ds

- s parametrizes progress along a path, starting at si and ending at sf and
σ ∈ [si, sf ] is some intermediate value of s. The path-ordering P is
required for non-commuting generators Tα, V (s) = V αTα.
• bi-invariant metric

ds2
bi−inv = Tr(V †V )dτ2 (3)

- The length of a path from si to sf going through |Ψ(σ)⟩

ℓ(|Ψ(σ)⟩) =
∫ sf

si

ds(σ).

- Define the complexity C as the minimal length/geodesics between states
driven by generators G(s)

C(|Ψ(si)⟩, |Ψ(sf )⟩) = min
V (s)

ℓ(|Ψ(σ)⟩).
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Geometric Complexity

• Nielsen’s complexity of the evolution operator corresponds to the length
of the path with b.c. and velocity that minimizes the length
- penalty factors µα → the metric (for low cost directions µα = 1)

CN (t) = min
V

∫ t

0
dτ

(∑
α

Tr(TαV )2 + µα Tr(TαV )2
)1/2

,

• Objective: geodesics connecting the identity to a target unitary
Utarget = exp{−iHt} at a chosen moment t, with H being the physical
Hamiltonian.
- ambiguity:

H → H + 2π
t
κ, κ ∈ Z.

- ambiguity in the spectrum

En → En − 2π
t
κn ≡ 2πyn/t.
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Geometric Complexity
• accounting for penalties in the metric√∑

α

[Tr(TαV )2 + µα Tr(TαV )2] =
√
ynQnmym

=⇒ Qnm =
∑

α

µα⟨n|Tα|n⟩⟨m|T †
α|m⟩, (4)

where µα = 1 for low cost directions and Tr(TαTβ) = δαβ.

• a pure state in theory with gauge symmetry → “generalized length” :
curve γ(t) on the group manifold (Ai is the gauge connection):

Cγ =
∫ 1

0
dτ ||γ̇(t)|| −

∫ 1

0
dτAi(γ(t))γ̇i.

→ the state complexity of |ψT ⟩: the equivalence class of some Gaussian
transformation M ∈ G (group manifold) → the length of the geodesic
connecting 1 to the point where the equivalence class [M ] intersects
exp(stab⊥(N)).
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Spread states and Operator growth

• Unitary evolution mixes the initial state |ψ⟩ with other quantum states
as time evolves

|ψ(t)⟩ = e−iHt|ψ(0)⟩ =
∞∑

n=0

(−iHt)n

n! |ψ⟩ =
∞∑

n=0

(−it)n

n! |ψn⟩. (5)

⇒ understanding the states |ψn⟩ ≡ Hn|ψ⟩.
• The Gram–Schmidt procedure applied to generate an ordered,
orthonormal basis K = {|K0⟩, |K1⟩, . . . }.
- consider a basis B = {|Bi⟩ i = 0, 1, . . . } and def cost finction

CB(t) =
∑

n

cn|⟨ψn|Bn⟩|2, cn positive increasing, |B0⟩ = |ψ(t0)⟩

- def Complexity
C(t) = min

B
CB(t)
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Spread states and Operator growth

• Operator growth

O(t) = eiHt O(0) e−iHt =
∞∑

n=0

(it)n

n! Õn, (6)

where
Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]] . . . (7)

As time progresses, a simple operator O(t) “grows” in the space of
operators of the theory becoming more “complex”.
- the idea: use Õn to construct the states of the basis

• Notion of Liouvillian (superoperator)

L := [H, ∗] =⇒ Õn = LnO(0) =⇒ O(t) = eiLtO(0). (8)

• Subtlety: the states |On(0)) = On|0⟩ may not be orthogonal (and the
set {|On(0))} may not define a basis)
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Constructing Krylov spaces

• The algorithm of orthogonalization (Arnoldi iteration)
1 set b0 ≡ 0 and |O−1) ≡ 0
2 Define |O)0 = 1√

(O|O)
O)

3 For n = 1:
- |A1) = L|O0)
- b1 = ||A1||
- If b1 ̸= 0 define|O1) = 1

b1
|A1)

4 For n > 1:
- |An) = L|On−1) − bn−1|On−2)
- bn = ||An|| ≡

√
(An|An)

- If bn = 0 stop the procedure; if not, define |On) = 1
bn

|An) and go to
step 4.
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Recurrent relations

• Jacobi operator (Jacobi matrix)

Lmn = (Om|L|On)

- the adjoint action of H =⇒ Jacobi matrix w/ elements Lanczos
coefficients {bn, an}, n = 0, . . . [H,On] =

∑
m LnmOm.

- Explicit form of Jacobi matrix in terms of Lanczos coefficients

L =


a0 b0 0 . . .

b0 a1 b1
. . .

0 b1 a2
. . .

. . . . . . . . . . . .

 . (9)

- the Lanczos coefficients as hopping amplitudes facilitating the traversal
of the initial operator along the “Krylov chain”
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Recurrent relations

- Define Pk(x) as the determinant made of the first prinicipal k × k minor
w/ P1 = a1 − x, P0 = 1

Pk(λ) = det



a1 − x b1 0 . . . 0

b1 a2 − x b2
. . . ...

0 b2 a3 − x
. . . 0

... . . . . . . . . . bk−1
0 . . . 0 bk−1 ak − x


.

- Expanding the determinant by minors wrt the last row =⇒

Pk(x) = (ak − x)Pk−1(x) − b2
k−1Pk−2(x). (10)



Krylov complexity
• Decomposition of O(t) in terms of the Krylov elements:

|O(t)) =
K−1∑
n=0

ϕn(t)|On). (11)

• The Liouvillian in Krylov basis

L =
K−1∑
n=0

bn+1 [ |On)(On+1| + |On+1)(On| ] (12)

• The equation for ϕn(t)

−iϕ̇n =
K−1∑
m=1

Lnmϕm(t) = bn+1ϕn+1(t) − bnϕn−1(t), ϕn(0) = δn0.

• Krylov Complexity and K-entropy (Shannon)

K(t) =
∑

n|ϕn(t)|2, S(t) =
∑

|ϕn(t)|2 log |ϕn(t)|2 (13)
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Moments and Hankel determinant

• A key quantity containing equivalent information is the moment matrix
M defined by

M0 =


∫
x0dω

∫
xdω · · ·

∫
xndω∫

xdω
∫
x2dω · · ·

∫
xn+1dω

· · · · ·∫
xndω

∫
xn+1dω · · ·

∫
x2ndω

 =


µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
· · · · ·
µn µn+1 · · · µ2n



• Hankel determinant Dn

Dn = det
1≤i,j≤N

(µi+j) =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
· · · · ·
µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣ (14)
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Orthogonal polynomials
• Moments, Hankel and orthogonal polynomial Dn(x)

Dn(x) =

∣∣∣∣∣∣∣∣∣∣∣

∫
x0dω

∫
xdω · · ·

∫
xndω∫

xdω
∫
x2dω · · ·

∫
xn+1dω

· · · · ·∫
xn−1dω

∫
xndω · · ·

∫
x2n−1dω

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
. (15)

• Using Dn and D(x) =⇒ define an orthogonal polynomial

Pn(x) = Dn(x)√
Dn−1Dn

(16)

• Using recurent relations one finds the relations to Lanczos coefficients

b2
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Schwarz-Christoffel map as a generalized measure

Schwarz-Christoffel accessory parameters.
• Christoffel-Schwarz mapping

df(w)
dw

= γ
n∏

i=1
(w − wi)θi−1, (18)

where wi are called pre-vertices (on the line), and zi - the pre-images of
the vertices (vertices of the polygon, zi = f(wi)).
The Schwarzian differential equation

{f(w), w} :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
=

n∑
i=1

[
1 − θ2

i

2(w − wi)2 + 2βi

w − wi

]
,

where n is the number of vertices and πθi are the interior angles at each
vertex zi.
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Relations to Painleve
• The solutions of Schwarzian equation: given by z = f(w) = ỹ1/ỹ2,
where ỹi are the two independent solutions of

ỹ′′(w) +
n∑

i=1

[
1 − θ2

i

4(w − wi)2 + βi

w − wi

]
ỹ(w) = 0. (19)

• algebraic constraints on the accessory parameters∑
i

βi =
∑

i

(wiβi + 1 − θ2
i ) =

∑
i

(2wiβ
2
i + wi(1 − θ2

i )) = 0. (20)

For ỹ(w) = w−θ0/2(w − 1)−θ1/2(w − t)−θt/2y(w) =⇒ the Heun equation
in canonical form

y′′(w) +
(1 − θ0

w
+ 1 − θt

w − t
+ 1 − θ1
w − 1

)
y′(w)

+
(

κ−κ+
w(w − 1) − t(t− 1)K0

w(w − 1)(w − t)

)
y(w) = 0. (21)



From ODE to Painleve

- Comments:

• Every Heun class equation can be presented as

1
f(t)

[
P0(z, t)D2 + P1(z, t)D + P2(z, t)

]
y(z) = λ y(z), D = d

dz
.

Here Pi(z, t) are polynomials in z, t = scaling parameter, λ interpreted as
accessory parameter = energy.

=⇒ the Heun class equation as Schrödinger equation

H(q̂, p̂, t) y = λ y, (22)

=⇒ ”canonically quantize” the system,

H(q̂, p̂, t) = 1
f(t)

[
P0(q̂, t)p̂2 + P1(q̂, t)p̂+ P2(q̂, t)

]
. (23)
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Relations to Sasaki-Einstein manifold as string background
Details of the Yp,q geometry

• Base manifold

y1 y2

S1

r(y)

ψ

Figure: Squashed sphere as circle fibration parametrized by ψ over the interval
[y1, y2] and round sphere.

The topology of the base is B ∼= S2 × S2

• S1 principle bundle over the base → dα+A

• Isometries are SU(2) × U(1) × U(1).
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Relations to Sasaki-Einstein manifold as string background

Toric stuff for Yp,q

(0,0) (1,0)

(p-q-1,p-q)

(p,p)

(0,0) (1,0)

(p-q-1,p-q)

(p,p)

Figure: a) Toric Y4,2; b) The # gauge groups = number △, for Y4,2 = 8.

• For any toric quiver w/ bifundamentals X =⇒ dibaryonic operator

B[X] = ϵα1...αNXβ1
α1 . . . X

βN
αN
ϵβ1...βN

(24)

- interpretation: to each toric divisor ΣA - a bifundamental XA whose
corresponding dB[X] is dual to a D3–brane wrapped on ΣA.
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Relations to Sasaki-Einstein manifold as string background

the cases Y 1,1, Y 1,0 and Y 2,2 are also interesting as the only members
of Y p,q admitting massive supersymmetric deformations, see for
instance (Feng et al, 2000).
suspended pinch point (SPP) theory and the limits: the superpotential

WSP P = X12X23X32X21−X23X31X13X32+X13X31X11−X12X21X11

- Higgsing: ⟨X23⟩ ≠ 0 → purely cubic superpotential → N = 2;
⟨X21⟩ ≠ 0 → X12 and X11 - massive → conifold.

⟨ X12 ⟩≠0
⟨ X23 ⟩≠0

SPP

conifold ℂ3/ℤ2

Figure: The (partial) resolution of the C3/(Z2 × Z2) singularity to the suspended
pinch point (SPP) and obtaining toric diagams of T 1,1 and C3/Z2 by Higgsing.
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- Higgsing: ⟨X23⟩ ≠ 0 → purely cubic superpotential → N = 2;
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Further properties

• What happens with gauge theories?

◦ • • •

• •

◦ ◦

◦ ◦ • • ◦ ◦ • • •

for conifold • • forWP [1,1−2] •

1

Figure: on the top: quiver for SPP; At the bottom: quiver for conifold (Y1,0) on
the left; quiver for Y1,1 on the right.

The limit (SPP → conifold) coresponds to Y2,1 → conifold and the
reduction PVI → PV.
The limit (SPP → WP[1,1,−2]) coresponds to Y2,1 → Y1,1 and the
reduction PVI → PV.
The limit Yp,q → Y∞,q coresponds to the reduction PVI → PV.
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Generalizing the measure

• Assume without loss of generaylity that the measure dω associated with
orthogonality of the polynomials is given by

dω(x) = w0(x)dx = e−v(x)dx,

∫
pn(x)pm(x)w0(x)dx = knδnm,

• From recurrence equations

P ′′
n (x) + S(x)P ′

n(x) +Q(x)Pn(x) = 0. (25)

which is Schrödinger type equation.
• conformal function

f2(z) = (z − z1)θ1−1(z − z2)θ2−1,

w/ two w1 & w2 and interior angles θ1 & θ2, and

arg f ′(z) =


0 if z1 < z2 < z,

(θ2 − 1)π if z1 < z < z2,

(θ2 − 1)π + (θ1 − 1)π if z1 < z2 < z.
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Generalizing the measure
• Schwarz-Christoffel map with n = 2 defines the measure for the Jacobi
polynomials

dω0(x) = (1 − x)α(1 + x)βdx (26)

Associate measure dµ(x) = w(x)dx where w(x) = w0(x)e−v(x) (v(x)
univalent in general)
it is chosen for fixed V and fixed operator

changes in parameters of v(x) produce a new basis
- consider the measure w(x, λ) = w0(x)e−λx =⇒

µk(λ) =
∫
xkw(x, λ)dx.

Thus

M =
(
(−1)i+j∂i+j

λ M
)

ij
=


µ0(λ) µ1(λ) · · · µn(λ)
µ1(λ) µ2(λ) · · · µn+1(λ)

· · · · ·
µn(λ) µn+1(λ) · · · µ2n(λ)

 . (27)
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Generalizing the measure
• Consider Schwarz-Christoffel map of order n = 3, w/ z1 = 1, z2 = −1

f3 = (z − 1)α(z + 1)β(z − z3)θ3−1, θ1 − 1 := α, θ2 − 1 =: β, (28)

=⇒ up to irrelevant multiplcative constant

dω(x) = (1 − x)α(1 + x)βev(x), (29)

where v(x) =
∑

i λix
i with λi = (1 − θ3)/i(wi

3).

• Define another weight

w(x, λ) → w(x, λi) = w0(x) e
∑

i
λix

i =⇒ ∂λk
µn = µn+k (30)

• Expanding in Schur polynomials =⇒

µn(λi) =
∫
xnw0(x) e

∑
i

λix
i

dx =
∑
m

Sm[λi]µn+m(0). (31)
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Relations to Toda

Flaschka/Manakov-Lax form of the equations

ak = −yk

2 = − ẋk

2 , bk = 1
2e

(xk−xk+1)/2, (32)

EoM: ȧn = b2
n − b2

n−1, ḃn = bn

2 (an+1 − an). (33)

Define

T =



a1 b1 0 . . . 0

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bn−1
0 . . . 0 bn−1 an


; B =



0 b1 0 . . . 0

−b1 0 b2
. . . ...

0 −b2 0 . . . 0
... . . . . . . . . . bn−1
0 . . . 0 bn−1 0


=⇒ Toda equations (in Hamiltonian form )

dT

dt
= [B, T ]︸ ︷︷ ︸

Lax pair form

= BT − TB. (34)
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2 , bk = 1
2e

(xk−xk+1)/2, (32)

EoM: ȧn = b2
n − b2

n−1, ḃn = bn

2 (an+1 − an). (33)

Define

T =



a1 b1 0 . . . 0

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bn−1
0 . . . 0 bn−1 an


; B =



0 b1 0 . . . 0

−b1 0 b2
. . . ...

0 −b2 0 . . . 0
... . . . . . . . . . bn−1
0 . . . 0 bn−1 0


=⇒ Toda equations (in Hamiltonian form )

dT

dt
= [B, T ]︸ ︷︷ ︸

Lax pair form

= BT − TB. (34)



Derivation from moment matrix

• introduce the following notation for (sub)determinant of the moment
matrix Dm = det(M)m×m

• denote by τn+1 = D, τn = D
(n+1

n+1
)
, where D

(n
m

)
denotes the

determinant with removed n-th row and m-th column

• Observe that τ̇n = D
( n

n+1
)

= D
(n+1

n

)
(the second equality is obvious)

and using the symmetries of Hankel determinant one finds τ̈ = D
(n

n

)
.

• Jacobi identity for determinant (D ≡ Dn+1) reads

D

(
n

n

)
D

(
n+ 1
n+ 1

)
−D

(
n

n+ 1

)
D

(
n+ 1
n

)
= D

(
n n+ 1
n n+ 1

)
D,

In other words, we arrive at the equation

τnτ̈n − τ̇2
n = τn+1τn−1. (35)

where the relations between Lanczos coefficients and Hankel determinans
are (17), bn =

√
Dn+1Dn−1/Dn and an = ln(Dn/Dn−1)
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Subsectors of Virasoro - SL case

• The most general SU(2, R) coherence preserving Hamiltonian

H = αL+ + α∗L− + γL0. (36)

- consider highest weight state h, |h⟩ = O−h|0⟩
- Expansion

O(z)|0⟩ =
∞∑

n=0
znO−h−n|0⟩, (37)

- For primary operators

[Lm,O−h] = [h(m− 1) −m] O−h+m, m = {−1, 0, 1}, (38)

and

[O(i)
m ,O(j)

n ] =
(
m+ h− 1

2h− 1

)
δijδm+n,0 +

∑
k

Cij
k p

ij
k (m,n)O(k)

m+n. (39)
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Subsectors of Virasoro - SL case
• The action of SL(2, R) on a Fock state

L0|h, n⟩ = (h+ n)|h, n⟩, L−1|h, n⟩ =
√

(n+ 1)2h+ n|h, n+ 1⟩ (40)

L1|h, n⟩ =
√
n(2h+ n− 1)|h, n− 1⟩ (41)

Successfive applications of L−1 on the ground state |h⟩

Ln
−1|h⟩ =

√
n!Γ(2h+ n)

Γ(2h) |h, n⟩ (42)

• Perelomov construction

ezL−1 |h⟩ =
∞∑

n=0

zn

n!L
n
−1|h⟩ =

∞∑
n=0

zn

n!

√
n!Γ(2h+ n)

Γ(2h) |h, n⟩. (43)

• The explicit form of a state

|z, h⟩ = (1 − |z|2)h
∞∑

n=0
zn

√
Γ(2h+ n)
n!Γ(2h) |h, n⟩. (44)
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Subsectors of Virasoro - SL case
• The state generated by Liouvillian

|O(t)) = eiα(L−1+L1)t|h⟩ = |z = i tanh(αt);h = η/2⟩ (45)

• Identification between the Krylov basis and the basis vectors

|O(t)) = |h⟩, |On) = |h, n⟩.

• The Lanczos coeffcients:

bn = α
√
n(2h+ n− 1). (46)

=⇒ the wavefunctions are just coefficients of the coherent state.
• Krylov Complexity for SL(2, R)

KO = ⟨O(t)|O(t)⟩ = 2h sinh2(αt). (47)

• Comment: IHO KO ∼ sinh2
(
αt
√

1 − γ2

4α2

)
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Subsectors of Virasoro
• Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δm+n,0, (48)

- construct SL(2,R) from L0 and Lk = L†
−k using

[Lk, L−k] = 2kL0 + c

12k(k2 − 1), [L0, L±k] = ∓L±k. (49)

- redefine the genertors

L̃± = 1
k
L±k, L̃0 = 1

k

(
L0 + c

12k(k2 − 1)
)
. (50)

=⇒ Dk(ξ) = eξL−k−ξ̄Lk

= eiϕ
tanh(kr)

k
L−ke− 2

k
log(cosh(kr))(L0+ c

12 k(k2−1))e−iϕ
tanh(kr)

k
Lk . (51)

• Autocorrelation function for SL case

C(t) = (1|ψO(t)) = 1
cosh2h(αt)

- heavier primaries decay faster.
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Subsectors of Virasoro
In the above def basis the coherent state can be written as

|z, h, k⟩ =
∞∑

n=0
einϕ tanhn(kr)

cosh2hk(kr)

√
Γ(2hk)

n!Γ(2hk + n) |h, nk⟩. (52)

The action of Virasoro operators on the states |O) = |h, nk⟩

L0|h, nk⟩ = (h+ nk) |h, nk⟩,

L−k|h, nk⟩ = k
√

(n+ 1)(2hk + n) |h, (n+ 1)k⟩ (53)

Lk|h, nk⟩ = k
√
n(2hk + n− 1) |h, (n− 1)k⟩

The Liouvillian and K-basis

Lk = α(L−k + Lk), (54)

|O(t)) = eitLk |h⟩ =
∑

n

tanhn(kαt)
cosh2hk(kαt)

√
Γ(2hk + n)
n!Γ(2hk) |Kn⟩ =

∑
n

ϕn(t)|Kn⟩
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Subsectors of Virasoro

• The Lanczos coeffcients: bn = αk
√
n(2hk + n− 1)

• relations between Lanczos koefficients

b2
n+1 − b2

n = 2k2α2(hk + n).

• large n asymptotics of Lanczos coefficients

bn ≃ kαn+ 2hk − 1
2 +O(1/n), λL = 2α.

• Krylov Complexity

KO =
∑

n

n|ϕn(t)|2 = 2hk sinh2(kαt). (55)

• asymptotics: KO(t → ∞) ≃ h
2e

2αt

=⇒ the total K-complexity is not sensitive enough to distinguish between
the SL(2, R) and Virasoro cases for simple primary operators.



Subsectors of Virasoro - subtleties
• consider subset of descendants & compute KO for particular Young
diagram - fine graining

• Example: typical states, (in oscillator basis, N =
∑
imi) :

l−1Φ{mk} =
∑N

n=1
√
n(n+ 1)mn(mn+1 + 1)Φm1,m2,...,mn−1,mn+1,... +

∗
√

2(mn + 1)Φm1+1,m2...

- states with (c, h) dependence, n ≪ N

b{mi}→{...,mn−1,mn+1,... } =⇒ bn ∼
√
N

- states without (c, h) dependence, n ≪ N

b{mi}→{m1+1,m2,... } =⇒ bn ∼ 4√n

• fluctuations - K-variance

δO(t) =
∑

n n
2|ϕ(t)|2 − (

∑
n n|ϕn(t)|2)2

(
∑

n n|ϕn(t)|2)2
t→∞≈ 1√

2h
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Subsectors of Virasoro - subtleties

Comments:

For large descendant levels: the non-zero entries are a very small
fraction of the Lanczos matrix.
these fractions are highly suppressed ∼ e−π

√
2N/3

orthogonalization procedure - wrt family of inner products

(A|B)g
β =

∫ β

0
g(λ)⟨eλHA†e−λHB⟩βdλ, ⟨A⟩ = 1

Z
Tr(e−βHA)

Krylov complexity uses usually Wightman inner product

(A|B)g
β = ⟨eλHA†e−λHB⟩β

Conclusion: the correct Lyapunov exponent arises precisely after
minimizing over all possible choices of the ambiguous inner product,
and over all choices of basis.
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Supersymmetric case, osp(2|1)

• osp(2|1) spanned by bosonic generators (B+, B0, B−) and farmionic
ones (F+, F−) w/ commutation relations

[B−, B+] = {F+, F−} = 2B0, (56)
[B0, B±] = {F±, F±} = ±B±, (57)
[F±, B∓] = 2[B0, F±] = ±F±. (58)

• general element

U(g) = exp
[
aB0 + bB+ − b̄B− + dF+ + d̄F−

]
. (59)

Using a BCH relation we want U(g) to be rewritten as

U(g) = eαB0eβB+eγB−eξF+eηF− . (60)
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Supersymmetric case, osp(2|1)

• the standard procedure

et[aB0+bB+−b̄B−+dF++d̄F−] = eα(t)B0eβ(t)B+eγ(t)B−eξ(t)F+eη(t)F− .

• equations for (α, β, γ) and (ξ, η)

α̇ = a+ 2βeα + ξd̄e
α
2

β̇ = be−α − β2b̄eα + ξd

2 e
−α/2 − 1

2βξe
α/2

γ̇ = b̄eα − γ(γξ + ηd)
2 e−α/2 + [γξ(1 − βγ

2 ) + (1 − βγ)η
2 ]d̄eα/2

ξ̇ = de−α/2 + βd̄eα/2

η̇ = (1 − βγ)(1 − ξη

2 )d̄eα/2 − γ(1 − ξη

2 )de−α/2

(61)



Supersymmetric case, osp(2|1)

- notations

κ = 1
4a

2 + bb̄, σ = cosh κ− a

2κ sinh κ, (62)

σ̃ = κ sinh κ− a

2 cosh κ = κ
d

dκ
σ, (63)

ζ = 1
κ2S

−2
[
σ−1

[
1 + 2bb̄

a
cosh κ

]
− 2κ2

a
− 1

]
. (64)

- the parameters (α, β, ξ) in terms of (a, b, b̄, d, d̄)

α = −2 ln σ + σ2ζdd̄, (65)

β = b

κ
σ−1 sinh κ

[
b

2κ3σ
−3(sinh κ− κ)

]
dd̄, (66)

ξ = 1
σ

[ 1
κ2

[
σ + a

2

]
d+ b

κ2 (cosh κ− 1)d̄
]
. (67)



Supersymmetric case, osp(2|1)

- the action of the generators on the states

B0|j,m; η, n⟩ = (ϵηj + n) |j,m; η, n⟩

B±|j,m; η, n⟩ =
√

(ϵηj + n)(ϵηj + n± 1) − ϵηj (ϵηj − 1) |j,m; η, n⟩

F±|j,m; η, n⟩ = 1
2

√
2(ϵηj + n) ± 1

2 ± 2ηϵηj |j,m; η, n⟩

(68)

where ϵηj =
√

j(j+1)−j0(j0+1)+1
2 − η

4 and η = ±1 is the fermionic number
operator.



Supersymmetric case, osp(2|1) - coherent states
• the states

|α, θ⟩ = NeαK++θF+ |n, h⟩ = NeαK+eθF+ |n, h⟩,

where α is a complex number, θ is a Grassmann number.
- normalization

N = 1
SdetM , M =

 1 θ′
√

2
θ̄√
2 1 − αα∗


- expansion

|θ, α⟩ =
∞∑

n=0

(2n)!
2n

αn

n! |2n⟩ + θ

2

∞∑
n=1

√
n(2n)!

2n

αn

n! |2n− 1⟩

- The wave functions

⟨ζ, x|α, θ⟩ = N

√
ζ

4
√
π

e−ζ2x2/2
√

1 + α
exp ζ

2αx2

1 + α

(
1 + 1

2
θζx

1 + α

)
where ζ =

√
mw
ℏ in oscillator basis.



Supersymmetric case, osp(2|1) - coherent states

• Explicit form of the states expanded into Osp(1|2) basis

|h, α, θ⟩ =
∞∑

n=0

tanhn(αt)
cosh2h(αt)

√
Γ(2h+ n)
n!Γ(2h) |K2n⟩

+ θ
∞∑

n=1

tanhn−1(αt)
cosh2h−1(αt)

√
Γ(2h+ n+ 1

2)
(n− 1)!Γ(2h) |K2n−1⟩⟩

• Estimation of Complexity and autocorrelation functions rates
- autocorrelation functions rate

C0(t) ∼ 1
sinh2h(αt)

, C1(t) ∼ θ

sinh2h−1(αt)

- Krylov Complexity: has the same rate

KO(t) t→∞∼ cosh(2αt), L = 2α



Subsectors of N = 1 Super-Virasoro algebra

• N = 1 Super-Virasoro algebra.

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δm+n,0,

[Lk, L−k] = 2kL0 + c

12k(k2 − 1),

[L0, L±k] = ∓L±k

[Lm, Gr] =
(
m

2 − r

)
Gm+r,

{Gr, Gs} = 2Lr+s + c

3(r2 − 1
4)δr+s.

(69)



Subsectors of N = 1 Super-Virasoro algebra
• the subalgebra (for NS case k = odd; for Ramond case k = even)

[Lk, L−k] = 2kL0 + c

12k(k2 − 1),

[L±k, G±k/2] = 0, [L±k, G∓k/2] = ±kG±k/2,

[L0, G±k/2] = ∓G±k/2,

{Gk/2, G−k/2} = 2L0 + c

12(k2 − 1),

{G±k, G±k} = 2L±k.

(70)

• to obtain osp(2|1) for each k → rescaling

L0 → L̃0(k) = 1
k

(
L0 + c

24(k2 − 1)
)
, L±k → L̃±k = 1

k
L±k

G±k/2 → G̃±k/2 = 1√
k
G±k/2

(71)

• super-Liouvillian: L(k) = α(Lk + L−k) + ξ(Gk/2 +G−k/2).



Subsectors of N = 1 Super-Virasoro algebra

• To distinguish super-Virasoro: fine graning

• superpartitions (n|m)

n∏
i=1

(1 − qxi)
m∏

j=1

1
(1 − qyi)

=
∑
r≥0

pr(x, y)qr

=⇒ we have qualitatively the same asymptotic behavior
Again, for large N: the non-zero entries are small fraction of the
(extended) Lanczos matrix.

non-zero elements are highly suppressed ∼ Ne−π
√

2N/3
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Nielsen for Jacobian states
• Comments
- the lowest weight reference state

|z, θ⟩ = (1 − |z|2)h

(
1 − θ̄θ

2(1 − |z|2)

)h

eαK++θF+ |0, h⟩

- the wave functions

⟨ζ, x|α, θ⟩ = N

√
ζ

4
√
π

e−ζ2x2/2
√

1 + α
exp ζ

2αx2

1 + α

(
1 + 1

2
θζx

1 + α

)
- the Fubini-Study/Information metric

ds2 = ⟨dz, dθ|dz, dθ⟩ − ⟨dz, dθ|z, θ⟩⟨z, θ|dz, dθ⟩

-Remarks:
∗ For the bosonic case → the metric of the hyperbolic disk

ds2 = 2h dzdz̄
/

(1 − zz̄)2

∗ for r = αt =⇒ V ol(t) = 2πh sinh2(αt) = πKO(t)
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Nielsen for Jacobian states

ds2 = 2h
(

1 + (1 + |z|2)
2(1 − |z|2) θ̄θ

)
dz ∧ dz̄

(1 − |z|2)2 − h
dθdθ̄

1 − |z|2

− hθz̄
dzdθ̄

(1 − |z|2)2 + hzθ̄
dθdz̄

(1 − |z|2)2

- The Nielsen Complexity → compute geodesic on z1 = 0, θ1 = 0
submanifold
∗ geodesic solution in the bosonic case

z(σ) = eiϕ tanh(cσ) plugin−→ ℓ =
∫ σf

σi

√∣∣∣gab̄∂σz(σ)∂σ z̄(σ)
∣∣∣ dσ

∗ geodesic solution in the supersymmetric case



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity

We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.

We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function

We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations

We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:

- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

We reviewed two approaches to Complexity in holographic context -
geometric one (briefly) and Krylov Complexity
We reviewed in detail the construction of Krylov spaces and the role
of Lanczos coefficients for Complexity.
We obtained relation between Krylov Complexity and Toda
tau-function
We obtained relations between Krylov complexity and Painleve
equations
We discussed Complexity in subsectors of Virasoro and N = 1
super-Virasoro algebra

Future directions:
- Analysis of Complexity for vertain CFT and QFT models
- Complexity for various (black hole, D-brane) backgrounds
- Uses of integrable systems
- Information geometry approach to Complexity
- Complexity and Seiberg-Witten curves?
- ...



Summary and future directions

Towards understanding Quantum Dynamics

• Applications to holographic correspondence
- dynamics on the bdy and corresponding bulk processess/reconstruction
- geometric consequences for dynamical string backgrounds
• Applcations to (quantum) integrable systems & stongly interacting
commpact objects
- extension to models w/ quantum symmetries
- Schwarzian and superSchwarzian-like models
- breaking integrability and its restoration
• Applications to Quantum field theories
- study of critical phenomena at strong coupling regime
- QFT at finite temperature (TFD)
- non-equilibrium sydamics
• Information spaces and Geometry (Entropies, Entaglement etc)
- emerging phenomena, . . . . . .
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END

THANK YOU!


	Outline
	Motivation
	Notion of Complexity
	Krylov Complexity
	Spread Complexity and Operator growth
	Krylov Complexity and Moments
	Some expected and unexpected relations

	Subsectors of (super)Virasoro
	Subsectors of Virasoro - sl
	Subsectors of (super)Virasoro - osp

	Summary and future directions

