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Symmetries

Usual lower-spin symmetries:

• Relativistic theories: Poincaré and (A)dS symmetry: Pa and Mab

• SUSY: Pa,Mab −→ Pa,Mab,Qα , α = 1,2,3,4

• Inner symmetries: generators Ti are space-time invariant

[Ti , (Pa,Mab)] = 0

• Conformal (super)symmetries

Is it possible to go to higher HS symmetries?

HS gauge theory: theory of maximal symmetries

What are physical motivations for their study and possible outputs?
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Fronsdal Fields

All m = 0 HS fields are gauge fields C.Fronsdal 1978

φa1...as is a rank s symmetric tensor obeying φc
c
b
ba5...as = 0

Gauge transformation:

δφa1...as = ∂(a1εa2...as) , εbba3...as−1 = 0

Field equations: Ga1...as(x) = 0 Ga1...as(x) : Ricci-like tensor

Ga1...as(x) = □φa1...as(x)− s∂(a1∂
bφa2...asb)

(x) +
s(s− 1)

2
∂(a1∂a2φ

b
a3...asb)

(x)

Action

S =
∫
Md

(
1

2
φa1...asGa1...as(φ)−

1

8
s(s− 1)φb

b a3...asGc
c a3...as(φ)

)
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No-go and the Role of (A)dS

In 60th it was argued (Weinberg, Coleman-Mandula) that

HS symmetries cannot be realized in a nontrivial local field theory in

Minkowski space

In 70th it was shown by Aragone and Deser that HS gauge symmetries

are incompatible with GR if expanding around Minkowski space

Green light: AdS background with Λ ̸= 0 Fradkin, MV, 1987

In agreement with no-go statements the limit Λ→ 0 is singular
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HS Holography

AdS4 HS theory is dual to 3d vectorial conformal models

Klebanov-Polyakov (2002), Sezgin–Sundell (2002); Giombi and Yin (2009)

HS symmetry in AdSd+1: maximal symmetry of a d-dimensional free

conformal field(s)=singletons, usually, scalar and/or spinor.

Symmetries of KG equation in Minkowski space

Shaynkman, MV 2001 3d; Shapovalov, Shirokov 1992, Eastwood 2002 ∀d

Construction simplifies at d = 3 within spinor formalism

3d Lorentz algebra: o(2,1) ∼ sp(2, R) ∼ sl2(R).

Unfolded massless equations of the form(
∂

∂xαβ
+

∂2

∂yα∂yβ

)
C(y|x) = 0 , C(y|x) =

∞∑
n=0

Cα1...α2n(x)yα1 . . . yα2n

are invariant under δC(y|x) = ϵ(y, ∂
∂y |x)C(y|x)

ϵ(y,
∂

∂y
|x) = exp

[
−xαβ

∂2

∂yα∂yβ

]
ϵgl(y,

∂

∂y
) exp

[
xαβ

∂2

∂yα∂yβ

]
ϵgl(y,

∂
∂y) describes global HS transformations
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NonAbelian HS Algebra

3d Conformal HS symmetry = AdS4 HS symmetry

HS gauge fields: ω(Y |x) 1986

YA = (yα, ȳα̇), α, α̇ = 1,2 two-component spinor indices

ω(Y |x) =
∞∑

n,m=0

1

2n!m!
ωα1...αn ,α̇1...α̇m(x)y

α1 . . . yαnȳα̇1 . . . ȳα̇m

HS curvature and gauge transformation

R(Y |x) = dω(Y |x) + ω(Y |x) ∗ ∧ω(Y |x)

δω(Y |x) = Dϵ(Y |x) = dϵ(Y |x) + [ω(Y |x) , ϵ(Y |x)]∗

[yα , yβ]∗ = 2iεαβ , [ȳα̇ , ȳβ̇]∗ = 2iεα̇β̇

Star product is nonlocal in Y A !

(f ∗ g)(Y ) = f(Y ) exp [i
←−
∂A
−→
∂BCAB]g(Y )

Global symmetry of bosonic HS theory Fradkin, MV 1986, MV 1988

6



Properties of HS Algebras

Let Ts be a homogeneous polynomial of degree 2(s− 1)

[Ts1 , Ts2] = Ts1+s2−2 + Ts1+s2−4 + . . .+ T|s1−s2|+2 .

Once spin s > 2 appears, the HS algebra contains an infinite tower of

higher spins: [Ts, Ts] gives rise to T2s−2 as well as T2 of o(3,2) ∼ sp(4).

Usual symmetries: spin-s ≤ 2 u(1) ⊕ o(3,2): maximal finite-dimensional

subalgebra of hu(1,0|4). u(1) is associated with the unit element.

HS symmetries do not commute with space-time symmetries

[T a , THS] = THS , [T ab , THS] = THS

HS transformations map gravitational fields (metric) to HS field:

Riemann geometry is not appropriate for HS theory:

concept of local event may become illusive!
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HS Gauge Theory and Quantum Gravity

HS symmetry is in a certain sense maximal relativistic symmetry. Hence,

it cannot result from spontaneous breakdown of a larger symmetry:

HS symmetries are manifest at ultrahigh energies above any scale

including Planck scale

• HS gauge theory should capture effects of Quantum Gravity:

restrictive HS symmetry versus unavailable experimental tests

• Lower-spin theories as low-energy limits of HS theory:

lower-spin symmetries: subalgebras of HS symmetry

• String Theory as spontaneously broken HS theory?! (s > 2,m > 0)
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Space-Time and Spin

Space-time M is where symmetry G = O(d− 1,2) acts

Spin s: different G-modules Vs where fields ϕA(x) are valued.

Vs contain ground (primary) fields ϕA(x) along with their derivatives

∂n1 . . . ∂nkϕ
A(x) (descendants)

HS vertices contain higher derivatives Bengtsson, Bengtsson, Brink (1983),

Berends, Burgers and H. Van Dam (1984), (1985), Fradkin, MV; Metsaev,...

HS symmetries Fradkin, MV 1986 are infinite dimensional extesions of G

Infinite towers of spins ⇒ infinite towers of derivatives.

How (non)local is HS gauge theory?
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HS Multiplets

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

ωα1...αn ,β̇1...β̇m
and Cα1...αn ,β̇1...β̇m

with all n ≥ 0 and m ≥ 0.

Generating functions ω(Y |x) and C(Y |x): unrestricted functions of com-

muting spinor variables Y = (yα, ȳα̇)

A(Y |x) =
∞∑

n,m=0

1

2n!m!
Aα1...αn ,α̇1...α̇m(x)y

α1 . . . yαnȳα̇1 . . . ȳα̇m

Gauge one-forms ωα1...αn ,β̇1...β̇m
, n+m = 2(s− 1)

s = 1 : ω(x) = dxνων(x)

s = 2 : ωαβ̇(x) , ωαβ(x) , ω̄α̇β̇(x)

s = 3/2 : ωα(x) , ω̄α̇(x)

Frame-like fields: |n−m| = 0 (bosons) or |n−m| = 1 fermions

Auxiliary Lorentz-like fields: |n−m| = 2 (bosons)

Extra fields: |n−m| > 2

Zero-forms C(Y |x): matter fields and higher derivatives of massless fields
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Free Field Unfolded Massless Equations

The full unfolded system for free massless bosonic fields is 1989

⋆ R1(y, y | x) =
i

4

(
ηH

α̇β̇ ∂2

∂yα̇∂yβ̇
C(0, y | x) + η̄Hαβ ∂2

∂yα∂yβ
C(y,0 | x)

)
⋆⋆ D̃0C(y, y | x) = 0

R1(y, ȳ | x) := Dad
0 ω(y, ȳ | x) Dad

0 := DL − eαβ̇
(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)

D̃0 = DL + eαβ̇
(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
DL := dx −

(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)

Hαβ := eαα̇e
βα̇ , H

α̇β̇ := eα
α̇eαβ̇

⋆⋆ implies that higher-order terms in y and ȳ describe higher-derivative

descendants of the primary HS fields
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Zero-Form Sector

Equations on the gauge invariant zero-forms C

C(Y ;K|x) =
∞∑

n,m=0

1

2n!m!
Cα1...αn ,α̇1...α̇m(x)y

α1 . . . yαnȳα̇1 . . . ȳα̇m

decompose into independent subsystems associated with different spins

Spin-s zero-forms are Cα1...αn ,α̇1...α̇m(x) with

n−m = ±2s

Perturbative unfolded equations

dxC = σ−C + lower-derivative and nonlinear terms

σ− := eαβ̇
∂2

∂yα∂ȳβ̇
, σ2− = 0

Cα1...αn ,α̇1...α̇m(x) contain n+m
2 − {s} space-time derivatives of the spin-

s dynamical fields. Presence of zero-forms C in the HS vertices may

induce infinite towers of derivatives and, hence, non-locality.
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HS Vertices

Diffeomorphisms without Riemannian geometry: Cartan formalism of

differential forms with field equations in the unfolded form

dxω = −ω ∗ ω +Υ(ω, ω,C) +Υ(ω, ω,C,C) + . . . ,

dxC = −[ω,C]∗+Υ(ω,C,C) + . . .

The problem: consistent non-linear corrections 1988 in the local frame

The vertices can be put into the form

Υ(Φ,Φ, . . .) = F (Qi, Pnm; Q̄j, P̄ kl)Φ(Y1) . . .Φ(Yn)|Yi=0

with Φ = ω, C and some non-polynomial functions F (Qi, Pnm; Q̄j, P̄ kl) of

the Lorentz-covariant combinations

Qi := yα
∂

∂yiα
, P ij :=

∂

∂yαi

∂

∂yjα
, Q̄i := ȳα̇

∂

∂ȳiα̇
, P̄ ij :=

∂

∂ȳiα̇
∂

∂ȳjα̇

The fundamental problem: find a proper class of functions F (Qi, Pnm; Q̄j, P̄ kl)

guaranteeing spin-locality (minimal non-locality) of the HS theory
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Locality and Non-Locality arXiv: 2208.02004

Equations of motion in perturbatively local field theory EA0,s0(∂, ϕ) = 0

EA0,s0(∂, ϕ) =
∞∑

k=0,l=1

a
n1...nk
A0A1...Al

(s0, s1, . . . , sl)∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Al
sl

have a finite # of non-zero coefficients a
n1...nk
A0...Al

at any order l.

s0 is the spin of the field on which the linearized equation is imposed

HS theory involves infinite towers of Fronsdal fields of all spins.

a
n1...nk
A0...Al

may take an infinite # of values.

It makes sense to distinguish between Gelfond, MV 2018

local: finite number of derivatives at any order

a
n1...nk
A0...Al

(s0, s1, . . . sl) = 0 at k > kmax(l)

spin-local: finite number of derivatives for any finite subset of fields

a
n1...nk
A0...Al

(s0, s1, s2, . . . sl) = 0 at k > kmax(s0, s1, s2, . . . sl)

non-local: infinite number of derivatives for a finite subset of fields at

some order.
14



Compact Spin-Locality

The simplest option: replacement of the class of local field theories

with the finite # of fields by spin-local models with infinite # of fields.

Spin-local-compact vertices in addition obey

a
n1...nk
A0A1...Al

(s0, s1, . . . , sk + tk , . . . , sl) = 0 tk > t0k ∀k

non-compact otherwise.

Compactness is in the space of spins, not in space-time

Both types of vertices in HS theory:

Cubic HS vertices ω ∗ ω built from HS gauge potentials are spin-local-

compact: spins s0, s1, s2 obey the triangle inequalities s0 ≤ s1 + s2 etc.

Vertices associated with the conserved currents built from gauge invari-

ant field strength are spin-local non-compact. These include conserved

currents of any integer s0 built from two spin-zero fields (s1 = s2 = 0).
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Field Redefinitions

A local theory remains local under perturbatively local field redefinitions

ϕBs0 → ϕBs0 + δϕBs0 , δϕBs0 =
∞∑

k=0,l=1

bB
n1...nk
A1...Al

(s0, s1, . . . , sl)∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Al
sl

with a finite # of non-zero coefficients at any order.

Which field redefinitions leave vertices spin-local?

General spin-local field redefinitions do not work since contributions of

all spin sp redefined fields may develop non-locality

δEA0,s0(∂, ϕ) =
∞∑

sp=0

∞∑
p,k,k′=0,l,l′=1

a
n1...nk
A0A1...Al

(s0, s1, s2, . . . , sp, . . . , sl)

∂n1 . . . ∂nkϕ
A1
s1 . . . ϕ

Ap−1
sp−1 ϕ

Ap+1
sp+1 . . . ϕ

Al
sl b

Apm1...mk′
B1...Bl′

(sp, t1, . . . , tl′)∂m1 . . . ∂mkϕ
B1
t1

. . . ϕ
Bl′
tl′

Spin-local-compact field redefinitions in spin-local theories:

proper substitute since summation over sp is finite.

One of the central problems in HS theory is to find a field frame making

it (spin-)local. Given non-locally looking field theory, the essential

question is whether or not it is spin-local in some other variables.

16



Spinor Spin-Locality

Polynomiality of F (Qi, P ij, Q̄j, P̄ kl) in either P ij or P̄ ij ∀i, j associated with

C

Restriction to the fixed spin relates the degrees in P ij and P̄ kl since

n−m = ±2s

Non-linear corrections can affect the relation between spinor and space-

time spin-locality making obscure the space-time interpretation of the

locality analysis in the spinor space.

This does not happen for projectively-compact spin-local vertices with

F (Qi, P ij, Q̄j, P̄ kl) = QωG(Qi, P ij, Q̄j, P̄ kl) + Q̄ωḠ(Qi, P ij, Q̄j, P̄ kl)

Qω and Q̄ω being associated with the one-forms ω among Φ.

arXiv: 2208.02004
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Projectiely-Compact Spin-Local Vertices

Using background frame eαβ̇ HS equations can be represented as

DLC(y, ȳ) = eαα̇
(
∂α∂̄α̇F

++(y, ȳ)+yα∂̄α̇F
−+(y, ȳ)+ȳα̇∂αF

+−(y, ȳ)+yαȳα̇F
−−(y, ȳ)

)
.

Generally, nonlinear corrections can contribute to any of F ab.

The contribution to F++ can be singled out by the projector

Πdes := N−1y N̄−1ȳ yαȳα̇
∂

∂eαα̇
, Ny := yα∂α , Nȳ := ȳα̇∂̄α̇

A spin-local vertex Υ is called projectively compact if ΠdesΥ is spin-local-

compact. In particular, if ΠdesΥ = 0.

The contribution of the projectively-compact spin-local vertices can

affect the expressions of the descendants in terms of derivatives of the

ground fields only by spin-local-compact terms that preserve space-time

locality of the vertex associated with the spin-local spinor vertex.
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Nonlinear System via Doubling of Spinors

How to find nonlinear corrections to HS equations? The efficient trick

MV 1992 reduces the problem to De Rham cohomology with respect to

additional spinor variables ZA = (zα, z̄α̇) in presence of Klein operators K

ω(Y ;K|x) −→W (Z;Y ;K|x) , C(Y ;K|x) −→ B(Z;Y ;K|x) , Y A = (yα, ȳα̇)

Some of the nonlinear HS equations

dxW +W ⋆W = 0
dxB +W ⋆ B −B ⋆W = 0
dxS +W ⋆ S + S ⋆W = 0 1992
S ⋆B−B ⋆ S = 0

S ⋆ S = i(θAθA + ηθαθαB ⋆ k ⋆ κ+ η̄θ̄α̇θ̄α̇B ⋆ k ⋆ κ̄)

determine ZA-dependence in terms of “initial data” ω(Y ;K|x) and C(Y ;K|x)

S(Z;Y ;K|x) = θASA(Z;Y ;K|x) is a connection along ZA (θA ≡ dZA)

Klein operators K = (k, k̄) generate chirality automorphisms

kf(A) = f(Ã)k , A = (aα , āα̇) : Ã = (−aα , āα̇)

Inner Klein operators: κ = exp izαyα , κ̄ = exp iz̄α̇ȳ
α̇ , κ⋆f = f̃ ⋆κ , κ⋆κ = 1

Dynamical content is in the d-independent twistor sector
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Perturbative Analysis

Vacuum solution

B0 = 0 , S0 = θAZA , W0 =
1

2
wAB(x)YAYB

dxW0 +W0 ⋆ W0 = 0 , wAB : AdS4

[S0 , f ]⋆ = −2idZf , dZ = θA
∂

∂ZA

First-order fluctuations

B1 = C(Y ) , S = S0 + S1 , W = W0(Y ) +W1(Y ) +W0(Y )C(Y )

Order-n equations containing S have the form

dZUn(Z;Y |dZ) = V [U<n](Z;Y |θ) dZV [U<n](Z;Y |θ) = 0

can be solved by shifted homotopy with shift parameters Q

Un(Z;Y |θ) = d∗ZV [U<n](Z;Y |θ) + h(Y) + dZϵ(Z;Y |θ)

d∗ZV (Z;Y |θ) = (ZA −QA)
∂

∂θA

∫ 1

0

dt

t
V (tZ + (1− t)Q;Y |tθ)
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Interpretation

The contracting homotopy freedom encodes:

All possible gauge choices in dz-exact forms dzϵ(Z;Y |dZ)

All possible choices of field variables in dz cohomology h(Y)

Any unfolded HS system is associated with one or another solution to

the nonlinear HS system.

How to single out the proper (e.g., minimally nonlocal) frames?

Spin-local limit: β → −∞ with QA = β ∂
∂Y A

Didenko, Gelfond, Korybut, MV 1909.04876

Projectively compact vertex was obtained by hand 1605.02662 but so far

has not been reached by a systematic homotopy method
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Differential Homotopy

Homotopy and shift parameters ta are treated as coordinates of some

manifold M with the total differential

d := dZ +dt , dZ := θA
∂

∂ZA
, dt := dta

∂

∂ta
,

Equations to be solved at every perturbation order still have the form

df(Z, t, θ, dt) = g(Z, t, θ, dt) , dg(Z, t, θ, dt) = 0 .
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Fundamental Ansatz

Lower-order computation yields expressions of the remarkable form

fµ =
∫
p2i r

2
i u

2v2τσβρ
µ(τ, σ, β, ρ, u, v, p, r)dΩ2E(Ω)G(g(r)) ,

where µ(τ, σ, β, ρ, . . .) is demanded to have compact support in τ, σ, β, ρ

dΩ2 := dΩαdΩα

Ωα(τ, t) := τzα − (1− τ)(pα(σ)− βvα + ρ(yα + p+α + uα))

p+α :=
l∑

i=1

piα , pα(σ) =
k∑

i=1

piασi

E(Ω) := exp i
(
Ωβ(y

β + p
β
+ + uβ) + uαv

α −
l∑

i=1

piαr
α
i −

∑
k≥j>i≥1

piβp
β
j

)
,

Gl(g) := g1(r1) . . . gl(rl)k ,

gi(y) are some functions of yα (e.g., C(y) or ω(y)).
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Homology map

Fundamental Ansatz has the remarkable property that

d
(
dΩ2 exp i

(
Ωβ(y

β + p
β
+ + uβ) + uαv

α −
l∑

i=1

piαr
α
i −

∑
k≥j>i≥1

piβp
β
j

))
= 0

(dΩ)3 = 0 since the one-forms dΩα are anticommuting and α = 1,2.

As a result d effectively acts only on µ

dfµ = fdµ ,

mapping homological problem in terms of spinors ZA to that on µ(ti).

Great advantage of this formalism is that there is no more need to use

the Schouten identity: the only formula where it manifests itself is the

homology map.

The problem takes purely geometric form on M

dµf
∼= µg

That dµg ∼= 0 implies µg
∼= dhg allowing to set

µf = hg
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Projectively-compact spin-local vertex

Final result

DC = Jη
pc + J η̄

pc

Jη
pc =

iη

4

∫
u2v2τρβσ1σ2

d2ud2vD(τ)D(σ1 + ρ)D(σ2 − (1− β − ρ))ϑ(−σ1)ϑ(σ2)dΩ2µ̃(β)E(Ω)[
P (β − 1, σω, σ1, σ2,1− β)ω(rω, ȳ;K)∗̄C(r1, ȳ;K)∗̄C(r2, ȳ;K)

+P (β − 1, σ1, σω, σ2,1− β)C(r1, ȳ;K)∗̄ω(rω, ȳ;K)∗̄C(r2, ȳ;K)

+P (β − 1, σ1, σ2, σω,1− β)C(r1, ȳ;K)∗̄C(r2, ȳ;K)∗̄ω(rω, ȳ;K)
]∣∣∣∣
rω,Ci

=0
k ,

Pk(σl, σl+1, . . . , σl+k) := ϑ(σl+k − σl+k−1) . . . ϑ(σl+1 − σl) , D(a) := daδ(a)

J
η
pc is both spin-local and projectively-compact

containing an overall factor of yαpωα. To reach projective compactness

at higher orders the prexponent factors have to be of the form

∏
i

D(σCi
+ ρ+ . . .)
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Conclusion

HS gauge theories contain gravity along with infinite towers of other

fields with various spins including ordinary matter fields: singlet scalar!

Infinite-dimensional HS symmetry

HS theories exist in various dimensions.

Unbroken HS symmetries demand AdS background

HS vertices contain higher derivatives.

Customary concepts of Riemann geometry are not applicable: study of

exact solutions is very instructive:

BH-like solutions Didenko, MV 2009, Iazeola, Sundell 2010

One of the central problems is the mechanism of

spontaneous breakdown of HS symmetries

HS holography is closely related with the locality properties of HS theory
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Concepts of projectively-compact vertices are introduced for which

spin-locality in the spinor space and space-time are equivalent.

The new differential homotopy approach is designed to figure out the

actual level of non-locality of the HS theory.

It is both far more general and far simpler than other approaches, avoid-

ing the necessity to use Schouten identity. In particular it allowed us to

evaluate the projectively-compact spin-local vertex in HS theory.

The differential homotopy approach is geometric: cohomology problem

on polyhedra in the space M of homotopy parameters.

To do: higher orders in HS theories of various kinds
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