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General theory of relativity 1

� GTR or ETG assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (gµν) of signa-
ture (1, 3).

� There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

◦ sphere S3 (of constant positive sectional curvature),
◦ flat space R3 (of curvature equal 0),
◦ hyperbolic space H3 (of constant negative sectional cutvature).

� Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



General theory of relativity 1

� GTR or ETG assumes that Universe is four dimensional homogeneous
and isotropic pseudo-Riemannian manifold M with metric (gµν) of signa-
ture (1, 3).

� There exist three types of homogeneous and isotropic simple connected
spaces of dimension 3:

◦ sphere S3 (of constant positive sectional curvature),
◦ flat space R3 (of curvature equal 0),
◦ hyperbolic space H3 (of constant negative sectional cutvature).

� Generic metric in these spaces is of the form (Friedmann-Robertson-
Walker metric (FRW)):

ds2 = −dt2 + a2(t)
(

dr 2

1− kr 2 + r 2dθ2 + r 2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}, (1)

where a(t) is a cosmic scale factor which describes the evolution (in
time) of Universe and parameter k which describes the curvature of the
space. FRW metric
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General theory of relativity 2

� GTR is based on Einstein-Hilbert action:

S =

∫ ( R − 2Λ

16πG c4 + Lm

)√
−g d4x

where R is scalar curvature, g = det(gµν) is determinant of metric ten-
sor, Λ is cosmological constant and Lm is Lagrangian of matter.

� The variation of the action S we obtain equations of motion:

Rµν −
1
2

R gµν + Λ gµν = 8πG Tµν , c = 1 (2)

where Tµν is the energy momentum tensor, gµν is metric tensor, Rµν is
Ricci tensor and R is scalar curvature.

� The energy momentum tensor for ideal fluid (matter in cosmology) is

T = diag(−ρ g00, g11p, g22p, g33p), (3)

where ρ is energy density and p is pressure.
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General theory of relativity 3

� Using the conservation law we get

0 = ∇µTµ0 = −ρ̇− 3
ȧ
a

(ρ+ p). (4)

� Since in the cosmology equation of state is p = wρ, where w is a
constant, we have that equation (4) has solution ρ = Ca−3(1+w).

� The basic types of matter in the Universe are:

cosmic dust - w = 0, and ρm = C a−3.

radiation - - w = 1/3, and ρr = C a−4.

In this moment the ratio
ρm

ρr
≈ 106 .

� From the expression for FRW metric it follows

R(t) =
6
(
a(t)ä(t) + ȧ(t)2 + k

)
a(t)2
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General theory of relativity 4

� Now, Einstein equation implies Friedmann equations

ä
a

= −4πG
3

(ρ+ 3p) +
Λ

3
,

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
.

� Hubble parameter is a measure used to describe the expansion of the
Universe

H =
ȧ
a
. (5)

� Despite to the great success of GRT in describing:
the precession of Merkur perihelion,
the bending of light in gravitational fields,
the gravitational redshift of light
the gravitational lensing,
and other ...

GTR has certain deficiencies.
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Motivation 5

Great cosmological observational discoveries of 20th century,
which could not be explained by GTR without additional matter

� High orbital speeds of galaxies in clusters (Fritz Zwicky, 1933).

� High orbital speeds of stars in spiral galaxies (Vera Rubin, at the end of
1960es).

� Accelerated expansion of the Universe (1998).

Big Bang
� Another cosmological problem is related to the Big Bang singularity.

General relativity yields cosmological solutions with zero size of the
Universe at its beginning, and what means an infinite matter density.

� When physical theory contains singularity, it is not valid in the vicinity of
singularity and must be appropriately modified.
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Motivation 5

Great cosmological observational discoveries of 20th century,
which could not be explained by GTR without additional matter

� High orbital speeds of galaxies in clusters (Fritz Zwicky, 1933).

� High orbital speeds of stars in spiral galaxies (Vera Rubin, at the end of
1960es).

� Accelerated expansion of the Universe (1998).

Big Bang
� Another cosmological problem is related to the Big Bang singularity.

General relativity yields cosmological solutions with zero size of the
Universe at its beginning, and what means an infinite matter density.

� When physical theory contains singularity, it is not valid in the vicinity of
singularity and must be appropriately modified.
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Approaches to the problem 6

There are two natural approaches:
� Dark matter and energy

� Modification of Einstein theory of gravity, i.e. modification of its
Lagrangian L

L =
R − 2Λ

16πG
+ Lm, c = 1.

Dark matter and energy
� Dark matter is responsible for orbital speeds in galaxies, and dark

energy is responsible for accelerated expansion of the Universe.

� If Einstein theory of gravity can be applied to the whole Universe then
the Universe contains about 5% of ordinary matter, 27% of dark matter

and 68% of dark energy.

� It means that 95% of total matter, or energy, represents dark side of the
Universe, which nature is unknown.
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Modification of Einstein theory of gravity 7

Motivation for modification of Einstein theory of gravity
� The validity of General Relativity on cosmological scale is not confirmed.

� Dark matter and dark energy are not yet detected in the laboratory
experiments.

Different approaches to modification of Einstein theory of gravity
� Einstein General Theory of Relativity

From action

S =

∫ (R − 2Λ

16πG
+ Lm

)√
−g d4x

using variational methods we get field equations

Rµν −
1
2

R gµν + Λgµν = 8πGTµν , c = 1.

where Tµν is stress-energy tensor, gµν is the metric tensor, Rµν is Ricci
tensor and R
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Modification of Einstein theory of gravity 8

� First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

S =

∫ (R − 2Λ

16πG
+ Lm

)√
−gd4x

modification

R −→ f (R,Λ,Rµν ,Rα
µβν ,�, . . . ), � = ∇µ∇µ =

1√
−g

∂µ
√
−g gµν ∂ν

Gauss-Bonnet invariant

G = R2 − 4 RµνRµν + Rαβµν Rαβµν
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Modification of Einstein theory of gravity 9

� f (R) modified gravity

S =

∫ ( f (R)

16πG
+ Lm

)√
−g d4x

� Gauss-Bonnet modified gravity

S =

∫ (R + αG
16πG

+ Lm

)√
−g d4x

� nonlocal modified gravity

S =

∫ (F (R,Rµν ,Rα
µβν ,�, ...)

16πG
+ Lm

)√
−g d4x
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Nonlocal modified gravity 10

� Under nonlocal modification of gravity we understand replacement of the
scalar curvature R in the Einstein-Hilbert action by a suitable function
F (R,�), where � = ∇µ∇µ is d’Alembert operator and ∇µ denotes the
covariant derivative

� Let M be a four-dimensional pseudo-Riemannian manifold with metric
(gµν) of signature (1,3). We consider a class of nonlocal gravity models
without matter, given by the following action

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

where F(�) =
∞∑

n=0

fn �n is an analytic function of �, and Λ is cosmolo-

gical constant.

� In the case of FRW metric the scalar curvature and d’Alambert operator
are given by

R =
6
(
a ä + ȧ2 + k

)
a2 , �R = −R̈ − 3 H Ṙ, H =

ȧ
a
.
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Equations of motion 11

� For calculating variation of the action, δS =
1

16πG
δS0 + δS1, we need

the following

Lemma 1. For any two scalar functions G and H hold∫
M
Hδ(

√
−g) d4x = −1

2

∫
M

gµνHδgµν
√
−g d4x ,∫

M
HδR

√
−g d4x =

∫
M

(RµνH− KµνH) δgµν
√
−g d4x ,∫

M
Hδ(F(�)G)

√
−g d4x =

∫
M

(Rµν − Kµν)
(
G′F(�)H

)
δgµν

√
−g d4x

+
∞∑

n=1

fn
2

n−1∑
l=0

∫
M

Sµν(�lH,�n−1−lG)δgµν
√
−g d4x .

where

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,
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Equations of motion 12

� The action S0 is Einstein-Hilbert action without matter its variation is

δS0 =

∫
M

Gµν

√
−gδgµν d4x + Λ

∫
M

gµν
√
−gδgµν d4x , (6)

where Gµν = Rµν − 1
2 Rgµν is Einstein tensor.

� Using previous theorem we find the variation of S1,

δS1 = −1
2

∫
M

gµνH(R)F(�)G(R)δgµν
√
−g d4x

+

∫
M

(
RµνW − KµνW +

1
2

Ωµν

)
δgµν

√
−g d4x . (7)

� Since, S =
1

16πG
S0 + S1, finally we get equations of motion (EOM).
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Equations of motion 13

Theorem 2 (EOM) The equations of motion for system given by S are:

G̃µν = 0, (8)

where

G̃µν =
Gµν + Λgµν

16πG
− 1

2
gµνH(R)F(�)G(R) + RµνW − KµνW +

1
2

Ωµν ,

Ωµν =
∞∑

n=1

fn
n−1∑
l=0

Sµν
(
�lH(R),�n−1−lG(R)

)
,

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

W = H′(R)F(�)G(R) + G′(R)F(�)H(R).

� Let us note that ∇µG̃µν = 0.

� EOM are invariant on the replacement of functions G and H in S.
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Equations of motion 13

Theorem 2 (EOM) The equations of motion for system given by S are:

G̃µν = 0, (8)

where

G̃µν =
Gµν + Λgµν

16πG
− 1

2
gµνH(R)F(�)G(R) + RµνW − KµνW +

1
2

Ωµν ,

Ωµν =
∞∑

n=1

fn
n−1∑
l=0

Sµν
(
�lH(R),�n−1−lG(R)

)
,

Kµν = ∇µ∇ν − gµν�,

Sµν(A,B) = gµν∇αA∇αB − 2∇µA∇νB + gµνA�B,

W = H′(R)F(�)G(R) + G′(R)F(�)H(R).

� Let us note that ∇µG̃µν = 0.

� EOM are invariant on the replacement of functions G and H in S.
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Equations of motion (EOM) 14

� If we take
Q(R) = P(R) and

P(R) be an eigenfunction of the corresponding d’Alembert-Beltrami �
operator: �P(R) = q P(R), and consequently F(�)P(R) = F(q)P(R) ,

we obtain

Gµν + Λgµν −
gµν
2
F(q)P2 + 2F(q)(Rµν − Kµν) PP′ (9)

+
1
2
F ′(q)Sµν(P,P) = 0.

� If we suppose that the manifold M is endowed with FRW metric, then we
have just two linearly independent equations: trace and 00-equation.
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� Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

for the following cases:

1. H(R) = R, G(R) = R,

2. H(R) = R−1, G(R) = R,

3. H(R) = Rp, G(R) = Rq ,
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Models of Nonlocal gravity 15

� Earlier, we considered models of nonlocal gravity without matter which
are described by the action,

S =

∫
M

(R − 2Λ

16πG
+H(R)F(�)G(R)

)√
−g d4x ,

for the following cases:

1. H(R) = R, G(R) = R,

2. H(R) = R−1, G(R) = R,

3. H(R) = Rp, G(R) = Rq ,

4. H(R) = (R + R0)m, G(R) = (R + R0)m,

5. R = const.
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Earlier models 16

1. model H(R) = R, G(R) = R.
Using ansatz �R = r R + s we found three types of non-singular
bounced solutions for the scalar factor a(t) = a0(σeλt + τe−λt ).

Solutions exist for all three values of parameter k = 0,±1, under certain
conditions on function F(�), and parameters σ, τ, λ,Λ, k .

Obtained results generalize known cases in literature: in the first case

a(t) = a0 cosh (
√

Λ
3 t), in the second and third case for k = 0 we obtain

de Sitter solution.

All obtained solutions satisfy ä(t) = λ2a(t) > 0, i.e. are consistent with
observational data.

2. model H(R) = R−1, G(R) = R.

Non-locality,R−1F(�)R, is invariant to transformation R −→ cR, c ∈ R∗.

there are cosmological solutions of form a(t) = a0|t − t0|α, in the case
k = 0, for α 6= 0, 1/2 and 3α ∈ 1 + 2N, in cases k 6= 0, for α = 1.

Case a(t) = |t − t0| for k = −1 corresponds to Milne’s model.
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3. model H(R) = Rp,G(R) = Rq , p ≥ q.

We considered case with scale factor in the form a(t) = a0 exp(− γ
12 t2)

For p = q = 1 there are infinite number of solutions, and constants γ and
Λ satisfy γ = −12Λ.

In other cases we proved existence of unique solution, for arbitrary
γ ∈ R. We explicitly found solutions for 1 ≤ q ≤ p ≤ 4.

4. model H(R) = (R + R0)m, G(R) = (R + R0)m.

We considered scale factor and ansatz of the form

a(t) = Atn exp(− γ

12
t2) and �(R + R0)m = r(R + R0)m.

Using this ansatz we obtined the followinf five solutions:

r = m γ, n = 0, R0 = γ, m = 1
2

r = m γ, n = 0, R0 = γ
3 , m = 1

r = m γ, n = 1
2 , R0 = 4

3 γ, m = 1

r = m γ, n = 1
2 , R0 = 3 γ, m = − 1

4

r = m γ, n = 2m+1
3 , R0 = 7

3 γ, m = 1
2 .
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Earlier models 17

3. model H(R) = Rp,G(R) = Rq , p ≥ q.

We considered case with scale factor in the form a(t) = a0 exp(− γ
12 t2)

For p = q = 1 there are infinite number of solutions, and constants γ and
Λ satisfy γ = −12Λ.

In other cases we proved existence of unique solution, for arbitrary
γ ∈ R. We explicitly found solutions for 1 ≤ q ≤ p ≤ 4.

4. model H(R) = (R + R0)m, G(R) = (R + R0)m.

We considered scale factor and ansatz of the form

a(t) = Atn exp(− γ

12
t2) and �(R + R0)m = r(R + R0)m.

Using this ansatz we obtined the followinf five solutions:

r = m γ, n = 0, R0 = γ, m = 1
2

r = m γ, n = 0, R0 = γ
3 , m = 1

r = m γ, n = 1
2 , R0 = 4

3 γ, m = 1

r = m γ, n = 1
2 , R0 = 3 γ, m = − 1

4

r = m γ, n = 2m+1
3 , R0 = 7

3 γ, m = 1
2 .
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4. model H(R) = (R + R0)m, G(R) = (R + R0)m.

In the case n = 0, m = 1
2 we found unique solution for arbitrary F( γ2 )

and F ′( γ2 ).

In the case n = 2
3 , m = 1

2 we found unique solution for F( γ2 ) and

F ′( γ2 ) which satisfy Λ = − 7
6γ.

In the case n = 1
2 , m = − 1

4 there is no solutions of EOM.

5. model R = const.

If R = R0 > 0, then there exist non-singlar solutions for all three
values of parameter k = 0,±1, which are bounced in the cases k = 0, 1.

If R = R0 = 0 then exists Milne’s solution a(t) = |t + σ
2 |.

If R = R0 < 0, then there exists non-trivial singular cyclic

solution a(t) =
√
−12
R0
| cos 1

2 (
√
−R0

3 t − ϕ)| za k = −1.

Case R0 = 0 is considered as an limit case when R0 → 0, and
in both cases R0 < 0 and R0 > 0, we obtain Minkowski space.
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Model H(R) = G(R) =
√

R − 2Λ 19

� Recently, we have considered the nonlocal gravity model with cosmo-
logical constant Λ and without matter, given by

(MS) S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ

)√
−g d4x ,

where F(�) = 1 +
∑+∞

n=1 fn �n +
∑+∞

n=1 f−n �−n

� It is a very special case since the EOM (9), for P(R) =
√

R − 2 Λ, is simpli-
fied to

(Gµν + Λgµν) (1 + F(q)) +
1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0, (10)

where we take q = ζΛ.

� It is evident that EOM (10) are satisfied if F(q) = −1 and F ′(q) = 0.

� One such nonlocal operator F(�) is

F(�) = 1 +
+∞∑
n=1

f̃n
[(�

q

)n
+
( q
�

)n]
= 1− 1

2e

(�
q

e
�
q +

q
�

e
q
�

)
, q 6= 0.
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where we take q = ζΛ.

� It is evident that EOM (10) are satisfied if F(q) = −1 and F ′(q) = 0.

� One such nonlocal operator F(�) is

F(�) = 1 +
+∞∑
n=1

f̃n
[(�

q

)n
+
( q
�

)n]
= 1− 1

2e

(�
q
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�
q +

q
�

e
q
�
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Model H(R) = G(R) =
√

R − 2Λ 20

1. Cosmological solution in the flat Universe (k = 0)

1.1. Solutions of the form a(t) = A tn eγt2

� There are two solutions:

a1(t) = A t
2
3 e

Λ
14 t2

, F(−
3
7

Λ) = −1, F ′(−
3
7

Λ) = 0,

a2(t) = A e
Λ
6 t2
, F(−Λ) = −1, F ′(−Λ) = 0.

1.2. New solutions of the form a(t) = (α eλt + β e−λt )γ

� In this case for αβ 6= 0, R 6= 2Λ and q 6= 0 we have solutions if

γ =
2
3
, q =

3
8

Λ, λ = ±
√

3
8

Λ .

� When αβ 6= 0, we have the following two special solutions:

a3(t) = A cosh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a4(t) = A sinh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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1. Cosmological solution in the flat Universe (k = 0)

1.3. New solutions of the form a(t) = (α sinλt + β cosλt)γ

� For α 6= 0 and β 6= 0 there are only possibility for γ, γ = 2
3 . Taking β = ±α,

and A = α
2
3 , we have the following two solutions:

a5(t) = A
(

1 + sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a6(t) = A
(

1− sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.

� For α = 0 or β = 0, we have also two cosmological solutions with γ = 2
3 :

a7(t) = A sin
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a8(t) = A cos
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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� For α 6= 0 and β 6= 0 there are only possibility for γ, γ = 2
3 . Taking β = ±α,

and A = α
2
3 , we have the following two solutions:

a5(t) = A
(

1 + sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a6(t) = A
(

1− sin
(
2

√
−

3
8

Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.

� For α = 0 or β = 0, we have also two cosmological solutions with γ = 2
3 :

a7(t) = A sin
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a8(t) = A cos
2
3
(√
−

3
8

Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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2. Cosmological solution in the open and closed Universe (k = ±1)

2.1. Solutions of the form a(t) = A e±
√

Λ
6 t
, (k = ±1)

� For α 6= 0, β = 0 or α = 0, β 6= 0 we have the following solution:

a9(t) = A e±
√

Λ
6 t
, k = ±1, F(

1
3

Λ) = −1, F ′(
1
3

Λ) = 0, Λ > 0.

2.2. New solutions of the form a(t) = (α eλt + β e−λt )γ , (k = ±1)

� For α 6= 0, β 6= 0, R 6= 2Λ, q 6= 0 there are two following cosmological
solutions:

a10(t) = A cosh
1
2
(√2

3
Λ t
)
, k = ±1, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0,

a11(t) = A sinh
1
2
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3
Λ t
)
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3

Λ
)

= −1, F ′
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Λ
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� 1. Cosmological solution for a1(t) = A t
2
3 e

Λ
14 t2

, k = 0

The corresponding Hubble parameter , acceleration and the scalar
2 curvature are:

H1(t) =
ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

ä1(t) =
(
− 2

9
1
t2 +

1
3

Λ +
1

49
Λ2t2

)
a1(t),

R1(t) =
4
3

1
t2 +

22
7

Λ +
12
49

Λ2t2,

Friedman equations gives

ρ̄(t) =
2t−2 + 9

98 Λ2t2 − 9
14 Λ

12πG
, p̄(t) = − Λ

56πG
(3

7
Λt2 − 1

)
, (11)

where ρ̄ and p̄ are analogs of the energy density and pressure of the
dark side of the universe, respectively. The corresponding equation of
state is p̄(t) = w̄(t) ρ̄(t).
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The expressions (11) implies that w̄(t)→ −1 when t →∞, what cor-
responds to an analog of Λ dark energy dominance in the standard
cosmological model.

It means that this nonlocal gravity model with cosmological solution

a(t) = A t
2
3 e

Λ
14 t2

describes some effects usually attributed to the dark
matter and dark energy.

This solution is invariant under transformation t → −t and singular at
cosmic time t = 0.

� Let us recall, the second Friedman equation

H2 =
ȧ2

a2 =
8πG

3
ρ− k

a2 +
Λ

3
, (12)

where ρ is energy density in the standard model of cosmology.
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ȧ2

a2 =
8πG

3
ρ− k

a2 +
Λ

3
, (12)

where ρ is energy density in the standard model of cosmology.
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Then we can rewrite the previous equation as,

H2 =
ȧ2

a2 =
8πG

3
ρr +

8πG
3

ρm −
k
a2 +

Λ

3

=
8 CrπG

a4 +
8 CmπG

a3 − k
a2 +

Λ

3

It follows

H2

H2
0

=
Ωr

a4 +
Ωm

a3 +
Ωk

a2 + ΩΛ

� Observational data obtained by Planck-2018 for the ΛCDM model:

t0 = (13.801± 0.024)× 109yr – age of the universe,

H(t0) = (67.40± 0.50) km/s/Mpc – Hubble parameter,

Ωm = 0.315± 0.007– matter density parameter,

ΩΛ = 0.685− Λ density parameter,

w0 = −1.03± 0.03– ratio of pressure to energy density.
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=
Ωr

a4 +
Ωm

a3 +
Ωk

a2 + ΩΛ

� Observational data obtained by Planck-2018 for the ΛCDM model:

t0 = (13.801± 0.024)× 109yr – age of the universe,

H(t0) = (67.40± 0.50) km/s/Mpc – Hubble parameter,

Ωm = 0.315± 0.007– matter density parameter,

ΩΛ = 0.685− Λ density parameter,

w0 = −1.03± 0.03– ratio of pressure to energy density.
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From,
H1(t) =

ȧ1

a1
=

2
3

1
t

+
1
7

Λt ,

taking H1(t0) = H(t0) we calculate Λ1 = 1.05× 10−35s−2 that differs
from Λ = 3H2(t0) ΩΛ = 0.98× 10−35s−2 (by ΛCDM model).

We also computed

ä1(t0)/a1(t0) = 2.7× 10−36s−2

R(t0) = 4.5× 10−35s−2 and consequently

R(t0)− 2Λ = 2.4× 10−35s−2.

Replacing solution a1(t) with k = 0, Friedman equations give

ρ̄1(t) =
3

8πG

(
H2

1 (t)− Λ1

3

)
=

3
8πG

(4
9

t−2 − 1
7

Λ1 +
1

49
Λ2

1t2
)
,

p̄1(t) =
Λ1

56πG
(
1− 3

7
Λ1t2).
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ä1(t0)/a1(t0) = 2.7× 10−36s−2

R(t0) = 4.5× 10−35s−2 and consequently

R(t0)− 2Λ = 2.4× 10−35s−2.

Replacing solution a1(t) with k = 0, Friedman equations give

ρ̄1(t) =
3

8πG

(
H2

1 (t)− Λ1

3

)
=

3
8πG

(4
9

t−2 − 1
7

Λ1 +
1

49
Λ2

1t2
)
,

p̄1(t) =
Λ1

56πG
(
1− 3

7
Λ1t2).
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For t = t0, from previous formula, and from ΛCDM model we have

ρ̄1(t0) = 2.26× 10−30 g
cm3 ,

ρ(t0) =
3

8πG

(
H2

0 −
Λ

3

)
= 2.68× 10−30 g

cm3 .

Then, for vacuum energy density of background solution a1(t) and
ΛCDM model, we have

ρ(t0)− ρ̄1(t0) =
Λ1 − Λ

8πG
= ρΛ1 − ρΛ = 0.42× 10−30 g

cm3 ,

Critical energy density: ρc =
3 H2

0

8πG
= 8.51× 10−30 g

cm3

and consequently,

ΩΛ1 =
ρΛ1

ρc
= 0.734, ΩΛ =

ρΛ

ρc
= 0.685, ∆ΩΛ = ΩΛ1 − ΩΛ = 0.049, (13)

Ωm1 =
ρ̄1(t0)

ρc
= 0.266, Ωm =

ρ(t0)

ρc
= 0.315, ∆Ωm = Ωm − Ωm1 = 0.049. (14)
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Predictions of the model and observational data 28

According to (13) and (14), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

� Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

� According to (11), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

� Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.

Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Predictions of the model and observational data 28

According to (13) and (14), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

� Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

� According to (11), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

� Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Predictions of the model and observational data 28

According to (13) and (14), we obtain that Ωm1 = 26, 6% corresponds to
dark matter and ∆Ωm = ∆ΩΛ = 4.9% is related to visible matter, what is
in a very good agreement with the standard model of cosmology.

� Efective presure. At the beginning, p̄1(0) = Λ1
56πG > 0, then decreases

and equals zero at t =
√

7
3Λ1

= 4.71× 1017 s = 14, 917× 109yr .

� According to (11), we have parameter w̄1(t) = p̄1(t)
ρ̄1(t) which has future behavior

in agreement with standard model of cosmology, i.e. w̄1(t →∞)→ −1.

� Note that the Hubble parameter has minimum at tmin = 21.1× 109yr and it is
H1(tmin) = 61.72km/s/Mpc. It also, follows that the Universe
experiences decelerated expansion during matter dominance, that
turns to acceleration at time tacc = 7.84× 109yr when, ä = 0.
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Schwarzschild-de Sitter (SdS) metric 29

� We want to investigate our model outside the spherically symmetric
massive body - it is natural to consider a generalization of the Schwarz-
schild-de Sitter (SdS) metric starting from the standard Schwarzschild
expression,

ds2 = −A(r)dt2 + B(r)dr 2 + r 2dθ2 + r 2 sin2 θ dϕ2. SdS metric-GC (15)

� The corresponding scalar curvature R of above metric (15)

R =
2
r2
−

2
r2B(r)

−
2A′(r)

rA(r)B(r)
+

A′(r)2

2A(r)2B(r)
+

2B′(r)

rB2(r)
+

A′(r)B′(r)

2A(r)B(r)2
−

A′′(r)

A(r)B(r)
(16)

We will consider the case B(r) = A(r)−1, and formula (16) becomes

R =
2− 2A(r)− 4rA′(r)− r 2A′′(r)

r 2 =
1
r 2

∂2

∂r 2

[
r 2(1− A(r)

)]
. (17)
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r2
−

2
r2B(r)

−
2A′(r)

rA(r)B(r)
+

A′(r)2

2A(r)2B(r)
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2B′(r)

rB2(r)
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� Firstly, we have to solve an eigenvalue problem,

�
√

R − 2Λ = q
√

R − 2Λ,

where d’Alembertian � acts in the following way:

� u(r) = A(r) u′′(r) + (A′(r) +
2
r

A(r)) u′(r) =
1
r 2

∂

∂r
[
r 2A(r)

∂u
∂r
]
, (18)

where u(r) is any differentiable scalar function.

� We consider function A(r) in the form

A(r) = 1− µ

r
− ν

r 2 −
Λ

3
r 2 − f (r), (19)

where µ and ν are some parameters.

� Then one can show that for A(r) given by (19) holds

R(r) =
1
r 2

∂2

∂r 2

[
r 2(1− A(r)

)]
= 4Λ +

1
r 2

∂2

∂r 2

[
r 2f (r)

]
. (20)
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� If we denote u(r) =
√

R − 2Λ and using expression (18) the
eigenvalue problem becomes

�
√

R − 2Λ =
1
r 2

∂

∂r
[
r 2A(r)

∂

∂r

√
R − 2Λ

]
= q

√
R − 2Λ. (21)

Since equation (21) is very complicated and it is very hard to find exact
solution, we search for an approximative solution, and we take A(r) ≈ 1
in (21), what is applicable when∣∣µ

r
∣∣� 1,

∣∣ ν
r 2

∣∣� 1, |Λr 2| � 1, |f (r)| � 1. (22)

� Under conditions (22), equation (21) becomes

4
√

R − 2Λ =
1
r 2

∂

∂r
[
r 2 ∂

∂r

√
R − 2Λ

]
= q

√
R − 2Λ, (23)

where 4 is the Laplace operator (Laplacian) in spherical coordinates.

� Thee general solution of equation

4 u(r) =
∂2u(r)

∂r 2 +
2
r
∂u(r)

∂r
= q u(r) is (24)
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�

u(r) =
C1

r
e
√

q r +
C2

r
e−
√

q r . (25)

Since the metric should tend to the Minkowski one at large distances, in
the sequel we will use only solution

u(r) =
C2

r
e−
√

q r . (26)

� Then we can rewrite equation (20) in the form

R(r)− 2Λ = 2Λ +
1
r 2

∂2

∂r 2

[
r 2f (r)

]
= u2(r). (27)

or in more details the equation (27) is equivalent to

r 2f
′′

(r) + 4rf ′(r) + 2f (r) = −2Λr 2 + C2
2 e−2

√
q r . (28)

� General solution of equation (28) is

f (r) = −Λ

6
r 2 +

C2
2

4q
1
r 2 e−2

√
q r +

C3

r
+

C4

r 2 . (29)
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� Replacing f (r) in (19) by expression (29), and choosing C3 = C4 = 0
one obtains

A(r) = 1− µ

r
− ν

r 2 −
Λr 2

6
− C2

2

4qr 2 e−2
√

q r . (30)

� Then the corresponding scalar curvature becomes

R(r) = 2Λ +
C2

2

r 2 e−2
√

q r . (31)
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Schwarzschild-de Sitter (SdS) metric 33

� Replacing f (r) in (19) by expression (29), and choosing C3 = C4 = 0
one obtains

A(r) = 1− µ

r
− ν

r 2 −
Λr 2

6
− C2

2

4qr 2 e−2
√

q r . (30)

� Then the corresponding scalar curvature becomes

R(r) = 2Λ +
C2

2

r 2 e−2
√

q r . (31)
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Discussion.

It is well known that A(r) of the standard Schwarzschild-de Sitter metric,
i.e. in the case of local de Sitter gravity, is

A`(r) = 1− 2GM
c2r

− Λr 2

3c2 , r ≥ r0, (32)

where r0 is the radius of spherically symmetric massive body (M–mass)

The nonlocal version of A(r) can be rewritten as

An`(r) = 1− 2GM
c2r

− Λr 2

6c2 +
δ2

qr 2

(
1− e−2

√
q r), q =

ηΛ

c2 , (33)

where we add terms ν
r2 and C2

2
4qr2 e−2

√
q r taking δ2 =

C2
2

4 , ν = − δ
2

q .

Here δ and η are dimensionless parameters, and their values should be
determined by experiments (astronomical observations).

Testing formula (33) in the Solar and other astronomical systems is one
of our main next tasks.
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FRW metric – Christoffel symbols 1a

Non-trivial Christoffel symbols of Friedman – Robertson – Walker metric

Γ1
01 =

ȧ
a

Γ2
02 =

ȧ
a

Γ3
03 =

ȧ
a

Γ0
11 =

a ȧ
1− k r 2 Γ1

11 =
k r

1− k r 2 Γ2
12 =

1
r

Γ3
13 =

1
r

Γ0
22 = r 2 a ȧ Γ1

22 = r (k r 2 − 1) Γ3
23 = cot θ

Γ0
33 = r 2 a ȧ sin2 θ Γ1

33 = r (k r 2 − 1) sin2 θ Γ2
33 = − sin θ cos θ
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33 = r 2 a ȧ sin2 θ Γ1

33 = r (k r 2 − 1) sin2 θ Γ2
33 = − sin θ cos θ
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FRW metric – Curvature and Ricci 1a

Non-trivial components of curvature tensor

R0110 =
a ä

1− k r 2 R1221 = − r 2 a2 (ȧ2 + k)

1− k r 2

R0220 = r 2 a ä R1331 = − r 2 a2 sin2 θ (ȧ2 + k)

1− k r 2

R0330 = r 2 a ä sin2 θ R2332 = −r 4 a2 sin2 θ (ȧ2 + k)

Ricci tensor

Rµν =


− 3ä

a 0 0 0

0 u g11 0 0

0 0 u g22 0

0 0 0 u g33

 , u =
a ä + 2 (ȧ2 + k)

a2
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FRW metric – Einstein tensor 1a

Scalar curvature

R =
6 (a ä + ȧ2 + k)

a2

Einstein tensor

Gµν =


3 (ȧ2+k)

a2 0 0 0

0 −v g11 0 0

0 0 −v g22 0

0 0 0 −v g33

 , v =
2 a ä + ȧ2 + k

a2

FRW metric EOM EOM-2
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Schwarzshield-de Sitter type metric – General case 2a

Non-trivial Christoffel symbols of Schwarzshield-de Sitter type metric

Γ0
01 =

1
2

A′

A
, Γ1

00 =
1
2

A′

B
, Γ1

11 =
1
2

B′

B
,

Γ1
22 = − r

B
, Γ1

33 = − r sin2 θ

B
, Γ2

12 =
1
r
,

Γ2
33 = − sin θ cos θ, Γ3

13 =
1
r
, Γ3

23 = cot θ.

Non-trivial components of curvature tensor

R0101 =
A
4

(
−
(

A′

A

)2

− A′

A
B′

B
+ 2

A′′

A

)
, R0202 =

r
2

A′

B
,

R0303 =
r
2

A′

B
sin2 θ, R1212 =

r
2

B′

B
,

R1313 =
r
2

B′

B
sin2 θ, R2323 = r 2 B − 1

B
sin2 θ.
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Schwarzshield-de Sitter type metric – General case 2a

The Ricci tensor is diagonal and its components are:

R00 =
A′′

2B
− A′B′

4B2 −
A′2

4AB
+

A′

rB
, R11 = −A′′

2A
+

A′B′

4A(r)B(r)
+

A′2

4A2 +
B′

r
,

R22 = − rA′

2AB
+

rB′

2B2 −
1
B

+ 1, R33 =

(
− rA′

2AB
+

rB′

2B2 −
1
B

+ 1
)

sin2 θ.

The scalar curvature is

R = − A′′

AB
+

A′B′

2AB2 +
A′2

2A2B
− 2A′

rAB
+

2B′

rB2 −
2

r 2B
+

2
r 2 .

The Einstein tensor is diagonal and its components are

G00 =
AB′

rB2 −
A

r 2B
+

A
r 2 , G22 =

r 2A′′

2AB
− r 2A′B′

4AB2 −
r 2A′2

4A2B
+

rA′

2AB
− rB′

2B2 ,

G11 =
A′

rA
− B

r 2 +
1
r 2 , G33 =

(
r 2A′′

2AB
− r 2A′B′

4AB2 −
r 2A′2

4A2B
+

rA′

2AB
− rB′

2B2

)
sin2 θ.

SdS metric-GC
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Zoran Rakić On the Schwarzschild type metric in nonlocal de Sitter gravity



Schwarzshield-de Sitter type metric – General case 2a

The Ricci tensor is diagonal and its components are:

R00 =
A′′

2B
− A′B′

4B2 −
A′2

4AB
+

A′

rB
, R11 = −A′′

2A
+

A′B′

4A(r)B(r)
+

A′2

4A2 +
B′

r
,

R22 = − rA′

2AB
+

rB′

2B2 −
1
B

+ 1, R33 =

(
− rA′

2AB
+

rB′

2B2 −
1
B

+ 1
)

sin2 θ.

The scalar curvature is

R = − A′′

AB
+

A′B′

2AB2 +
A′2

2A2B
− 2A′

rAB
+

2B′

rB2 −
2

r 2B
+

2
r 2 .

The Einstein tensor is diagonal and its components are

G00 =
AB′

rB2 −
A

r 2B
+

A
r 2 , G22 =

r 2A′′

2AB
− r 2A′B′

4AB2 −
r 2A′2

4A2B
+

rA′

2AB
− rB′

2B2 ,

G11 =
A′

rA
− B

r 2 +
1
r 2 , G33 =

(
r 2A′′

2AB
− r 2A′B′

4AB2 −
r 2A′2

4A2B
+

rA′

2AB
− rB′

2B2

)
sin2 θ.

SdS metric-GC
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Schwarzshield-de Sitter type metric – Case: B = 1/A 2a

In particular, for B = 1/A we have

ds2 = −A(r)dt2 +
1

A(r)
dr 2 + r 2dθ2 + r 2 sin2 θdϕ2.

The Christoffel symbols are:

Γ0
01 =

1
2

A′

A
, Γ1

00 =
1
2

AA′, Γ1
11 = −1

2
A′

A
, Γ1

22 = −rA, Γ1
33 = −rA sin2 θ,

Γ2
12 =

1
r
, Γ2

33 = − sin θ cos θ, Γ3
13 =

1
r
, Γ3

23 = cot θ.

Non-trivial components of curvature tensor are:

R0101 =
1
2

A′′, R0202 =
r
2

AA′, R0303 =
r
2

AA′ sin2 θ,

R1212 = − r
2

A′

A
, R1313 = − r

2
A′

A
sin2 θ, R2323 = r 2(1− A) sin2 θ.
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Schwarzshield-de Sitter type metric – Case: B = 1/A 2a

The Ricci tensor is diagonal and its components are:

R00 =
1
2

AA′′ +
1
r

AA′, R11 = −1
2

A′′

A
− 1

r
A′

A
,

R22 = 1− A− rA′, R33 =
(
1− A− rA′

)
sin2 θ.

The scalar curvature is

R = −A′′ − 4
r

A′ − 2
r 2 A +

2
r 2 .

The Einstein tensor is presented as follows:

G00 = −A(r)A′(r)

r
− A(r)2

r 2 +
A(r)

r 2 , G11 =
A′(r)

rA(r)
− 1

r 2A(r)
+

1
r 2 ,

G22 =
1
2

r 2A′′(r) + rA′(r), G33 =

(
1
2

r 2A′′(r) + rA′(r)

)
sin2 θ.
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