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No-hair conjecture

Black holes formed by gravitational collapse are characterized by
their mass, angular momentum, and electric charge = the only
parameters that can survive the collapse = all black holes are
described by the Kerr-Newman metrics.

/Ruffini and Wheeler, 1969/
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No-hair theorems and the first hairy black hole

@ No-hair theorems /Bekenstein, 1972,.../ confirm the
conjecture for a number of special cases. No new black holes
holes for gravitating massive scalar, spinor, of vector fields,
also for a scalar field with a positive potential, etc.

o First explicit counter-example /M.S.V.+ Gal'tsov, 1989/:
static black holes with Yang-Mills hair. Triggered an
avalanche of discoveries of other hairy black holes.




Black holes with Yang-Millas hair

Non-Abelian Einstein-Yang-Mills black holes
M. S. VolkovandD.V. Gal'tsov

M. V. Lomonosov Moscow State University

(Submitted 7 September 1989)
Pis’ma Zh. Eksp. Teor. Fiz. 50, No. 7, 312-315 (10 October 1989)

Solutions of the self-consistent system of Einstein-Yang-Mills equations with the
SU(2) group are derived to describe black holes with a non-Abelian structure of
gauge fields in the external region.

In the case of the electrovacuum, the most general family of solutions describing
spherically symmetric black holes is the two-parameter Reissner—Nordstrom family,
which is characterized by a mass M and an electric charge Q. It was recently shown
for the Einstein-Yang—Mills systems of equations with the SU(2) group that a corre-
sponding assertion holds when the hold has a nonvanishing color-magnetic charge. In
this case the structure of the Yang-Mills hair is effectively Abelian.' In the present
letter we numerically construct a family of definitely non-Abelian solutions for Ein-
stein-Yang—Mills black holes in the case of zero magnetic charge. These solutions are
characterized by metrics which asymptotically approach the Schwarzschild metric far
from the horizon but are otherwise distinct from metrics of the Reissner—Nordstrom



Zoo of hairy black holes

o Before 2000: Einstein-Yang-Mills black holes and their
generalizations — higher gauge groups, additional fields
(Higgs, dilaton), non-spherical solutions, stationary
generalizations, Skyrme black holes, Gauss-Bonnet, ...
/M.S.V.4+Gal'tsov, Phys.Rep. 319 (1999) 1/

o After 2000: black holes with scalar hair — engineered potential,
spinning clouds of massive complex scalar /Herdeiro-Radu/,
Horndeski black holes, metric-affine theories, higher
dimensions, stringy corrections, hairy black holes with massive
gravitons /Gervalle+M.S.V., 2020/, etc, ...

/M.S.V., 1601.0823/

@ Which of these solutions are physical 7



Present status of hairy black holes

@ All known solutions have been obtained within simplified
theoretical models. Their physical relevance is not obvious.

@ To be physically relevant, the solution should be obtained
within the context of the physical theory = Einstein’s gravity
+Standard Model of fundamental interactions
(QCD+-electroweak).

o Classical configurations in the QCD sector are destroyed by
large quantum corrections = useless to study. There remains
the gravitating electroweak theory =
Einstein-Weinberg-Salam. This describes the Kerr-Newman
black holes. Does it describe other black holes ?

@ Only unphysical limits where 6,y = 0, 7/2 have been analyzed
— in the full theory the spherical symmetry is lost.



Magnetic electroweak black hole /Maldacena 2020/

The U(1) hypermagnetic field near the horizon + electroweak “corona”
made of Z,W,Higgs fields 4 radial magnetic field in the far field. No
symmetry.



Magnetic monopoles in gauge field theories



Dirac monopole /1930/

G
B=-,
p

= V-B#0, nevertheless B =V x A

where the vector potential contais the Dirac string singularity, but
this can be excluded by using two local gauges,

A_ = P(cos®¥ — 1)dy in northern hemisphere ¢ € [0,7/2+ ¢€)
A; = P(cos? +1)dp in southern hemisphere ¢ € (7/2 — ¢, 7]

The two gauges are related in the equatorial region,

AL =A_+dQ2Py), iy =exp(ie2Pp)y_

hence 2eP=necZ = |P = e /n is called "magnetic charge"/
e




Magnetic field produced by a solenoid
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t'Hooft-Polyakov monopole /1974 /

Gauge fiel theory with a triplet Higgs field

A

1
4

L=
4e?

a apv 1 a a aga 2\2
Fa, Fo — 5D, ®°D!o7 — 2 (0707 — &F)

with D,®? = 9, + €, ALDC.
A globally regular solution with a finite energy and magnetic charge

P=1/e = n=2. Enormously popular theoretically, but no
observational evidence: does not belong to the Standard Model.

What is known about monopoles in the Standard Model ?



Magnetic monopoles in the electroweak theory



SU(2)xU(1) electroweak theory of Weinberg-Salam

1 1
Lws = ——5 W3, W' —
W5 4g2 4g7

2
BWB“”—(D“d))TD“d)—g (o0 1)

where Higgs is a complex doublet, &' = (¢1, ¢2),

Bu = 9.B,—9,B,, Wi, =0,W2— W2+ e WEWE,
i

D& = <au ~5Bu- ;Tawg> ®

Couplins g”> = 0.23, g2 =1 — g’?, 3 = 1.88. Electron charge
e = gg’ defines g, = \/4ma/(hce?) = length and mass scales

Iy =

h
= =15x10"1% cm, mg= — g,®g = 128.6 GeV
200 e 8o

The Z, W, Higgs masses expressed in in unites of mg are

mz == 1/\/51 mw == gmzv mh - \/Bml'



Dirac monopole embedded into electroweak theory

B=Ww3 = g(cosﬁil)dcp, W= w2 =o, q>:<(1)>,
1 I
A= 2B B=2, P=—, nez
e r 2e

Energy is infinite. Remarque:

@ Dirac monopole is stable within the U(1) electrodynamics.

o It is unstable within the electroweak theory because the
magnetic field B= PF/r3® becomes very strong as r — 0 and
the electroweak vacuum becomes unstable with respect to
condensation. Nobody studied this.



Cho-Maison monopole /1996/

U(1) field B = (cos® — 1) dp as for the Dirac monopole with
n = 2 combined with non-Abelian
x"dxk

W2 dxb = f ¢ = i)
foxt = (= fen—g. =00 (U2,

= extended non-Abelian core with a pointlike U(1) hypermagnetic
charge in the center. The total magnetic charge

P==-=

= o = Puy + Psuee)

% sin? 6y, n cos? Oy,

where Py(1) is pointlike at the origin and Psy(z) is distributed over
the space.
Energy is a sum of a divergent U(1) part and a finite SU(2) part,

2w [ dr
E = Eyq) + Esuqe) = g’2/0 2 T Esuee) /Esu(z) = 15.76/



Nambu monopole
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Electroweak theory contains two types of static, spherically
symmetric monopole solutions, both with infinite energy:

o Pointlike Dirac monopole for any value of the magnetic charge
n==41,+2 ...

@ Non-Abelian monopole of Cho-Maison for n = £2 =
superposition of a pointlike hypermagnetic U(1) monopole
and a regular SU(2) field.

New come new results



Part |: Stability of electroweak monopoles

R.Gervalle and M.S.V., Nucl.Phys. B 984 (2022) 115937



Generic perturbations

Wi — WS+ WS, B, — B, + 6By, S — & +50

Linearizing the equations with respect to dW?2, B, 6, using the
null spacetime tetrad approach and separating the angular variables
in terms of the spin-weighted spherical harmonics, assuming the
et/“t time dependence, the perturbation equations reduce to

d? - 2
<—dr2+U>W:w \U,

where W is a 16-component vector and U is the symmetric 16 x 16
matrix. If there are bound states with w? < 0 then the background
is unstable.



Stability of Cho-Maison monopole — Jacobi criterion

> &
<—dr2+U>\U:w2‘U, \I!“:(\Ul,...,\lllﬁ)ztllk

One sets w = 0, finds 16 regular at the origin solutions \Uia)(r),
and computs the determinant

Ar) = (w‘k"’)(r) ak=1,...,16

If A(r) > 0 then all eigenvalues w? > 0. This was checked for the
Cho-Maison monopole in sectors with j = 0,1,2,3,4. For higher j
the bound states are unlikely dues to the high centrifugal barrier =

The non-Abelian monopole of Cho-Maison is stable with respect to
all small perturbations



Stability of Dirac monopole

One perturbative channe decouples

> g* |n| 2 n
AN S LI DA if ':H_1, 1,
( a2 2r2)w W=7 Inl >

solution oscillates infinitely many times for r — 0,
v2n—1 r
Y = +/r cos (In)
2 n
= all Dirac monopoles with |n| > 1 are unstable.

The n = 2 is unstable in the j = 0 sector = not splitting. The
non-Abelian Cho-Maison monopole also has n = 2 and is stable =
it is remnant of Dirac’'s monopole decay.

Dirac monopoles with |n| > 2 decay in sectors with j > 0 and
should condense to non spherically-symmetric non-Abelian states.



Dirac monopoles with |n| > 2 should condense to non-spherically
symmetric non-Abelian states. The magnetic charge splits into the
pointlike part n x sin® 6y, /(2e) and part n x cos® By /(2e) distributed in
space. The energy is infinite due to the central singularity.

/R.Gervalle and M.V. Nucl.Phys. B 984 (2022) 115937/



Part Il: Non-Abelian multi-monopoles

/R.Gervalle and M.S.V. Nucl.Phys. B 987 (2023) 116112/



Axial symmetry

Rebbi-Rossi ansatz (even parity), with T, = 7,/2,
W =T,Wads* = Ty (Fidr+ F>dv)+ g (T3 F3 — T1Fa) do

Bdx! = nggo, ¢_(z1>, nez,
2

Fi, Fo, F3, F4, Y, ¢1, ¢ are 7 real-valued functions of r, .

o System of 7 elliptic PDE’s in the domain r € [0, ),
Y € [0,7/2], assuming the invariance under ¥ — 7 — ¥.

@ For n = =£2 solution is spherically symmetric = the
Cho-Maison monopole. Iteratively increasing n gives
axially-symmetric monopoles.



Splits into an infinite U(1) part and a finite SU(2) part

2 2 e’}
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Figure: Surfaces of constant Tgog for n = 10



Magnetic charge and electric current isosurfaces

Magnetic charge density ps/(2) (green) and positive J,, and
negative J, densities of the azumuthal electric current for the

n = 4 monopole. The magnetic charge forms a ring whose
magnetic field forces the charged W-bosons to Larmore-orbit,
creating two electric currents. These currents create the magnetic
field which squeezes the magnetic charge toward equatorial plane.



Large charge limit

For large n the U(1) field B becomes very strong and drives to
zero all other fields in the central monopole region thus restoring
the full gauge symmetry. This creates the vacuum bubble in the

monopole center.

Figure: The norm of the Higgs field |®| for n = 100.



Large charge monopole, n = 80.

The pointlike hypermagnetic charge Py() = n x sin? Ow/(2€) creates a
bubble of unbroken phase in the center. Outside the bubble the massive
fields condense to a ring of magnetic charge Py (2) = n x cos? 6y /(2e)
squeezed between two superconducting electric currents. Still farther
away there remains only the field of the Dirac monopole of charge

Puq) + Psu(2) = n/(2e). The energy is infinite due to the central
pointlike charge. Perhaps the latter can be shielded by an event horizon 7



Part Ill. Black holes with electroweak hair

/in preparation/



Einstein-Weinberg-Salam theory

_ L

£2/€

R + Lws

with

1 1 B 2
Lws =4 3 Wi W" B B" ~(D,®) D" o— 2 (chcb - 1)
the length scale and mass scale are electroweak, same as before:

lg =1.5 x 107%® cm and mg =128.6 GeV. The couplings

8rG B2
g2 =077, g2 =023, B—188, x— 14 0 _ 542 %103,




Equations to solve

Electroweak:
V4B, = g é (1D, & — (D,®)Td),

DrW2 — g2 L (oT72D,d — (D, d) r70),
v 2

D,D'd — g (¢Td —1)o =0,
Einstein:
Guw = KTw, K~ 10*337
and
1 a aoc 1 o 1
T/U/ — ?W ,LLO'W v + gﬁBﬂUBy + 2D(/.L¢ Dy)q) + g/LV‘CWS

=30 coupled equations. A simple solution:



Magnetically charged Reissner-Nordstrom

Same electroweak fields as for the Dirac monopole,

B:W3:g(cosz9i1)d<p, Wi=w2=0 o= <(1)>

and the RN metric,

d 2
ds® = —N(r) dt? + o + r? (d192 + sin® ﬂdgo2) ,
N(r)
2M Q2 5  KN?
Ni=1-=—"—+"% @ =g% nel

The event horizon is at ry = M + VM2 — Q2.

This solution is stable at large ry but becomes unstable at small ry




Stability of Reissner-Nordstrom

Same instability as for the Dirac monopole: for
’j =|n|/2—1, |n| >1) ‘ one obtains the one-channel problem

(-2« [£ - L] o) =t

with dr, = dr/N(r). In flat space N(r) =1 and there are infinitely
many bound states with w? < 0 = Dirac monopoles are unstable.

In curved space N(r) <1 = a finite number of bound states if

ry < r,(_), and no bound states if ry > r,g . For ry = r,?, the first
bound state appears as a static zero mode g(r) which
approximates the W-condensate = black hole hair = bifurcation of
the RN family with the new family of hairy black holes.



Perturbative black hole hair

Values r%(n) for which the zero mode appears

n 2 4 6 10 20 40 100 200
r,f_), 089 | 147 | 193 | 269 | 412 | 6.19 | 10.33 | 15.03

The mode is maximal at the horizon and proportional to Yjm(¥, ¢)
with j = |n/2| — 1, describes the W-current tangential to the
horizon. This current produce magnetic and Z-fluxes orthogonal to
the horizon= vortices of finite length =CORONA. Schematically,




Non-perturvative solutions

Hairy black holes cannot be spherically symmetric for |n| > 2 but
can be axially symmetric:

2
ds® = —e*/N(r) dt* + e* 2V <A7(r 7t r’dv? + e r’sin’ 19d<p2> ,
r
W = T,Wadx" = Ta (Fi dr + F> d9) + g (T3 Fs — T1F2 ) dy

B, dxt = g Ydp, &= (2;) Ty =7a/2,

where U, k,w, F1, Fo, F3, F4, Y, ¢1, ¢ are 10 real functions of r,
and N(r) =1 — ry/r where ry is the black hole “size”.

10 coupled PDE's to solve. For n = 42 the solution is spherically
symmetric, increasing n gives axially-symmetric black holes.



Decreasing the horizon size ry
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Extreme black hole for n = 80

%\0’ 0/<'2 e
A IRENE e

Pttt

At the center — a tiny RN black hole of charge Py1) = ncos? 6y /(2e)
surrounded by the vacuum bubble. Outside the bubble — a condensate of
massive fields forming charged rings with charge Pgy(g) = nsin? Ow/(2e).
Far away — the radial magnetic field of charge P = n/(2e).



Asymptotic analysis — multipole moments

For r > 1 the theory reduces to Einstein-Maxwell,

1 R—LB B

L=—
2K 4e2 M

The static spacetime metric being

ds?> = —e?Vdt? + e 2Vd/?, di? = hjdx'dx®,
the Ernst potentials W and £ are defined by

1-— 2e? _

1+§ =2V w2 By = 7ﬁe 2V 5V

Choosing the Weyl coordinates, di?> = e*X(dp? + dz?) + p?dy?,
the multipoles my, si are defined by (equivalent to Geroch-Hanson)
my
ﬁ, W(p:0,2>>1):
k>0 k>0

Sk

(p=0,z>1)= sy

this gives the mass, charge, (dipole=0), quadrupole moments, etc.



ADM mass
Obtained from the asymptotics or from the integral formula

8o = 1—T+--~a
kgA K
1 H+/ (2Tgs + T)vV/—g d*x
47r r>ryg

M =
47
Hairy solutions are less energetic than the RN of the same size
18—
—— Hairy >
.
.
= 1 Ry
$ z =
: S -
10.27
— - RN '~
8 Hairy ) ) . . .
0.3 0.5 0.7 0.8983 10.27 15 20 25 30
i /Lpy

ex
0
TH

For small ry the mass is below the mass of the extreme RN.



Horizon mass My and hair mass M,

Pzz—r;:PH+Phair7 M:MH+Mhair

where Py, My are the charge and mass inside the horizon and
Phair, Mhair are the charge and mass contained in the hair

;2
n sin“ Oy
Phair:AX77 PH:P_Phaira
2e
whereas, with 47rr,%, = Ay,
ry K
My =75+ 7 —Pft, M = M — My
2 4rH
is the mass of RN black hole of same area and charge Py.
1 T T T T ™ 0.025
n =10
08 L | 0.02 | n=10 4
0.6 L N | 0.015 |
M
My
04 N 0.01 - Mair /M
0.2 Q - 0.005




Quadrupole moments and horizon oblateness
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The quadrupole moments Q¢ and @y become maximal in the
extreme limit and vanish in the RN limit. The horizon oblateness

(Lequator - Lpolar)/ Lequator

vanishes in both limits and assumes a maximal value in between.



Extreme limit

@ As ry approaches the lower bound ry — r,{,nin ~ n, the horizon
becomes degenerate, surface gravity and the temperature
vanish. The extreme horizon is exactly spherical, while for
non-extreme solutions it is squashed.

@ The extreme black hole supports the maximal amount of hair.
It contains inside only a part Py() = cos? Oy P of the total
magnetic charge P = n/(2e) and the rest Pgy(2) = sin? Oy, P
is in the hair. It is smaller than the extreme RN black hole of
charge P and has a smaller mass = asymptotically hairy
solutions are overcharged RN (/stable 17/) with

M<Q:\/:‘<&/2PEMBPS

o Close to the horizon the hypermagnetic field B o |n|/r? is
very strong and drives to zero the SU(2) and Higgs fields,
creating a bubble of symmetric phase. The geometry in the
bubble is very close to RN of charge Py(;) = cos? Oy, P.



Horizon size vs hair size
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Mass for large magnetic charge n = v//2
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One has for extreme solutions
M = My + My < Q M. M, 3/2
= Mg + Myair < ~ n, H~ N, reg ~ N

= there is an upper bound for n.



Quadrupole moments for large magnetic charge
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One has for extreme solutions Qg ~ Qi ~ n? and R ~ Vn =
radius of the charged rings, therefore

Qg ~ Qn ~ charge x R?

corresponding to the quadrupole moment of a charged torus.



Limiting solution

o Upper limit for n. The minimal value of the event horizon

ri™ oc \/k |n| increases with n faster than the maximal value

rif® o< y/n. The two merge for |n ~ 1/k ~ 1032  exactly,

5 _sinfy
max \/B/{J

The limiting solution develops in this limit an infinitely long
tube and becomes geodesically complete.

— 0.64 x 1032

@ The size and mass of the limiting solution
ry ~1cm, M ~ 10%° kg,

typical for planetary size black holes = extremely large values,
since hairy black holes in other models are typically very small.



Non-axially symmetric black holes

@ The perturbative zero mode corresponding to the bifurcation
of the RN and hairy branches has the structure
| _

¢(r) X \/jm(197 Sp)a J: 7 1

For m = 0 it is axially symmetric but for m # 0 depends on ¢.

@ Therefore, for a given n there should be also |n| different
non-axially symmetric hairy black holes = CORONA. Their
number is |n| ~ rf ~ Ap, as for the horizon entropy.
However, their energy is not the same.



Conclusion

Solutions describing black hole with electroweak hair are
constructed. They can be large and perhaps
astrophysically relevant



