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No-hair conjecture

Black holes formed by gravitational collapse are characterized by
their mass, angular momentum, and electric charge = the only
parameters that can survive the collapse ⇒ all black holes are
described by the Kerr-Newman metrics.

/Ruffini and Wheeler, 1969/



No-hair conjecture

The quasi-stellar object, the pulsar, the neutron star
have all come onto the scene of physics within the space of a
few years. Is the next entrant destined to be the black hole?
If so, it is difficult to think of any development that could be
of greater significance. A black hole, whether of “ordinary
size” (approximately one solar mass, 1 M�) or much larger
(around 106 M� to 1010 M�, as proposed in the nuclei of some
galaxies), provides our “laboratory model” for the gravita-
tional collapse, predicted by Einstein’s theory, of the universe
itself.

A black hole is what is left behind after an object has un-
dergone complete gravitational collapse. Spacetime is so

strongly curved that no light can come out, no matter can be
ejected, and no measuring rod can ever survive being put in.
Any kind of object that falls into the black hole loses its sep-
arate identity, preserving only its mass, charge, angular mo-
mentum, and linear momentum (see figure 1). No one has yet
found a way to distinguish between two black holes con-
structed out of the most different kinds of matter if they have
the same mass, charge, and angular momentum. Measure-
ment of these three determinants is permitted by their effect
on the Kepler orbits of test objects, charged and uncharged,
in revolution about the black hole.

How the physics of a black hole looks depends more
upon an act of choice by the ob-
server himself than on anything
else. Suppose he decides to fol-
low the collapsing matter
through its collapse down into
the black hole. Then he will see
it crushed to indefinitely high
density, and he himself will be
torn apart eventually by indefi-
nitely increasing tidal forces.
No restraining force whatso-
ever has the power to hold him
away from this catastrophe,
once he crossed a certain critical
surface known as the “hori-
zon.” The final collapse occurs
a finite time after the passage of
this surface, but it is inevitable.
Time and space are inter-
changed inside a black hole in

From January 1971, pages 30–41

Introducing the 
black hole
Remo Ruffini and John A. Wheeler

According to present cosmology, certain stars end their careers in a total
gravitational collapse that transcends the ordinary laws of physics.

At the time of this article, Remo Ruffini and John Wheeler were both at Princeton University; Wheeler, on leave from Princeton, was
spending a year at the California Institute of Technology and Moscow State University.
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Figure 1. Figurative representation of a black
hole in action. All details of the infalling matter
are washed out. The final configuration is be-
lieved to be uniquely determined by mass, elec-
tric charge, and angular momentum.
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No-hair theorems and the first hairy black hole

No-hair theorems /Bekenstein, 1972,.../ confirm the
conjecture for a number of special cases. No new black holes
holes for gravitating massive scalar, spinor, of vector fields,
also for a scalar field with a positive potential, etc.

First explicit counter-example /M.S.V.+ Gal’tsov, 1989/:
static black holes with Yang-Mills hair. Triggered an
avalanche of discoveries of other hairy black holes.



Black holes with Yang-Millas hair



Zoo of hairy black holes

Before 2000: Einstein-Yang-Mills black holes and their
generalizations – higher gauge groups, additional fields
(Higgs, dilaton), non-spherical solutions, stationary
generalizations, Skyrme black holes, Gauss-Bonnet, . . .
/M.S.V.+Gal’tsov, Phys.Rep. 319 (1999) 1/

After 2000: black holes with scalar hair – engineered potential,
spinning clouds of massive complex scalar /Herdeiro-Radu/,
Horndeski black holes, metric-affine theories, higher
dimensions, stringy corrections, hairy black holes with massive
gravitons /Gervalle+M.S.V., 2020/, etc, . . .
/M.S.V., 1601.0823/

Which of these solutions are physical ?



Present status of hairy black holes

All known solutions have been obtained within simplified
theoretical models. Their physical relevance is not obvious.

To be physically relevant, the solution should be obtained
within the context of the physical theory = Einstein’s gravity
+Standard Model of fundamental interactions
(QCD+electroweak).

Classical configurations in the QCD sector are destroyed by
large quantum corrections ⇒ useless to study. There remains
the gravitating electroweak theory =
Einstein-Weinberg-Salam. This describes the Kerr-Newman
black holes. Does it describe other black holes ?

Only unphysical limits where θW = 0, π/2 have been analyzed
– in the full theory the spherical symmetry is lost.



Magnetic electroweak black hole /Maldacena 2020/
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The U(1) hypermagnetic field near the horizon + electroweak “corona”

made of Z,W,Higgs fields + radial magnetic field in the far field. No

symmetry.



Magnetic monopoles in gauge field theories



Dirac monopole /1930/

~B =
P~r

r3
, ⇒ ~∇ · ~B 6= 0, nevertheless ~B = ~∇× ~A±

where the vector potential contais the Dirac string singularity, but
this can be excluded by using two local gauges,

A− = P(cosϑ− 1)dϕ in northern hemisphere ϑ ∈ [0, π/2 + ε)

A+ = P(cosϑ+ 1)dϕ in southern hemisphere ϑ ∈ (π/2− ε, π]

The two gauges are related in the equatorial region,

A+ = A− + d (2Pϕ) , ψ+ = exp (ie 2Pϕ)ψ−

hence 2eP = n ∈ Z ⇒ P =
n

2e
/n is called ”magnetic charge”/



Magnetic field produced by a solenoid
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t’Hooft-Polyakov monopole /1974/

Gauge fiel theory with a triplet Higgs field

L = − 1

4e2
F a
µνF

aµν − 1

2
DµΦaDµΦa − λ

4

(
ΦaΦa − Φ2

0

)2
with DµΦa = ∂µΦa + εabcA

b
µΦc .

A globally regular solution with a finite energy and magnetic charge
P = 1/e ⇒ n = 2. Enormously popular theoretically, but no
observational evidence: does not belong to the Standard Model.

What is known about monopoles in the Standard Model ?



Magnetic monopoles in the electroweak theory



SU(2)×U(1) electroweak theory of Weinberg-Salam

LWS = − 1

4g2
Wa

µνW
aµν− 1

4g ′2
BµνB

µν−(DµΦ)†DµΦ−β
8

(
Φ†Φ− 1

)2
where Higgs is a complex doublet, Φtr = (φ1, φ2),

Bµν = ∂µBν − ∂νBµ , Wa
µν = ∂µW

a
ν − ∂νWa

µ + εabcW
b
µW

c
ν ,

DµΦ =

(
∂µ −

i

2
Bµ −

i

2
τ aWa

µ

)
Φ

Couplins g ′2 = 0.23, g2 = 1− g ′2, β = 1.88. Electron charge
e = gg ′ defines g0 =

√
4πα/(~~~ce2) ⇒ length and mass scales

l 0 =
1

g0Φ0
= 1.5× 10−16 cm, m0 =

~~~
c

g0Φ0 = 128.6 GeV

The Z ,W , Higgs masses expressed in in unites of m0 are
mz = 1/

√
2, mw = gmz, mh =

√
βmz.



Dirac monopole embedded into electroweak theory

B = W 3 =
n

2
(cosϑ± 1) dϕ, W 1 = W 2 = 0, Φ =

(
0
1

)
,

A =
1

e
B, ~B =

P~r

r3
, P =

n

2e
, n ∈ Z

Energy is infinite. Remarque:

Dirac monopole is stable within the U(1) electrodynamics.

It is unstable within the electroweak theory because the
magnetic field ~B = P~r/r3 becomes very strong as r → 0 and
the electroweak vacuum becomes unstable with respect to
condensation. Nobody studied this.



Cho-Maison monopole /1996/

U(1) field B = (cosϑ− 1) dϕ as for the Dirac monopole with
n = 2 combined with non-Abelian

W a
µ dxµ = (1− f (r)) εaik

x idxk

r2
, Φ = φ(r)

(
sin ϑ

2 e
−iϕ

− cos ϑ2

)
= extended non-Abelian core with a pointlike U(1) hypermagnetic
charge in the center. The total magnetic charge

P =
1

e
=

sin2 θW
e

+
cos2 θW

e
≡ PU(1) + PSU(2)

where PU(1) is pointlike at the origin and PSU(2) is distributed over
the space.
Energy is a sum of a divergent U(1) part and a finite SU(2) part,

E ≡ EU(1) + ESU(2) =
2π

g ′2

∫ ∞
0

dr

r2
+ ESU(2) /ESU(2) = 15.76/



Nambu monopole
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Summary

Electroweak theory contains two types of static, spherically
symmetric monopole solutions, both with infinite energy:

Pointlike Dirac monopole for any value of the magnetic charge
n = ±1,±2, . . .

Non-Abelian monopole of Cho-Maison for n = ±2 ⇒
superposition of a pointlike hypermagnetic U(1) monopole
and a regular SU(2) field.

New come new results



Part I: Stability of electroweak monopoles

R.Gervalle and M.S.V., Nucl.Phys. B 984 (2022) 115937



Generic perturbations

W a
µ →W a

µ + δW a
µ , Bµ → Bµ + δBµ, Φ→ Φ + δΦ

Linearizing the equations with respect to δW a
µ , δBµ, δΦ, using the

null spacetime tetrad approach and separating the angular variables
in terms of the spin-weighted spherical harmonics, assuming the
e±iωt time dependence, the perturbation equations reduce to(

− d2

dr2
+ Û

)
Ψ = ω2Ψ ,

where Ψ is a 16-component vector and Û is the symmetric 16× 16
matrix. If there are bound states with ω2 < 0 then the background
is unstable.



Stability of Cho-Maison monopole – Jacobi criterion

(
− d2

dr2
+ Û

)
Ψ = ω2Ψ , Ψtr = (Ψ1, . . . ,Ψ16) ≡ Ψk

One sets ω = 0, finds 16 regular at the origin solutions Ψ
(a)
k (r),

and computs the determinant

∆(r) =
∣∣∣Ψ(a)

k (r)
∣∣∣ a, k = 1, . . . , 16

If ∆(r) > 0 then all eigenvalues ω2 > 0. This was checked for the
Cho-Maison monopole in sectors with j = 0, 1, 2, 3, 4. For higher j
the bound states are unlikely dues to the high centrifugal barrier ⇒

The non-Abelian monopole of Cho-Maison is stable with respect to
all small perturbations



Stability of Dirac monopole

One perturbative channe decouples(
− d2

dr2
+

g2

2
− |n|

2r2

)
ψ = ω2ψ if j =

∣∣∣n
2

∣∣∣− 1 , |n| > 1,

solution oscillates infinitely many times for r → 0,

ψ =
√
r cos

(√
2n − 1

2
ln

r

r0

)
⇒ all Dirac monopoles with |n| > 1 are unstable.

The n = 2 is unstable in the j = 0 sector ⇒ not splitting. The
non-Abelian Cho-Maison monopole also has n = 2 and is stable ⇒
it is remnant of Dirac’s monopole decay.

Dirac monopoles with |n| > 2 decay in sectors with j > 0 and
should condense to non spherically-symmetric non-Abelian states.



Conjecture

Dirac monopoles with |n| ≥ 2 should condense to non-spherically

symmetric non-Abelian states. The magnetic charge splits into the

pointlike part n × sin2 θW/(2e) and part n × cos2 θW/(2e) distributed in

space. The energy is infinite due to the central singularity.

/R.Gervalle and M.V. Nucl.Phys. B 984 (2022) 115937/



Part II: Non-Abelian multi-monopoles

/R.Gervalle and M.S.V. Nucl.Phys. B 987 (2023) 116112/



Axial symmetry

Rebbi-Rossi ansatz (even parity), with Ta = τa/2,

W = TaW
a
µdx

µ = T2 (F1 dr + F2 dϑ) +
n

2
(T3 F3 − T1F4 ) dϕ

Bµdx
µ =

n

2
Y dϕ , Φ =

(
φ1
φ2

)
, n ∈ Z,

F1,F2,F3,F4,Y , φ1, φ2 are 7 real-valued functions of r , ϑ.

System of 7 elliptic PDE’s in the domain r ∈ [0,∞),
ϑ ∈ [0, π/2], assuming the invariance under ϑ→ π − ϑ.

For n = ±2 solution is spherically symmetric = the
Cho-Maison monopole. Iteratively increasing n gives
axially-symmetric monopoles.



Energy

Splits into an infinite U(1) part and a finite SU(2) part

E =

∫
T00
√−g d3x =

2πν2

g ′2

∫ ∞
0

dr

r2
+ Ereg.

Figure: Surfaces of constant T00 for n = 10.



Magnetic charge and electric current isosurfaces

Magnetic charge density ρSU(2) (green) and positive Jϕ and
negative Jϕ densities of the azumuthal electric current for the
n = 4 monopole. The magnetic charge forms a ring whose
magnetic field forces the charged W -bosons to Larmore-orbit,
creating two electric currents. These currents create the magnetic
field which squeezes the magnetic charge toward equatorial plane.



Large charge limit

For large n the U(1) field B becomes very strong and drives to
zero all other fields in the central monopole region thus restoring
the full gauge symmetry. This creates the vacuum bubble in the
monopole center.
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Figure: The norm of the Higgs field |Φ| for n = 100.



Large charge monopole, n = 80.

The pointlike hypermagnetic charge PU(1) = n × sin2 θW/(2e) creates a

bubble of unbroken phase in the center. Outside the bubble the massive

fields condense to a ring of magnetic charge PSU(2) = n × cos2 θW/(2e)

squeezed between two superconducting electric currents. Still farther

away there remains only the field of the Dirac monopole of charge

PU(1) + PSU(2) = n/(2e). The energy is infinite due to the central

pointlike charge. Perhaps the latter can be shielded by an event horizon ?



Part III. Black holes with electroweak hair

/in preparation/



Einstein-Weinberg-Salam theory

L =
1

2κ
R + LWS

with

LWS = − 1

4g2
Wa

µνW
aµν− 1

4g ′2
BµνB

µν−(DµΦ)†DµΦ−β
8

(
Φ†Φ− 1

)2
the length scale and mass scale are electroweak, same as before:
l 0 =1.5× 10−16 cm and m0 =128.6 GeV. The couplings

g2 = 0.77, g ′2 = 0.23, β = 1.88, κ =
8πGΦ2

0

c4
= 5.42× 10−33.



Equations to solve

Electroweak:

∇µBµν = g ′2
i

2
(Φ†DνΦ− (DνΦ)†Φ),

DµWa
µν = g2 i

2
(Φ†τ aDνΦ− (DνΦ)†τ aΦ),

DµD
µΦ− β

4
(Φ†Φ− 1)Φ = 0,

Einstein:

Gµν = κTµν , κ ∼ 10−33,

and

Tµν =
1

g2
Wa

µσW
a σ
ν +

1

g ′ 2
BµσB

σ
ν + 2D(µΦ†Dν)Φ + gµνLWS

=30 coupled equations. A simple solution:



Magnetically charged Reissner-Nordstrom

Same electroweak fields as for the Dirac monopole,

B = W 3 =
n

2
(cosϑ± 1) dϕ, W 1 = W 2 = 0, Φ =

(
0
1

)
,

and the RN metric,

ds2 = −N(r) dt2 +
dr2

N(r)
+ r2

(
dϑ2 + sin2 ϑ dϕ2

)
,

N(r) = 1− 2M

r
+

Q2

r2
, Q2 =

κn2

8e2
, n ∈ Z.

The event horizon is at rH = M +
√
M2 − Q2.

This solution is stable at large rH but becomes unstable at small rH



Stability of Reissner-Nordstrom

Same instability as for the Dirac monopole: for

j = |n|/2− 1, |n| > 1) one obtains the one-channel problem(
− d2

dr2?
+ N(r)

[
g2

2
− |n|

2r2

])
ψ(r) = ω2ψ(r)

with dr? = dr/N(r). In flat space N(r) = 1 and there are infinitely
many bound states with ω2 < 0 ⇒ Dirac monopoles are unstable.

In curved space N(r) ≤ 1 ⇒ a finite number of bound states if
rH < r0H and no bound states if rH > r0H . For rH = r0H the first
bound state appears as a static zero mode ψ0(r) which
approximates the W -condensate = black hole hair = bifurcation of
the RN family with the new family of hairy black holes.



Perturbative black hole hair

Values r0H(n) for which the zero mode appears

n 2 4 6 10 20 40 100 200

r0H 0.89 1.47 1.93 2.69 4.12 6.19 10.33 15.03

The mode is maximal at the horizon and proportional to Yjm(ϑ, ϕ)
with j = |n/2| − 1, describes the W-current tangential to the
horizon. This current produce magnetic and Z-fluxes orthogonal to
the horizon= vortices of finite length =CORONA. Schematically,



Non-perturvative solutions

Hairy black holes cannot be spherically symmetric for |n| > 2 but
can be axially symmetric:

ds2 = −e2UN(r) dt2 + e2k−2U
(

dr2

N(r)
+ r2dϑ2 + e2w r2 sin2 ϑdϕ2

)
,

W = TaW
a
µdx

µ = T2 (F1 dr + F2 dϑ) +
n

2
(T3 F3 − T1F4 ) dϕ

Bµdx
µ =

n

2
Ydϕ , Φ =

(
φ1
φ2

)
Ta = τa/2 ,

where U, k ,w ,F1,F2,F3,F4,Y , φ1, φ2 are 10 real functions of r , ϑ
and N(r) = 1− rH/r where rH is the black hole “size”.

10 coupled PDE’s to solve. For n = ±2 the solution is spherically
symmetric, increasing n gives axially-symmetric black holes.



Decreasing the horizon size rH

 

iEsogEIh9 EBzwzoamhiw.EEurm EEEtEasomozoommzanohnzi

L s I ka l Lst
when horizon decreases the hair grows
then a bubble of symmetric phase appea
In the extreme limit inside the hairy region
the metric is RN for themagnetic charge

Pua hate The hair.ca wig the
the vest of tie chage Psu hate

2 e

asymptotic uement the metric is RN
with change P he



Extreme black hole for n = 80

At the center – a tiny RN black hole of charge PU(1) = n cos2 θW/(2e)

surrounded by the vacuum bubble. Outside the bubble – a condensate of

massive fields forming charged rings with charge PSU(2) = n sin2 θW/(2e).

Far away – the radial magnetic field of charge P = n/(2e).



Asymptotic analysis – multipole moments
For r � 1 the theory reduces to Einstein-Maxwell,

L =
1

2κ
R − 1

4e2
BµνB

µν .

The static spacetime metric being

ds2 = −e2Udt2 + e−2Udl2, dl2 = hikdx
idxk ,

the Ernst potentials Ψ and ξ are defined by

1− ξ
1 + ξ

= e2U −Ψ2, Bik =

√
2e2

κ

√
h e−2Uεiks ∂

sΨ

Choosing the Weyl coordinates, dl2 = e2K (dρ2 + dz2) + ρ2dϕ2,
the multipoles mk , sk are defined by (equivalent to Geroch-Hanson)

ξ(ρ = 0, z � 1) =
∑
k≥0

mk

zk+1
, Ψ(ρ = 0, z � 1) =

∑
k≥0

sk
zk+1

,

this gives the mass, charge, (dipole=0), quadrupole moments, etc.



ADM mass

Obtained from the asymptotics or from the integral formula

g00 = 1− 2M

r
+ . . . ,

M =
kHAH

4π
+

κ

4π

∫
r>rH

(2T0̂0̂ + T )
√−g d3x

Hairy solutions are less energetic than the RN of the same size.
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For small rH the mass is below the mass of the extreme RN.



Horizon mass MH and hair mass Mhair

P =
n

2e
= PH + Phair, M = MH + Mhair

where PH, MH are the charge and mass inside the horizon and
Phair, Mhair are the charge and mass contained in the hair

Phair = λ× n sin2 θW
2e

, PH = P − Phair,

whereas, with 4πr2H = AH,

MH =
rH
2

+
κ

4rH
P2
H, Mhair = M −MH

is the mass of RN black hole of same area and charge PH.
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Quadrupole moments and horizon oblateness
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The quadrupole moments QG and QM become maximal in the
extreme limit and vanish in the RN limit. The horizon oblateness

(Lequator − Lpolar)/Lequator

vanishes in both limits and assumes a maximal value in between.



Extreme limit

As rH approaches the lower bound rH → rmin
H ∼ n, the horizon

becomes degenerate, surface gravity and the temperature
vanish. The extreme horizon is exactly spherical, while for
non-extreme solutions it is squashed.

The extreme black hole supports the maximal amount of hair.
It contains inside only a part PU(1) = cos2 θWP of the total

magnetic charge P = n/(2e) and the rest PSU(2) = sin2 θWP
is in the hair. It is smaller than the extreme RN black hole of
charge P and has a smaller mass ⇒ asymptotically hairy
solutions are overcharged RN (/stable !?/) with

M < Q =
√
κ/2P ≡ MBPS

Close to the horizon the hypermagnetic field B ∝ |n|/r2 is
very strong and drives to zero the SU(2) and Higgs fields,
creating a bubble of symmetric phase. The geometry in the
bubble is very close to RN of charge PU(1) = cos2 θWP.



Horizon size vs hair size
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horizon region size is parametrically small
as compared to the hair region size

The hair decoples from the horizon and
lives in flat geometry and reduces to the
flat space monopole solution



Mass for large magnetic charge n = ν/2
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One has for extreme solutions

M = MH + Mhair < Q ∼ n, MH ∼ n, Mreg ∼ n3/2

⇒ there is an upper bound for n.



Quadrupole moments for large magnetic charge
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One has for extreme solutions QG ∼ QM ∼ n2 and R ∼ √n =
radius of the charged rings, therefore

QG ∼ QM ∼ charge× R2

corresponding to the quadrupole moment of a charged torus.



Limiting solution

Upper limit for n. The minimal value of the event horizon

rmin
H ∝ √κ |n| increases with n faster than the maximal value

rmax
H ∝ √n. The two merge for n ∼ 1/κ ≈ 1032 , exactly,

nmax =
sin θW√
βκ

= 0.64× 1032

The limiting solution develops in this limit an infinitely long
tube and becomes geodesically complete.

The size and mass of the limiting solution

rH ≈ 1 cm, M ≈ 1025 kg,

typical for planetary size black holes ⇒ extremely large values,
since hairy black holes in other models are typically very small.



Non-axially symmetric black holes

The perturbative zero mode corresponding to the bifurcation
of the RN and hairy branches has the structure

ψ(r)× Yjm(ϑ, ϕ), j =
|n|
2
− 1

For m = 0 it is axially symmetric but for m 6= 0 depends on ϕ.

Therefore, for a given n there should be also |n| different
non-axially symmetric hairy black holes ⇒ CORONA. Their
number is |n| ∼ r2H ∼ AH, as for the horizon entropy.
However, their energy is not the same.



Conclusion

Solutions describing black hole with electroweak hair are
constructed. They can be large and perhaps

astrophysically relevant


