Graded superextensions of orthosymplectic supersymmetry $\mathfrak{o s p}(1 \mid 2 n ; \mathbb{C})$ and their real (anti-) de Sitter forms

Valeriy N. Tolstoy

Lomonosov Moscow State University
Skobelsyn Institute of Nuclear Physics
119992 Moscow, Russia

International Workshop
"Problems of Modern Mathematical Physics - PMMP" BLTP JINR, Dubna, Russia
Februare 18-23, 2024

Abstract

It is shown how, using the Clifford algebra, it is possible to turn an ordinary commutator into an anticommutator and vice versa. This is illustrated on ordinary bosons and fermions. Next, we consider Lie superalgebras, which are superextensions of the complex Lie algebra so(5, C) and its real forms: de Sitter so(1,4) and anti de Sitter so(2,3). There are two types of such superextensions: with $\mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{-}}$gradations. The Lie \mathbb{Z}_{2}-superalgebras are the usual Lie seperalgebras, and the Lie $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-superalgebras were presented by the speaker in 2014. It is shown how these superalgebras with different gradations are related to each other using the Clifford algebra. For the first time, the correct concept of compact real forms is introduced for both $\mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superextensions of so $(5 ; C)$. For this purpose, we use a cliffonic dressing with a Hermitian imaginary unit (the usual imaginary unit is an anti-Hermitian one). We consider also a superextension in the case of the superalgebra $\operatorname{osp}(1 \mid 2 n)$

Contents:

1. Introduction
2. Clifford algebra and cliffonic dressing
(2a) Cliffonic dressing for the construction of real forms
(2b) Cliffonic cross-dressing to change Lie (super)brackets
(2c) Cliffons and fermions
3. The complex \mathbb{Z}_{2} - and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebras
(3a) The complex \mathbb{Z}_{2}-graded Lie superalgebra
(3b) The complex $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebra
4. Relationship of $\mathfrak{o s p}(1 \mid 4 ; \mathbb{C})$ with $\mathfrak{o s p}(1 \mid 2,2 ; \mathbb{C})$ via cliffonic dressing.
5. Relationship between $A d S_{5}$ and $d S_{5}(N=1)$ - supersymmetries
6. Application A. $\mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Poincarè superalgebras
7. Application $B . \mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superspaces and superfields
8. Application C. Once more about SUGRA
9. Conclusions and Outlook
10. Introduction

2. Clifford algebra and cliffonic dressing

By definition the Clifford algebra $C l_{n}(p, q)$ of the rank $n=p+q$, with the signature (p, q), is a real or complex unital (with a unite) associative algebra generated by the generators $c_{i},(i=1,2, \ldots, n)$, which will be called the cliffons, with the defining relations

$$
\begin{equation*}
\left\{c_{i}, c_{j}\right\}:=c_{i} c_{j}+c_{j} c_{i}=\eta_{i j} e, \quad i, j=1, \ldots n, \tag{1}
\end{equation*}
$$

where e is identity element, $\eta=\left\|\eta_{i j}\right\|=\operatorname{diag}(1, \ldots, 1,-1, \ldots,-1)$ is the diagonal $(n \times n)$-matrix with its first p entries equal to 1 and the last q entries equal to -1 on the diagonal. Sometimes we will use an involutive antiautomorphysm (or automorphism) (*) which acts on the generating cliffons as follows: $\left(c_{i}^{*}\right)^{*}=c_{i}$, $\left(c_{i} c_{j} \cdots c_{k}\right)^{*}=c_{k}^{*} \cdots c_{j}^{*} c_{i}^{*}\left(\operatorname{or}\left(c_{i} c_{j} \cdots c_{k}\right)^{*}=c_{i}^{*} c_{j}^{*} \cdots c_{k}^{*}\right)$ for $i, j, \ldots, k=1,2, \ldots, n$.
The Clifford (cliffonic ${ }^{1}$) algebras $\mathrm{Cl}_{n}(p, q)$ with the different stars are different and they have the different applications. We consider here a special $\mathrm{Cl}_{n}(p, q)$-application called cliffonic dressing. Let \mathfrak{g} and \mathfrak{g}^{\prime} be two different non-isomorphic (real or complex) Lie (super)algebras (or associative (super)algebras) of the same dimension. Cliffonic dressing is an exact (non-degenerate) special homomorphism $\mathfrak{g} \mapsto C l_{n}(p, q) \otimes \mathfrak{g}^{\prime}$ for a some clifonic algebra $C l_{n}(p, q)$. In other words, we get the realization of algebra \mathfrak{g} by "dressing" another equidimensional algebra \mathfrak{g}^{\prime} with the help of $C l_{n}(p, q)$ cliffons.

[^0]
(2a) Cliffonic dressing for the construction of real forms

Let's consider a cliffonic algebra $C I_{\bar{n}}:=C I_{n}(0, n)$ with a negative signature $\eta=\left\|\eta_{i j}\right\|=\operatorname{diag}(-1,-1, \ldots,-1)$, and with the following real cliffons:
$\left(c_{i} c_{j} \cdots c_{k}\right)^{*}=c_{i}^{*} c_{j}^{*} \cdots c_{k}^{*}=c_{i} c_{j} \cdots c_{k}$ for $i, j, \ldots, k=1,2, \ldots, n$.
In the case of a one-cliffonic algebra $C l_{1}$, we put $J:=c_{1}$ and we have $J=-1$ and $J^{*}=J$. The element J with such properties is named the operator of a fundamental symmery in the theory of Krein spaces.
It is easy to see that the cliffonic algebras $\mathrm{Cl}_{n}(n, 0)$ and $\mathrm{Cl}^{\prime}{ }_{n}(p, q)$ with different signatures and the same star are connected to each other by means of $C l_{\overline{1}}$-dressing, namely,

$$
\begin{align*}
c_{i}^{\prime}=e c_{i}, & i=1, \ldots, p \tag{2}\\
c_{i}^{\prime}=J c_{i}, & i=p+1, \ldots, n
\end{align*}
$$

or the inverse $C l_{\overline{1}}$-dressing

$$
\begin{array}{ll}
c_{i}=e c_{i}^{\prime}, & i=1, \ldots, p \\
c_{i}=J c_{i}^{\prime}, & i=p+1, \ldots, n \tag{3}
\end{array}
$$

where $c_{i}(i=1, \ldots, n)$ are the cliffons of $C l_{n}(n, 0)$ and $c_{i}^{\prime}(i=1, \ldots, n)$ are the cliffons of $\mathrm{Cl}^{\prime}{ }_{n}(p, q)$ and everywhere we use short notation $e c_{i}:=e \otimes c_{i}$, $J c_{i}:=J \otimes c_{i}$. In the following sections we will use the cliffonic dressing to construct real de Sitter and anti-de Sitter superalgebras.

(2b) Cliffonic cross-dressing to change Lie (super)brackets

In this special case we will use the cliffonic algebra $C l_{n}:=C l_{n}(n, 0)$ with a positive signature $\eta=\left\|\eta_{i j}\right\|=\operatorname{diag}(1,1, \ldots, 1)$. We will apply the $C l_{n}$-dressing to the well-known bosonic and fermionic associative algebras. Recall that the bosonic algebra $B_{\Lambda}(\Lambda \in \mathbb{N})$ generated by the creation b_{i}^{+}and annihilation $b_{i}(i=1,2, \ldots, \Lambda)$ operators with the following defining relations:

$$
\begin{align*}
& {\left[b_{i}, b_{j}\right]=\left[b_{i}^{+}, b_{j}^{+}\right]=0,} \\
& {\left[b_{i}, b_{j}^{+}\right]=\delta_{i j} l} \tag{4}
\end{align*}
$$

for $i, j=1,2, \ldots, \wedge$. Analogously, the fermionic algebra F_{\wedge} generated by the creation a_{i}^{+}and annihilation $a_{i}(i=1,2, \ldots, \Lambda)$ operators with the following defining relations:

$$
\begin{align*}
& \left\{a_{i}, a_{j}\right\}=\left\{a_{i}^{+}, a_{j}^{+}\right\}=0, \tag{5}\\
& \left\{a_{i}, a_{j}^{+}\right\}=\delta_{i j} I
\end{align*}
$$

for $i, j=1,2, \ldots, \wedge$.

Now we applay the Cl_{n}-cliffonic dressing to the bosonic and fermion algebras. Let [$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$], where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 1$, be the partition of a closed integer interval $[1, \Lambda]$ where $\Lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$. We set for the the bosonic algebra B_{Λ} :

$$
\begin{align*}
& \tilde{b}_{\lambda_{1} j}=c_{1} b_{j}, \quad \tilde{b}_{\lambda_{1} j}^{+}=c_{1} b_{j}^{+}, \quad j=1,2, \ldots, \lambda_{1}, \\
& \tilde{b}_{\lambda_{2} j}=c_{2} b_{j}, \quad \tilde{b}_{\lambda_{2} j}^{+}=c_{2} b_{j}^{+}, \quad j=\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}, \tag{6}\\
& \ldots \\
& \ldots \\
& \tilde{b}_{\lambda_{n} j}=c_{n} b_{j}, \quad \tilde{b}_{\lambda_{n} j}^{+}=c_{n} b_{j}^{+}, \quad j=\Lambda_{n-1}+1, \ldots, \Lambda_{n-1}+\lambda_{n},
\end{align*}
$$

and also $\tilde{I}=e l$, where $\Lambda_{n-1}:=\sum_{s=1}^{n-1} \lambda_{s}$. It is easy to check that the new generators (6) satisfy the following relations (instead of (29)) for the given partition $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$:

$$
\begin{equation*}
\left\{\tilde{b}_{\lambda_{\boldsymbol{r}} i}, \tilde{b}_{\lambda_{r^{\prime}} j}\right\}=\left\{\tilde{b}_{\lambda_{\boldsymbol{r}} i}^{+}, \tilde{b}_{\lambda_{\boldsymbol{r}^{\prime}} j}^{+}\right\}=\left\{\tilde{b}_{\lambda_{r^{\prime}}}, \tilde{b}_{\lambda_{\boldsymbol{r}^{\prime}} j}^{+}\right\}=0 \tag{7}
\end{equation*}
$$

for $r \neq r^{\prime}$, and

$$
\begin{align*}
& {\left[\tilde{b}_{\lambda_{r} i}, \tilde{b}_{\lambda_{r j}}\right]=\left[\tilde{b}_{\lambda_{r i}}^{+}, \tilde{b}_{\lambda_{r j}}^{+}\right]=0,} \tag{8}\\
& {\left[\tilde{b}_{\lambda_{r} i}, \tilde{b}_{\lambda_{r j} j}^{+}\right]=\delta_{i j} \tilde{l},}
\end{align*}
$$

for $r=1,2, \ldots, n$ and $i, j=\Lambda_{r}+1, \Lambda_{r}+2, \ldots, \Lambda_{r}+\lambda_{r+1}$, where $\Lambda_{r}:=\sum_{s=1}^{r} \lambda_{s}$.

In the case of a complete cliffonic cross-dressing, when $n=\Lambda, \Lambda_{r}=r$ ($r=1,2, \ldots, \Lambda$), the formulas (6) take the form

$$
\begin{equation*}
\tilde{b}_{j}=c_{j} b_{j}, \quad \tilde{b}_{j}^{+}=c_{j} b_{j}^{+}, \quad j=1,2, \ldots, \wedge . \tag{9}
\end{equation*}
$$

These cross-dressing generators satisfy the defining relations:

$$
\begin{equation*}
\left\{\tilde{b}_{i}, \tilde{b}_{j}\right\}=\left\{\tilde{b}_{i}^{+}, \tilde{b}_{j}^{+}\right\}=\left\{\tilde{b}_{i}, \tilde{b}_{j}^{+}\right\}=0, \tag{10}
\end{equation*}
$$

for $i \neq j,(i, j=1,2, \ldots, \Lambda)$, and

$$
\begin{equation*}
\left[\tilde{b}_{i}, \tilde{b}_{i}^{+}\right]=\tilde{l} \tag{11}
\end{equation*}
$$

for $i=1,2, \ldots, \Lambda$.

In the case of a complete cliffonic cross-dressing, when $n=\Lambda, \Lambda_{r}=r$ ($r=1,2, \ldots, \Lambda$), the formulas (6) take the form

$$
\begin{equation*}
\tilde{a}_{j}=c_{j} a_{j}, \tilde{a}_{j}^{+}=c_{j} a_{j}^{+}, \quad j=1,2, \ldots, \Lambda . \tag{12}
\end{equation*}
$$

The cross-dressing generators (15) satisfy the defining relations:

$$
\begin{equation*}
\left[\tilde{a}_{i}, \tilde{a}_{j}\right]=\left[\tilde{a}_{i}^{+}, \tilde{a}_{j}^{+}\right]=\left[\tilde{a}_{i}, \tilde{a}_{j}^{+}\right]=0 \tag{13}
\end{equation*}
$$

for $i \neq j,(i, j=1,2, \ldots, \Lambda)$, and

$$
\begin{align*}
& \left\{\tilde{a}_{i}, \tilde{a}_{i}\right\}=\left\{\tilde{a}_{i}^{+}, \tilde{a}_{i}^{+}\right\}=0, \\
& \left\{\tilde{a}_{i}, \tilde{a}_{i}^{+}\right\}=\tilde{l} \tag{14}
\end{align*}
$$

for $i=1,2, \ldots, \Lambda$.

(2c) Cliffons and fermions.

Take once again the standard fermionic algebra F_{n} generated by the creation and annihilation operators $a_{i}^{+}, a_{i}(i=1,2, \ldots, n)$

$$
\begin{equation*}
\left\{a_{i}, a_{j}\right\}=\left\{a_{i}^{+}, a_{j}^{+}\right\}=0, \quad\left\{a_{i}, a_{j}^{+}\right\}=\delta_{i j} I, \quad i=1,2, \ldots, n . \tag{15}
\end{equation*}
$$

Let us introduce the new generators:

$$
\begin{equation*}
c_{2 i-1}:=\left(a_{i}+a_{i}^{+}\right), \quad c_{2 i}:=\imath\left(a_{i}-a_{i}^{+}\right), \quad i=1,2, \ldots, n . \tag{16}
\end{equation*}
$$

These new generators $c_{i}(i=1,2, \ldots, 2 n)$ satisfy the Clifford algebra defining relations

$$
\begin{equation*}
\left\{c_{i}, c_{j}\right\}:=c_{i} c_{j}+c_{j} c_{i}=\eta_{i j} e, \quad i, j=1, \ldots 2 n \tag{17}
\end{equation*}
$$

where e is identity element, $\eta=\left\|\eta_{i j}\right\|=\operatorname{diag}(1,1, \ldots, 1)$ is the diagonal ($2 n \times 2 n$)-matrix.

3. The complex \mathbb{Z}_{2} - and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebras

(3a) The complex \mathbb{Z}_{2}-graded superalgebra

The complex \mathbb{Z}_{2}-graded Lie superalgebra (LSA) \mathfrak{g}, as a linear space over \mathbb{C}, is a direct sum of two graded components

$$
\begin{equation*}
\mathfrak{g}=\bigoplus_{a=0,1} \mathfrak{g}_{a}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \tag{1}
\end{equation*}
$$

with a bilinear operation (the general Lie bracket), $\llbracket \cdot, \cdot \rrbracket$, satisfying the identities:

$$
\begin{align*}
& \operatorname{deg}\left(\llbracket x_{a}, y_{b} \rrbracket\right)=\operatorname{deg}\left(x_{a}\right)+\operatorname{deg}\left(x_{b}\right)=a+b(\bmod 2), \tag{2}\\
& \llbracket x_{a}, y_{b} \rrbracket=-(-1)^{a b} \llbracket y_{b}, x_{a} \rrbracket, \tag{3}\\
& \llbracket x_{a}, \llbracket y_{b}, z \rrbracket \rrbracket=\llbracket \llbracket x_{a}, y_{b} \rrbracket, z \rrbracket+(-1)^{a b} \llbracket y_{b}, \llbracket x_{a}, z \rrbracket \rrbracket, \tag{4}
\end{align*}
$$

where the elements x_{a} and y_{b} are homogeneous, $x_{a} \in \mathfrak{g}_{a}, x_{b} \in \mathfrak{g}_{b}$, and the element $z \in \mathfrak{g}$ is not necessarily homogeneous. The grading function $\operatorname{deg}(\cdot)$ is defined for homogeneous elements of the subspaces \mathfrak{g}_{0} and $\mathfrak{g}_{1} \operatorname{modulo} 2, \operatorname{deg}\left(\mathfrak{g}_{0}\right)=0$, $\operatorname{deg}\left(\mathfrak{g}_{1}\right)=1$. The first identity (2) is called the grading condition, the second identity (3) is called the symmetry property and the condition (4) is the Jacobi identity. From (2) and (3) it is follows that the general Lie bracket $\llbracket \cdot, \cdot \rrbracket$ for homogeneous elements posses two value: commutator $[\cdot, \cdot]$ and anticommutator $\{\cdot, \cdot\}$. From (2) it is follows that \mathfrak{g}_{0} is a Lie subalgebra in \mathfrak{g}, and \mathfrak{g}_{1} is a \mathfrak{g}_{0}-module:

$$
\begin{equation*}
\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subseteq \mathfrak{g}_{0}, \quad\left[\mathfrak{g}_{0}, \mathfrak{g}_{1}\right] \subseteq \mathfrak{g}_{1}, \quad\left(\left\{\mathfrak{g}_{1}, \mathfrak{g}_{1}\right\} \subseteq \mathfrak{g}_{0}\right) \tag{5}
\end{equation*}
$$

(3b) The complex $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra

The complex $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded LSA $\tilde{\mathfrak{g}}$, as a linear space, is a direct sum of four graded components

$$
\begin{equation*}
\tilde{\mathfrak{g}}=\bigoplus_{\mathrm{a}=\left(\mathrm{a}_{1}, a_{2}\right)} \tilde{\mathfrak{g}}_{\mathrm{a}}=\tilde{\mathfrak{g}}_{(0,0)} \oplus \tilde{\mathfrak{g}}_{(1,1)} \oplus \tilde{\mathfrak{g}}_{(1,0)} \oplus \tilde{\mathfrak{g}}_{(0,1)} \tag{6}
\end{equation*}
$$

with a bilinear operation $\llbracket \cdot, \cdot \rrbracket$ satisfying the identities (grading, symmetry, Jacobi):

$$
\begin{align*}
& \operatorname{deg}\left(\llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket\right)=\operatorname{deg}\left(x_{\mathbf{a}}\right)+\operatorname{deg}\left(x_{\mathbf{b}}\right)=\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}\right), \tag{7}\\
& \llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket=-(-1)^{\mathbf{a b}} \llbracket y_{\mathbf{b}}, x_{\mathbf{a}} \rrbracket, \tag{8}\\
& \llbracket x_{\mathbf{a}}, \llbracket y_{\mathbf{b}}, z \rrbracket \rrbracket=\llbracket \llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket, z \rrbracket+(-1)^{\mathbf{a b}} \llbracket y_{\mathbf{b}}, \llbracket x_{\mathbf{a}}, z \rrbracket \rrbracket, \tag{9}
\end{align*}
$$

where the vector $\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ is defined $\bmod (2,2)$ and $\mathbf{a b}=a_{1} b_{1}+a_{2} b_{2}$. Here in (6)-(8) $x_{a} \in \tilde{\mathfrak{g}}_{\mathrm{a}}, x_{\mathrm{b}} \in \tilde{\mathfrak{g}}_{\mathrm{b}}$, and the element $z \in \tilde{\mathfrak{g}}$ is not necessarily homogeneous. From (6) and (7) it is follows that the general Lie bracket $\llbracket \cdot, \cdot \rrbracket$ for homogeneous elements posses two value: commutator $[\cdot, \cdot]$ and anticommutator $\{\cdot, \cdot\}$ as well as in the previous \mathbb{Z}_{2}-case. From (7) it is follows that $\tilde{\mathfrak{g}}_{(0,0)}$ is a Lie subalgebra in $\tilde{\mathfrak{g}}$, and the subspaces $\tilde{\mathfrak{g}}_{(1,1)}, \tilde{\mathfrak{g}}_{(1,0)}$ and $\tilde{\mathfrak{g}}_{(0,1)}$ are $\tilde{\mathfrak{g}}_{(0,0)}$-modules:

$$
\begin{equation*}
\left[\tilde{\mathfrak{g}}_{(0,0)}, \tilde{\mathfrak{g}}_{(0,0)}\right] \subseteq \tilde{\mathfrak{g}}_{(0,0)}, \quad\left[\tilde{\mathfrak{g}}_{(0,0)}, \tilde{\mathfrak{g}}_{(a, b)}\right] \subseteq \tilde{\mathfrak{g}}_{(a, b)} \tag{10}
\end{equation*}
$$

It should be noted that $\tilde{\mathfrak{g}}_{(0,0)} \oplus \tilde{\mathfrak{g}}_{(1,1)}$ is a Lie subalgebra in $\tilde{\mathfrak{g}}$ and the subspace $\tilde{\mathfrak{g}}_{(1,0)} \oplus \tilde{\mathfrak{g}}_{(0,1)}$ is a $\tilde{\mathfrak{g}}_{(0,0)} \oplus \tilde{\mathfrak{g}}_{(1,1)}$-module, and moreover $\left\{\tilde{\mathfrak{g}}_{(1,1)} \tilde{\mathfrak{g}}_{(1,0)}\right\} \subset \tilde{\mathfrak{g}}_{(0,1)}$ and vice versa $\left\{\tilde{\mathfrak{g}}_{(1,1)}, \tilde{\mathfrak{g}}_{(0,1)}\right\} \subset \tilde{\mathfrak{g}}_{(1,0)}$.

Let us take the complex $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebra (LSA) \mathfrak{g}, as a linear space over \mathbb{C} :

$$
\begin{equation*}
\tilde{\mathfrak{g}}=\bigoplus_{\mathrm{a}=\left(a_{1}, a_{2}\right)} \tilde{\mathfrak{g}}_{\mathrm{a}}=\tilde{\mathfrak{g}}_{(0,0)} \oplus \tilde{\mathfrak{g}}_{(1,1)} \oplus \tilde{\mathfrak{g}}_{(1,0)} \oplus \tilde{\mathfrak{g}}_{(0,1)} \tag{11}
\end{equation*}
$$

and apply to it the following cross-dressing

$$
\begin{align*}
& \tilde{\mathfrak{g}}^{\prime}=\left(e \tilde{\mathfrak{g}}_{(0,0)} \oplus c_{1} c_{2} \tilde{\mathfrak{g}}_{(1,1)}\right) \oplus\left(c_{1} \tilde{\mathfrak{g}}_{(1,0)} \oplus c_{2} \tilde{\mathfrak{g}}_{(0,1)}\right) \tag{12}\\
& =\tilde{\mathfrak{g}}_{0}^{\prime} \oplus \tilde{\mathfrak{g}}_{1}^{\prime} .
\end{align*}
$$

Because of the Lie symmetries $A d S_{5}$ and $d S_{5}$ are real forms of the simple complex Lie algebra $\mathfrak{s o}(5 ; \mathbb{C}) \simeq \mathfrak{s p}(4 ; \mathbb{C})$ it is natural to belive that $A d S_{5}$ and $d S_{5}(N=1)$ supersymmeries are the real forms of the Lie superalgebra $\mathfrak{o s p}(1 \mid 4 ; \mathbb{C})$ that is a minimal superextension of $\mathfrak{s p}(4 ; \mathbb{C})$.

3. Bosonic realization of the complex \mathbb{Z}_{2}-graded superalgebra

 osp $(1 \mid 4 ; \mathbb{C})$Let Bo_{2} be the standard bosonic algebra generated by two oscillators $b_{i}^{+}, b_{i}(i=1,2)$:

$$
\begin{equation*}
\left[b_{i}, b_{j}\right]=\left[b_{i}^{+}, b_{j}^{+}\right]=0, \quad\left[b_{i}, b_{j}^{+}\right]=\delta_{i j} / \tag{13}
\end{equation*}
$$

Let's put

$$
\begin{align*}
& X_{i}=\frac{1}{\sqrt{2}} b_{i}^{+}, \quad X_{-i}=\frac{1}{\sqrt{2}} b_{i}, \tag{14}\\
& X_{i i}=\left\{X_{i}, X_{i}\right\}=\left(b_{i}^{+}\right)^{2}, \quad X_{-i-i}=\left\{X_{-i}, X_{-i}\right\}=\left(b_{i}\right)^{2}, \tag{15}\\
& X_{i-i}=\left\{X_{i}, X_{-i}\right\}=\frac{1}{2}\left(b_{i}^{+} b_{i}+b_{i} b_{i}^{+}\right), \tag{16}\\
& X_{1-2}=\left\{X_{1}, X_{-2}\right\}=b_{1}^{+} b_{2}, \quad X_{2-1}=\left\{X_{2}, X_{-1}\right\}=b_{2}^{+} b_{1}, \tag{17}\\
& X_{12}=\left\{X_{1}, X_{2}\right\}=b_{1}^{+} b_{2}^{+}, \quad X_{-2-1}=\left\{X_{-2}, X_{-1}\right\}=b_{2} b_{1} . \tag{18}
\end{align*}
$$

These formulas represent the well-known realization of the \mathbb{Z}_{2}-graded orthosymplectic superalgebra $\mathfrak{o s p}(1 \mid 4 ; \mathbb{C})$ in the terms of the \mathbb{Z}_{2}-graded bosonic algebra Bo_{2}. So we can say that: A two-oscillator boson system over a complex field \mathbb{C}, where bosons in different oscillators commute, generates an orthosymplectic complex contragredient \mathbb{Z}_{2}-graded superalgebra $\mathfrak{o s p}(1 / 4 ; \mathbb{C})$. This superalgebra is a maximally-generated finite-dimensional contragredient \mathbb{Z}_{2}-graded Lie superalgebra for a given two-oscillator boson system, and the all graded Lie superalgebra Bo_{2} realizes a universally enveloping superalgebra $U(\mathfrak{o s p}(1 / 4 ; \mathbb{C}))$.

4. Cross-dressing bosonic realization of the complex $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded

superalgebra $\mathfrak{o s p}(1 \mid 2,2 ; \mathbb{C})$

The corresponding cross-dressing bosonic algebra $\tilde{\mathrm{Bo}}_{2}$ is generated by the following elements $\tilde{b}_{i}^{+}, \tilde{b}_{i}(i=1,2)$:

$$
\begin{equation*}
\left\{\tilde{b}_{1}, \tilde{b}_{2}\right\}=\left\{\tilde{b}_{1}^{+}, \tilde{b}_{2}^{+}\right\}=0, \quad\left[\tilde{b}_{i}, \tilde{b}_{i}^{+}\right]=I \quad(i=1,2) \tag{19}
\end{equation*}
$$

Let's put

$$
\begin{align*}
& \tilde{X}_{i}=\frac{1}{\sqrt{2}} \tilde{b}_{i}^{+}, \quad \tilde{X}_{-i}=\frac{1}{\sqrt{2}} \tilde{b}_{i}, \tag{20}\\
& \tilde{X}_{i i}=\left\{\tilde{X}_{i}, \tilde{X}_{i}\right\}=\left(\tilde{b}_{i}^{+}\right)^{2}, \quad \tilde{X}_{-i-i}=\left\{\tilde{X}_{-i}, \tilde{X}_{-i}\right\}=\left(\tilde{b}_{i}\right)^{2}, \tag{21}\\
& \tilde{X}_{i-i}=\left\{\tilde{X}_{i}, \tilde{X}_{-i}\right\}=\frac{1}{2}\left(\tilde{b}_{i}^{+} \tilde{b}_{i}+\tilde{b}_{i} \tilde{b}_{i}^{+}\right), \tag{22}\\
& \tilde{X}_{1-2}=\left[\tilde{X}_{1}, \tilde{X}_{-2}\right]=\tilde{b}_{1}^{+} \tilde{b}_{2}, \quad \tilde{X}_{2-1}=\left[\tilde{X}_{2}, \tilde{X}_{-1}\right]=\tilde{b}_{2}^{+} \tilde{b}_{1}, \tag{23}\\
& \tilde{X}_{12}=\left[\tilde{X}_{1}, \tilde{X}_{2}\right]=\tilde{b}_{1}^{+} \tilde{b}_{2}^{+}, \quad \tilde{X}_{-2-1}=\left[\tilde{X}_{-2}, \tilde{X}_{-1}\right]=\tilde{b}_{2} \tilde{b}_{1} . \tag{24}
\end{align*}
$$

These formulas represent the realization of the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded orthosymplectic superalgebra $\mathfrak{o s p}(1 \mid 2,2 ; \mathbb{C})$ in the terms of the cross-dressing bosonic algebra $\tilde{B o}_{2}$. So we can say that: A two-oscillator boson system over a complex field \mathbb{C}, where bosons in different oscillators anticommute, generates a complex contragredient orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra o $\mathfrak{o n p}(1 \mid 2,2 ; \mathbb{C})$. This superalgebra is a maximally-generated finite-dimensional contragredient $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebra for a given two-oscillator boson system, and the total graded Lie superalgebra $\tilde{B O}_{2}$ realizes a universally enveloping superalgebra U(os̃p $(1 \mid 2,2 ; \mathbb{C})$).

4a. Clifford algebra of quaternionic type
Let us to consider the Clifford algebra of quaternionic type $C_{\overline{2}}$. It generates by the cliffonnic elements $\left\{e, c_{1}, c_{2}, c_{1} c_{2}\right\}$. We use the standard quatenionic notations:

$$
\begin{equation*}
i=c_{1}, \quad j=c_{2}, \quad k=c_{1} c_{2}=i j \tag{25}
\end{equation*}
$$

These generators satisfy the relations:

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=-1 . \tag{26}
\end{equation*}
$$

There are two type of quaternion involutions: anti-Hermitian $\left(^{+}\right)$and Hermitian (*) :

$$
\begin{align*}
& i_{-H}^{+}=-i_{-H}, \quad j_{-H}^{+}=-j_{-H}, \quad k_{-H}^{+}=-k_{-H} \tag{27}\\
& i_{H}^{\star}=i_{H}, \quad j_{H}^{\star}=j_{H}, \quad k_{H}^{\star}=k_{-H} \tag{28}
\end{align*}
$$

4b. Real forms of the boson algebra

$$
\begin{align*}
& {\left[b, b^{+}\right]=l,} \tag{29}\\
& (b)^{+}=b^{+}, \quad\left(b^{+}\right)^{+}=b \quad(\text { non - compact } \quad \text { form }), \tag{30}\\
& (b)^{\star}=i_{H} b^{+}, \quad\left(b^{+}\right)^{\star}=-i_{H} b \quad(\text { compact form }) \tag{31}
\end{align*}
$$

for Hermitian i_{H} :

$$
\begin{equation*}
i_{H}^{\star}=i_{H}, \quad i_{H}^{2}=-1 . \tag{32}
\end{equation*}
$$

4c. Real forms of the orthosymplectic supersymmetry $\mathfrak{o s p}(1 \mid 2 ; \mathbb{C})$
Let's put

$$
\begin{align*}
& X_{+}=\frac{1}{\sqrt{2}} b^{+}, \quad X_{-}=\frac{1}{\sqrt{2}} b, \tag{33}\\
& X_{++}=\left\{X_{+}, X_{+}\right\}=\left(b^{+}\right)^{2}, \quad X_{--}=\left\{X_{-}, X_{-}\right\}=(b)^{2}, \tag{34}\\
& X_{+-}=\left\{X_{+}, X_{-}\right\}=\frac{1}{2}\left(b^{+} b+b b^{+}\right) . \tag{35}
\end{align*}
$$

This is the bosonic realization of the superalgebra $\mathfrak{o s p}(1 \mid 2 ; \mathbb{C})$.
It is not difficult to verify that the operation $\left(^{+}\right)$is involutive on the superalgebra $\mathfrak{o s p}(1 \mid 2 ; \mathbb{C})$ and it gives the non-compact real form $\mathfrak{o s p}(1 \mid \mathfrak{s p}(2 ; \mathbb{R}))$:

$$
\begin{align*}
& X_{+}^{+}=X_{-}, \quad X_{-}^{+}=X_{+}, \tag{36}\\
& X_{++}^{+}=X_{--}, \quad X_{--}^{+}=X_{++}, \quad X_{+-}^{+}=X_{+-} \tag{37}
\end{align*}
$$

Similarly, in the case of evolution (*) we obtain a compact real form $\mathfrak{o s p}(1 \mid \mathfrak{s p}(2))$:

$$
\begin{align*}
& X_{+}^{\star}=-i_{H} X_{-}, \quad X_{-}^{\star}=i_{H} X_{+}, \tag{38}\\
& X_{++}^{\star}=-X_{--}, \tag{39}
\end{align*} X_{--}^{\star}=-X_{++}, \quad X_{+-}^{\star}=X_{+-} .
$$

4d. Real forms of the orthosymplectic supersymmetry $\mathfrak{o s p}(1 \mid 4 ; \mathbb{C})$

$$
\begin{equation*}
\mathfrak{o s p}(1 \mid 4 ; \mathbb{C})=\mathfrak{o s p}_{1}(1 \mid 2 ; \mathbb{C}) \oplus \mathcal{P}_{12} \oplus \mathfrak{o s p}_{2}(1 \mid 2 ; \mathbb{C}) \tag{40}
\end{equation*}
$$

where the linear envelope

$$
\begin{equation*}
\mathcal{P}_{12}=\operatorname{Lin}\left\{X_{12}, X_{-2-1}, X_{1-2}, X_{2-1}\right\} \tag{41}
\end{equation*}
$$

is called the complex space of a curved four-momentum.
The orthosymplectic \mathbb{Z}_{2}-graded supersubalgebras $\mathfrak{o s p}_{i}(1 \mid 2 ; \mathbb{C})(i=1,2)$ are generated by the bases (33)-(35).

Application A. $\mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Poincarè superalgebras

Using the standard contraction procedure: $L_{\mu 4}=R P_{\mu}(\mu=0,1,2,3), Q_{k} \rightarrow \sqrt{R} Q_{k}$ and $\bar{Q}_{k} \rightarrow \sqrt{R} \bar{Q}_{k}(k=1,2)$ for $R \rightarrow \infty$ we obtain the super-Poincarè algebra (standard and alternative) which is generated by $L_{\mu \nu}, P_{\mu}, Q_{\alpha}, Q_{\dot{\alpha}}$ where $\mu, \nu=0,1,2,3 ; \alpha, \dot{\alpha}=1,2$ with the relations (we write down only those which are changed in the standard and alternative Poincarè SUSY.
(I) for the standard Poincarè SUSY:

$$
\begin{equation*}
\left[P_{\mu}, Q_{\alpha}\right]=\left[P_{\mu}, \bar{Q}_{\dot{\alpha}}\right]=0, \quad\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \beta}^{\mu} P_{\mu}, \tag{42}
\end{equation*}
$$

(II) for the altrenative Poincarè SUSY:

$$
\begin{equation*}
\left\{P_{\mu}, Q_{\alpha}\right\}=\left\{P_{\mu}, \bar{Q}_{\dot{\alpha}}\right\}=0, \quad\left[Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right]=2 \sigma_{\alpha \beta}^{\mu} P_{\mu} \tag{43}
\end{equation*}
$$

Application B. $\mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superspaces and superfields

Let us consider the supergroups associated to the $\mathbb{Z}_{2^{-}}$and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Poincarè superalgebras. A group element g is given by the exponential of the super-Poincarè generators, namely

$$
\begin{equation*}
g\left(x^{\mu}, \omega^{\mu \nu}, \theta^{\alpha}, \bar{\theta}^{\dot{\alpha}}\right)=\exp \left(x^{\mu} P_{\mu}+\omega^{\mu \nu} M_{\mu \nu}+\theta^{\alpha} Q_{\alpha}+\bar{Q}_{\dot{\alpha}} \bar{\theta}^{\dot{\alpha}}\right) . \tag{1}
\end{equation*}
$$

Because the grading of the exponent is zero (0 or (00)) we have the following. 1). \mathbb{Z}_{2}-case: $\operatorname{deg} P=\operatorname{deg} x=0, \operatorname{deg} Q=\operatorname{deg} \bar{Q}=\operatorname{deg} \theta=\operatorname{deg} \bar{\theta}=1$. This means that

$$
\begin{equation*}
\left[x_{\mu}, \theta_{\alpha}\right]=\left[x_{\mu}, \bar{\theta}_{\dot{\alpha}}\right]=\left\{\theta_{\alpha}, \bar{\theta}_{\dot{\beta}}\right\}=\left\{\theta_{\alpha}, \theta_{\beta}\right\}=\left\{\bar{\theta}_{\dot{\alpha}}, \bar{\theta}_{\dot{\beta}}\right\}=0 . \tag{2}
\end{equation*}
$$

2). $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-case: $\operatorname{deg} P=\operatorname{deg} x=$ (11), $\operatorname{deg} Q=\operatorname{deg} \theta=(10)$, $\operatorname{deg} \bar{Q}=\operatorname{deg} \bar{\theta}=(01)$. This means that

$$
\begin{equation*}
\left\{x_{\mu}, \theta_{\alpha}\right\}=\left\{x_{\mu}, \bar{\theta}_{\dot{\alpha}}\right\}=\left[\theta_{\alpha}, \bar{\theta}_{\dot{\beta}}\right]=\left\{\theta_{\alpha}, \theta_{\beta}\right\}=\left\{\bar{\theta}_{\dot{\alpha}}, \bar{\theta}_{\dot{\beta}}\right\}=0 \tag{3}
\end{equation*}
$$

One defines the superspaces as the coset spaces of the standard alternative super-Poincarè groups by the Lorentz subgroup, parameterized the coordinates x^{μ}, θ^{α}, $\bar{\theta}^{\dot{\alpha}}$, subject to the condition $\bar{\theta}^{\dot{\alpha}}=\left(\theta^{\alpha}\right)^{*}$.
We can define a superfield \mathcal{F} as a function of superspace.

Application C. Once more about SUGRA

In the theory of supergravity (SUGRA), there has been the following unsolved problem for about 30 years. All physical reasonable solutions of SURGA models with cosmological constants Λ have been constructed for the case $\Lambda<0$, i.e. for the anti-de Sitter metric

$$
\begin{equation*}
g_{a b}=\operatorname{diag}(1,-1,-1,-1,1), \quad(a, b=0,1,2,3,4) \tag{4}
\end{equation*}
$$

with the space-time symmetry $\mathfrak{o}(3,2)$. In the case $\Lambda>0$, i.e. for the Sitter metric

$$
\begin{equation*}
g_{a b}=\operatorname{diag}(1,-1,-1,-1,-1), \quad(a, b=0,1,2,3,4) \tag{5}
\end{equation*}
$$

with the space-time symmetry $\mathfrak{o}(4,1)$ no reasonable solutions have been find. For example, in SUGRA it was obtained the following relation

$$
\begin{equation*}
\Lambda=-3 m^{2}, \tag{6}
\end{equation*}
$$

where m is the massive parameter of gravitinos.
In my opinion these problems for the case $\Lambda>0$ are connected with superextensions of anti-de Sitter $\mathfrak{o}(3,2)$ and de Sitter $\mathfrak{o}(4,1)$ symmetries. The symmetry $\mathfrak{o}(3,2)$ has the superextension - the superalgebra $\mathfrak{o s p}(3,2 \mid 1)$. This is the usual \mathbb{Z}_{2}-graded superalgebra. In the case of $\mathfrak{o}(4,1)$ such superextension does not exist. However the Lie algebra $\mathfrak{o}(4,1)$ has another alternative superextension that is based on the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-grading and a preliminary analysis shows that we can construct the reasonable SUGRA models for the case $\Lambda>0$.

Let us return to SUGRA formula which connects the cosmological constant Λ with the mass of gravitinos m

$$
\begin{equation*}
\Lambda=-3 m^{2} \tag{7}
\end{equation*}
$$

We can rewrite the formula in terms of the time-component of the four-momenta, P_{0} :

$$
\begin{equation*}
\Lambda=-3 P_{0}^{2}<0 \tag{8}
\end{equation*}
$$

This formula is valid for \mathbb{Z}_{2}-graded case and we belive tbat it is valid for the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded case also, that is

$$
\begin{equation*}
\Lambda=-3 \tilde{P}_{0}^{2}>0 \tag{9}
\end{equation*}
$$

where \tilde{P}_{0} is the time-component of the four-momenta for the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded case. Because

$$
\begin{equation*}
\tilde{P}_{0}=c_{1} c_{2} P_{0}=c_{1} c_{2} m \tag{10}
\end{equation*}
$$

where c_{1}, c_{2} are the real cliffons: $c_{1}^{*}=c_{1}, c_{2}^{*}=c_{2},\left(c_{1} c_{2}\right)^{*}=c_{1} c_{2},\left(c_{1} c_{2}\right)^{2}=-1$, therefore

$$
\begin{equation*}
0<\Lambda=-3 \tilde{P}_{0}^{2}=3 m^{2} \tag{11}
\end{equation*}
$$

THANK YOU FOR YOUR ATTENTION

[^0]: ${ }^{1}$ Below we will also use the name "cliffonic algebra" by analogy with bosonic and fermionic associative algebras.

