Problems of the Modern Mathematical Physics

T. Vetsov

Department of Physics, Sofia University, Bulgaria

Geometry of Thermodynamic Processes

BLTP, JINR, Dubna, Russia
Theme 01-3-1138 "Modern Mathematical Physics: Gravity, Supersymmetry and Strings"

February 19-24, 2024

Today

What is

Transition from one (equilibrium) state to another?

- Stability?
- Reversibility?
- Duration?
- Reaction speed?
- Optimality?

Keywords: Thermal-geometric optimization

Classical part

- Step 1: Thermodynamic representation

Control parameters and restrictions on the system

- Step 2: Thermodynamic equilibrium

Stability against perturbations

Thermodynamic information geometry

- Step 3: Thermodynamic metric

Interactions and phase transitions

- Step 4: Thermodynamic length

Quantifying fluctuation probabilities

- Step 5: Optimal protocols

Max/min thermodynamic transformations and Control theory

Step 1: Energy representation

- The first law of thermodynamics:

$$
\begin{equation*}
d U=T d S-p d V+\mu d N+\cdots=\sum_{a=1}^{n} I_{a} d E^{a}=\vec{I} \cdot d \vec{E} \tag{1}
\end{equation*}
$$

- Fundamental relation:

$$
\begin{equation*}
U=U(S, V, N, \ldots) \tag{2}
\end{equation*}
$$

- Equations of state (EoS):

$$
\begin{equation*}
I_{a}=\left.\frac{\partial U(\vec{E})}{\partial E^{a}}\right|_{\ldots, \hat{E}^{a}, \ldots} \tag{3}
\end{equation*}
$$

Step 1: Entropy representation

- The first law of thermodynamics:

$$
\begin{equation*}
d S=\frac{1}{T} d U-\frac{p}{T} d V+\frac{\mu}{T} d N+\cdots=\sum_{a=1}^{n} J_{a} d S^{a}=\vec{J} . d \vec{S} \tag{4}
\end{equation*}
$$

- Fundamental relation:

$$
\begin{equation*}
S=S(U, V, N, \ldots) \tag{5}
\end{equation*}
$$

- Equations of state (EoS):

$$
\begin{equation*}
J_{a}=\left.\frac{\partial S(\vec{S})}{\partial S^{a}}\right|_{\ldots, \hat{S}^{a}, \ldots} \tag{6}
\end{equation*}
$$

Legendre transformation

Energy derived potentials:

$$
\begin{align*}
& \Phi_{(a)}=\mathcal{L}_{E^{a}} U=U-I_{a} E^{a} \tag{7}\\
& \Phi_{(a b)}=\mathcal{L}_{E^{a}, E^{b}} U=U-I_{a} E^{a}-I_{b} E^{b}, \quad a \neq b \tag{8}
\end{align*}
$$

Entropy derived potentials:

$$
\begin{align*}
& \Psi_{(a)}=\mathcal{L}_{S^{a}} S=S-J_{a} S^{a} \tag{9}\\
& \Psi_{(a b)}=\mathcal{L}_{S^{a}, S^{b}} S=S-J_{a} S^{a}-J_{b} S^{b}, \quad a \neq b \tag{10}
\end{align*}
$$

Energy derived potentials:

$$
\begin{array}{ll}
\mathcal{L}_{S} U=U-T S=F & \text { Helmholtz potential } \\
\mathcal{L}_{V} U=U+p V=H & \text { Enthalpy } \\
\mathcal{L}_{S, V} U=U-T S+p V=G & \text { Gibbs potential } \\
\mathcal{L}_{S, N} U=U-T S-\mu N=\Phi & \text { Grand potential } \\
\mathcal{L}_{S, V, N} U=U-T S+p V-\mu N=0 & \text { Euler's identity }
\end{array}
$$

Entropy derived potentials:

$$
\begin{array}{ll}
\mathcal{L}_{U} S=S-\frac{U}{T}=\Phi & \text { Massieu potential }, \\
\mathcal{L}_{U, V} S=S-\frac{U}{T}-\frac{p V}{T}=\Xi & \text { Planck potential } \\
\mathcal{L}_{U, V, N} S=S-\frac{U}{T}-\frac{p V}{T}+\frac{\mu N}{T}=0 & \text { Euler's identity }
\end{array}
$$

Step 2: Thermodynamic stability

Energy is strictly convex function:

$$
\begin{equation*}
U(S+\Delta S, V+\Delta V, \ldots)+U(S-\Delta S, V-\Delta V, \ldots)>2 U(S, V, \ldots) . \tag{11}
\end{equation*}
$$

Entropy is strictly concave function:

$$
\begin{equation*}
S(U+\Delta U, V+\Delta V, \ldots)+S(U-\Delta U, V-\Delta V, \ldots)<2 S(U, V, \ldots) . \tag{12}
\end{equation*}
$$

Necessary conditions for equilibrium

Energy variations $\delta U=\delta^{(1)} U+\delta^{(2)} U+\cdots$:

$$
\begin{align*}
& \delta^{(1)} U=0 \quad \Rightarrow \quad T=T^{*}, \quad p=p^{*}, \quad \mu=\mu^{*}, \ldots \tag{13}\\
& \delta^{(2)} U \propto \sum_{a, b} \frac{\partial^{2} U}{\partial E^{a} \partial E^{b}} \delta E^{a} \delta E^{b}>0 . \tag{14}
\end{align*}
$$

Entropy variations $\delta S=\delta^{(1)} S+\delta^{(2)} S+\cdots$:

$$
\begin{align*}
& \delta^{(1)} S=0 \quad \Rightarrow \quad T=T^{*}, \quad p=p^{*}, \quad \mu=\mu^{*}, \ldots \tag{15}\\
& \delta^{(2)} S \propto \sum_{a, b} \frac{\partial^{2} S}{\partial S^{a} \partial S^{b}} \delta S^{a} \delta S^{b}<0 . \tag{16}
\end{align*}
$$

Sufficient conditions for stability

Sylvester criterion

All principal minors of the Hessian should be strictly:

$$
\begin{array}{ll}
\text { Energy: } & \Delta_{k}>0, \quad k=1, . ., n \\
\text { Entropy: } & (-1)^{k} \Delta_{k}>0, \quad k=1, . ., n \tag{18}
\end{array}
$$

Eigenvalue criterion

All eigenvalues of the Hessian should be strictly:
Energy: $\quad \epsilon_{k}>0, \quad k=1, . ., n$,
Entropy: $\quad s_{k}<0, \quad k=1, . ., n$.

Stability under change of coordinates

P1: How stability changes under change of coordinates?
Change of variables from \vec{E} space to \vec{e} space:

$$
g_{a b}^{(W)}(\vec{E})=\frac{\partial^{2} E(\vec{E})}{\partial E^{a} \partial E^{b}}=\sum_{\alpha, \beta} \frac{\partial e^{\alpha}}{\partial E^{a}}\left(g_{\alpha \beta}^{(W)}(\vec{e})-\Gamma_{\alpha \beta}^{\gamma}(\vec{e}) \frac{\partial E(\vec{e})}{\partial e^{\gamma}}\right) \frac{\partial e^{\beta}}{\partial E^{b}} .
$$

Induced metric on the e-manifold:

$$
\begin{equation*}
h_{\alpha \beta}(\vec{e})=\sum_{a, b} \delta_{a b} \frac{\partial E^{a}}{\partial e^{\alpha}} \frac{\partial E^{b}}{\partial e^{\beta}}, \tag{21}
\end{equation*}
$$

Standard affine connection:

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\gamma}(\vec{e})=\frac{1}{2} h^{\gamma \delta}\left(\partial_{\beta} h_{\delta \alpha}+\partial_{\alpha} h_{\delta \beta}-\partial_{\delta} h_{\alpha \beta}\right) . \tag{22}
\end{equation*}
$$

[Avramov, Dimov, Radomirov, Rashkov, Vetsov, PoS(BPU11)056, 2022]

Stability under change of potential

P2: How stability changes under change of the potential?

- Solved by the eigenvalue criterion for arbitrary n.
- Solved for Sylvester: $n \leq 3$ based on eigenvalue method.
- Unsolved for Sylvester: for $n>3$ (as far as I know!).

Energy Hessian eigenvalue equation:

$$
\begin{equation*}
\lambda^{2}-\left(\frac{\partial^{2} U}{\partial S^{2}}+\frac{\partial^{2} U}{\partial V^{2}}\right) \lambda+\frac{\partial^{2} U}{\partial S^{2}} \frac{\partial^{2} U}{\partial V^{2}}-\left(\frac{\partial^{2} U}{\partial S \partial V}\right)^{2}=0 \tag{23}
\end{equation*}
$$

Energy $U=U(S, V)$ (strictly convex):

$$
\frac{\partial^{2} U}{\partial S^{2}}>0, \quad \frac{\partial^{2} U}{\partial V^{2}}>0, \quad\left|\begin{array}{cc}
\frac{\partial^{2} U}{\partial S^{2}} & \frac{\partial^{2} U}{\partial S \partial V} \tag{24}\\
\frac{\partial^{2} U}{\partial S \partial V} & \frac{\partial^{2} U}{\partial V^{2}}
\end{array}\right|>0
$$

Change to Helmholtz potential $F(T, V)=\mathcal{L}_{S} U=U-T S$ (saddle function):

$$
\frac{\partial^{2} F}{\partial T^{2}}<0, \quad \frac{\partial^{2} F}{\partial V^{2}}>0, \quad\left|\begin{array}{cc}
\frac{\partial^{2} F}{\partial T^{2}} & \frac{\partial^{2} F}{\partial T \partial V} \tag{25}\\
\frac{\partial^{2} F}{\partial T \partial V} & \frac{\partial^{2} F}{\partial V^{2}}
\end{array}\right|>0
$$

The space of equilibrium states

The space of equilibrium states

The relation $U=U(\vec{E})$ defines an n-dimensional surface \mathcal{E}^{n} embedded in \mathbb{E}^{n+1} with coordinates $\left(E^{1}, \ldots, E^{n}, U\right)$.

Equilibrium manifold

\mathcal{E}^{n} becomes an equilibrium manifold if equipped with a proper n-dimensional Riemannian metric.

Step 3: Choosing a metric

(1) Hessian thermodynamic metrics
(F. Weinhold 1975, G. Ruppeiner 1979)
(2) Legendre invariant thermodynamic metrics
(H. Quevedo 2016)
(3) Covariant thermodynamic metrics (L. Velazquez 2012)

P3: Choosing the metric is unclear!

- G. Ruppeiner $1979(\epsilon= \pm 1)$:

$$
\begin{equation*}
d s^{(R)}=\epsilon \frac{\partial^{2} S(\vec{S})}{\partial S^{a} \partial S^{b}} d S^{a} d S^{b} \tag{26}
\end{equation*}
$$

- F. Weinhold 1975:

$$
\begin{equation*}
d s^{(W)}=\epsilon \frac{\partial^{2} U(\vec{E})}{\partial E^{a} \partial E^{b}} d E^{a} d E^{b} . \tag{27}
\end{equation*}
$$

- Covariant metric (L. Velazquez 2012):

$$
\begin{equation*}
d s^{(C o v)}=\epsilon\left(\nabla_{a} \nabla_{b} S\right) d S^{a} d S^{b}=\epsilon\left(\frac{\partial^{2} S}{\partial S^{a} \partial S^{b}}-\Gamma_{a b}^{c}(g) \frac{\partial S}{\partial S^{c}}\right) d S^{a} d S^{b} . \tag{28}
\end{equation*}
$$

- Legendre invariant metrics (H. Quevedo 2016), $L \in \mathbb{R}, k \in \mathbb{Z}$:

$$
\begin{equation*}
d s^{(Q, I I I)}=L \sum_{a}\left(S^{a} \frac{\partial S}{\partial S^{a}}\right)^{2 k+1}\left(\frac{\partial^{2} S}{\partial S^{a} \partial S^{b}} d S^{a} d S^{b}\right) \tag{29}
\end{equation*}
$$

Step 4: Thermodynamic length and irreversibility

- Thermodynamic length quantifies the distance between two equilibrium states. It is the number of fluctuations associated with the change of the state of the system. In entropy natural coordinates:

$$
\mathcal{L}[\gamma]=\int_{\gamma} \sqrt{g_{a b}(\vec{S}) d S^{a} d S^{b}} .
$$

In affine parametrization with parameter t :

$$
\begin{equation*}
\mathcal{L}(\tau)=\int_{0}^{\tau} \sqrt{g_{a b}(\vec{S}) \dot{S}^{a} \dot{S}^{b}} d t \tag{31}
\end{equation*}
$$

- Thermodynamic divergence of the path (Cauchy-Schwarz),

$$
\begin{equation*}
\mathcal{J}=\tau \int_{0}^{\tau} g_{a b}(\vec{S}) \dot{S}^{a} \dot{S}^{b} d t \geq \mathcal{L}^{2} \tag{32}
\end{equation*}
$$

measures the efficiency of the quasi-static protocols.

- \mathcal{L} sets lower bounds on dissipation!

Step 5: Optimal finite-time thermodynamic protocols

Thermodynamic length

\mathcal{L} is a measure of the distance between two macro states on the equilibrium manifold \mathcal{E}^{n}.

Optimal finite-time processes
\mathcal{L} defines optimal quasistatic protocols on \mathcal{E}^{n}.

Efficiency of a process

\mathcal{L} is a measure of the energy required to transform the system from one state to another. It characterizes the geometric path that minimizes the dissipation (or maximizes the efficiency) of a thermodynamic process.

P4: Generalization to nonequilibrium case?

An Example: Ideal Gas vs Van der Waals gas

Characteristics of the ideal gas

The partition function:

$$
\begin{equation*}
Z_{N}(\beta, V)=\frac{V^{N}}{N!}\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3 N}{2}}=\frac{V^{N}}{N!\lambda_{T}^{3 N}}, \quad \beta=\frac{1}{k T} . \tag{33}
\end{equation*}
$$

Helmholtz free energy:

$$
\begin{equation*}
F(T, V, N)=-k T \ln Z_{N}(T, V)=-k T N\left[1+\ln \frac{V}{N \lambda_{T}^{3}}\right] \tag{34}
\end{equation*}
$$

Entropy and internal energy:

$$
\begin{equation*}
S=-\left.\frac{\partial F}{\partial T}\right|_{V, N}=k N\left[\frac{5}{2}+\ln \frac{V}{N \lambda_{T}^{3}}\right], \quad U=F+T S=\frac{3}{2} N k T . \tag{35}
\end{equation*}
$$

Equation of state:

$$
\begin{equation*}
p=-\left.\frac{\partial F}{\partial V}\right|_{T, N}=\frac{N k T}{V} \Rightarrow p V=N k T . \tag{36}
\end{equation*}
$$

Ruppeiner geometry and thermodynamic stability Entropy in natural parameters:

$$
\begin{equation*}
S(U, V, N)=\frac{1}{2} k N\left(5+\ln \frac{64 \pi^{3} m^{3} U^{3} V^{2}}{27 h^{6} N^{5}}\right) . \tag{37}
\end{equation*}
$$

Ruppeiner's metric for $N=$ const:

$$
\hat{g}^{(R)}=\epsilon \hat{H}_{S}=\epsilon\left(\begin{array}{cc}
\frac{\partial^{2} S}{\partial U^{2}} & \frac{\partial^{2} S}{\partial U \partial V} \tag{38}\\
\frac{\partial^{2} S}{\partial U \partial V} & \frac{\partial^{2} S}{\partial V^{2}}
\end{array}\right)=\epsilon\left(\begin{array}{cc}
-\frac{3 k N}{2 U^{2}} & 0 \\
0 & -\frac{k N}{V^{2}}
\end{array}\right) .
$$

Level 2 thermodynamic stability of the ideal gas:

$$
\begin{equation*}
\frac{\partial^{2} S}{\partial U^{2}}<0, \quad \frac{\partial^{2} S}{\partial V^{2}}<0, \quad \operatorname{det} \hat{H}_{S}>0 \Rightarrow U \neq 0 \tag{39}
\end{equation*}
$$

Positive definiteness of the metric:

$$
\begin{equation*}
g_{U U}^{(R)}>0, \quad g_{V V}^{(R)}>0, \quad \operatorname{det} \hat{g}^{(R)}>0 \Rightarrow \epsilon=-1 \text { and } U \neq 0 . \tag{40}
\end{equation*}
$$

Optimal process at constant volume

Thermodynamic length:

$$
\begin{equation*}
\mathcal{L}[\gamma]=\int_{\gamma} \sqrt{g_{a b}(\vec{S}) d S^{a} d S^{b}}=\int_{\gamma} \sqrt{\frac{3 k N}{2 U^{2}} d U^{2}+\frac{k N}{V^{2}} d V^{2}} \tag{41}
\end{equation*}
$$

For an isochoric process $V=$ const, hence

$$
\begin{equation*}
\mathcal{L}_{V}(1,2)= \pm \int_{1}^{2} \sqrt{\frac{3 k N}{2}} \frac{|d U|}{U}= \pm \sqrt{\frac{3 k N}{2}} \ln \frac{U_{2}}{U_{1}}\left[J K^{-1}\right]^{1 / 2} \tag{42}
\end{equation*}
$$

The geodesic equation on a curved manifold is given by

$$
\begin{equation*}
\ddot{S}^{a}(t)+\Gamma_{b c}^{a} \dot{S}^{b} \dot{S}^{c}=0 \tag{43}
\end{equation*}
$$

In (U, V) space:

$$
\begin{equation*}
\ddot{U}(t)-\frac{\dot{U}(t)^{2}}{U(t)}=0, \quad \ddot{V}(t)-\frac{\dot{V}(t)^{2}}{V(t)}=0 . \tag{44}
\end{equation*}
$$

At $V=$ const one has two possibilities for i.c. and b.c.:

$$
\begin{align*}
& U(t)=U_{0} e^{\lambda t}, \lambda=\frac{\dot{U}_{0}}{U_{0}}, U(0)=U_{0}, \quad \dot{U}(0)=\dot{U}_{0}= \pm\left|\dot{U}_{0}\right| \tag{45}\\
& U(t)=U_{0}\left(\frac{U}{U_{0}}\right)^{t / \tau}, \quad U(0)=U_{0}, \quad U(\tau)=U \tag{46}
\end{align*}
$$

Therefore, one has two possibilities for the length:

$$
\mathcal{L}(\tau)=\int_{0}^{\tau} \sqrt{g_{a b}(\vec{S}) \dot{S}^{a} \dot{S}^{b}} d t=\left\{\begin{array}{l}
\sqrt{\frac{3 k N}{2}} \lambda \tau=v \tau \tag{47}\\
\sqrt{\frac{3 k N}{2}} \ln \frac{U}{U_{0}}
\end{array}\right.
$$

Hence the TD speed and the TD time of the process:

$$
\begin{equation*}
v=\sqrt{\frac{3 k N}{2}} \lambda\left[J K^{-1} s^{-2}\right]^{1 / 2}, \quad \tau=\frac{1}{\lambda} \ln \frac{U}{U_{0}}[s] . \tag{48}
\end{equation*}
$$

Change of entropy during an isochoric process:

$$
\begin{equation*}
\Delta S=\int \frac{\delta Q}{T}=C_{V} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=\frac{3 k N}{2} \ln \frac{T_{2}}{T_{1}}=\frac{3 k N}{2} \ln \frac{U_{2}}{U_{1}} . \tag{49}
\end{equation*}
$$

Reversibility of the process:

$$
\begin{equation*}
\mathcal{L}_{V}^{2}(1,2)=\frac{3 k N}{2} \ln ^{2} \frac{U_{2}}{U_{1}}=\Delta S \ln \frac{U_{2}}{U_{1}}=\mathcal{J} \tag{50}
\end{equation*}
$$

Summary: $\mathcal{L}^{2} \propto$ the entropy produced and $v \propto$ the rate of entropy production.

Isochoric process speed vs initial rates

Isochoric process time vs initial rates

Conclusions and future directions

- TD length sets bounds on dissipation.
- Geometric framework of system optimization and control.
- Main problem: which metric formalism to use?
- Generalization to nonequilibrium physics?
- Applications to quantum physics and quantum information.
- Applications to nuclear and particle physics.
- Application to black hole physics and holography.

Applications to Black Holes and Holography

- V. Avramov, H. Dimov, M. Radomirov, R. C. Rashkov and T. Vetsov, On Thermodynamic Stability of Black Holes. Part II: AdS Family of Solutions, [arXiv:2402.07272 [gr-qc]].
- V. Avramov, H. Dimov, M. Radomirov, R. C. Rashkov and T. Vetsov, On Thermodynamic Stability of Black Holes. Part I: Classical Stability, [arXiv:2302.11998 [gr-qc]].
- V. Avramov, H. Dimov, M. Radomirov, R. C. Rashkov and T. Vetsov, Thermodynamic stability of ACGL Chern-Simons Black Hole and Optimal Processes, Ann. U. Craiova Phys. 33 (2023), 78-97.
- V. Avramov, H. Dimov, M. Radomirov, R. C. Rashkov and T. Vetsov, Thermodynamic Equilibrium, Nambu Brackets and Induced Hessians, PoS(BPU11)056, 2022
- H. Dimov, M. Radomirov, I. N. Iliev, R. C. Rashkov and T. Vetsov, Global and local thermodynamics of the (2+1)-dimensional rotating Gauss-Bonnet black hole," Phys. Rev. D 105 (2022) no.4, 044033.

Credits

Thank You!

- Special Gratitude to Organising Committee: Sergey Krivonos, Stepan Sidorov, Yulia Polyakova, Mikhail Podoinitsyn, Anton Sutulin.
- Special Gratitude to Program Committee: Ioseph Buchbinder, Alexey Isaev, Dmitri Kazakov, Irina Pirozhenko, Nikolay Tyurin.
- Fully supported by the program "JINR-Bulgaria" of the Bulgarian Nuclear Regulatory Agency
- BLTP theme: 01-3-1138 "Modern Mathematical Physics: Gravity, Supersymmetry and Strings".

