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The statement of the problem

The Schr�odinger equation for the problem of penetration of A identical spinless
quantum particles in Oscillator units

− A∑
i=1

∂2

∂x2
i
+

A∑
j=2

j−1∑
i=1

1
A
(xij)

2 +
A∑

i=1

V (xi)− E

Ψ(x1, ..., xA;E) = 0.

The problem under consideration is to �nd the
solutions of SE that are totally symmetric (or
antisymmetric) with respect to the permutations
of A particles, i.e. the permutations of
coordinates xi ↔ xj at i , j = 1, ...,A, or symmetry
operations of permutation group Sn.

Barrier potential in con�guration space A = 2



Example of interaction potential in center-of-mass plane at A = 3.
Intersections in R4 of the coordinate spaces R3 (labelled 1, 2, 3, 4) and the spaces R3

of pair collisions (labelled 12, etc.) with the sphere S2 in the center-of-mass space R3.
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Solution of a Three-Body Problem in One Dimension 

F. CALOGERO· 

Physics Department, Imperial College, London SW7, England 

(Received 27 January 1969) 

The problem of three equal particles interacting pairwise by inversecube forces ("centrifugal 
potential") in addition to linear forces ("harmonica I potential") is solved in one dimension. 

1. INTRODUCTION 

It has been known for some time that the one
dimensional three-body problem with linear ("har
monical") and inverse-cube ("centrifugal") pair forces 
is separable,I,2 but apparently there has been no 
attempt at its actual solution. In this paper this 
problem is solved in the case of equal particles: The 
complete energy spectrum is determined, and all the 
corresponding eigenfunctions are explicitly written out. 

The particles may satisfy Boltzmann, Bose, or 
Fermi statistics; in fact, the nature of the problem is 
such that the type of statistics does not modify the 
energy spectrum and affects the wavefunctions only 
in a trivial way. The problem which obtains from that 
described above eliminating the inverse-cube force 
between two pairs (so that it acts only between one 
pair) is also solved. 

In Sec. 2 we discuss the two-body problem with 
the same "oscillator plus centrifugal" forces. This 
treatment is useful both as a preliminary for the 
solution and as a model for the interpretation of the 
three-body problem, which is discussed in Sec. 3. 
The last section contains comments on possible 
extensions of the results of this paper. 

U nits are chosen so that 2mli-2 = 1, where m is 
the mass of the particles. 

2. THE TWO-BODY PROBLEM 

The Schrodinger equation for the two-body problem 
under consideration is 

Here Xl and X2 indicate, of course, the coordinates of 
the two particles, and we assume that g > - t to 
avoid "fall to the center." 3 Going over to the center-

* Permanent address: Physics Department, Rome University, 
Rome, Italy. 

1 H. R. Post, Proc. Phys. Soc. (London) A69, 936 (1956). 
2 J. Hurley, J. Math. Phys. 8, 813 (1967). 
3 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon 

Press, Inc., New York, 1958), Sec. 35. 

of-mass (CM) and relative coordinates,4 

R(2) = t{XI + x2), 

x = 2-!(xI - x 2), 

(2.2a) 

(2.2b) 

and eliminating the center-of-mass motion, we get 

[ -::2 + iW2
X

2 + tgx-
2 

- EJ lP = 0, (2.3) 

where now E is the energy in the CM system. 
The physically acceptable solutions of this equation 

(in the interval ° S x < CX) are 

lPn(x) = xa+! exp ( - iwx2)L",,(twX2), n = 0, 1, 2, .. " 

(2.4) 
with 

(2.5) 

Here L~ is a generalized Laguerre polynomial, defined 
as in Ref. 5. By changing the sign of a, namely, by 
taking the negative determination of the square root 
in Eq. (2.5), one would still obtain a solution of the 
Schrodinger equation, but it would not be an accept
able one owing to its behavior at x = 0.6 

The corresponding energy levels are 

En =w(2n+a+l), n=0,1,2,···. (2.6) 

Because, for g ~ 0, both lPn(x) and lPn(x)lP~(x) 
vanish at x = 0, the physically acceptable solutions in 
the whole interval - CX) < x < 00 are obtained by 
supplementing Eq. (2.4) with the simple prescription6 

lP( -x) = ±lP(x), x ~ 0. (2.7) 

The upper sign corresponds to Bose statistics, the 
lower sign to Fermi statistics. Obviously the energy 
spectrum is no affectctd by this prescription. This 

4 The factor 2-& in the definition of x is convenient for the com
parison with the three-body problem. 

5 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series 
and Products (Academic Press Inc., 1965); Higher Transcendental 
Functions, A. Erdelyi, Ed. (McGraw-Hill Book Co., Inc., 1953), Vol. 
II. Note that the definition of Laguerre polynomials given here is 
different from that used in some textbooks, for instance in Ref. 3. 

6 A wavefunction !p(x) is considered physically acceptable if both 
11p(x)/2 and 1p(x)1p'(x) are continuous. This condition may be inter
preted as deriving from the requirement that both the density and 
the current of probability (that the particle be found at x) vary 
continuously with x. Moreover, the wavefunction must be normaliz
able (for closed problems). 
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Value for X = 0 and a = 1/7.5 = 2.790 mrad/yr.
Value for 1 S.U. and X = 0 = 2.998 mrad/yr.
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SET OF CO-ORDINATE SYSTEMS WHICH DIAGONALIZE THE KINETIC
ENERGY OF RELATIVE MOTION*

BY DONALD W. JEPSENt AND JOSEPH 0. HIRSCHFELDER

UNIVERSITY OF WISCONSIN NAVAL RESEARCH LABORATORY, MADISON, WiSCONSIN

Communicated December 15, 1958

A simple scheme is given whereby one can write down any one of a large number
of possible sets of co-ordinates, to use in an N-particle problem, which have the
property of expressing the relative kinetic energy of the system in diagonal form.
This gives a Schrddinger equation without cross-derivatives. These sets of co-
ordinates can be visualized in terms of certain "mobile" models. It is easy to
construct a "mobile" which leads to a co-ordinate set appropriate to a particular
physical problem.

In treating the kinematics of a many-body problem by either classical or quantum
mechanics, it is desirable to shift from space-fixed co-ordinates to relative co-
ordinates and separate off the motion of the center of mass. The resulting expres-
sions for the kinetic energy usually contain cross-terms in the relative velocities
or momenta. The presence of these cross-terms greatly complicates the dynamics.
It was the presence of such cross-terms which led Eyring and Polanyil to skew the
relative co-ordinates in treating the interaction of three hydrogen atoms. Their
skewed co-ordinates represent a new set of relative co-ordinates, which is indeed
a special case of the general co-ordinates without such cross-terms which we shall
consider here.
There are a great many different sets of relative co-ordinates which yield an

expression for the kinetic energy of relative motion in diagonal form. One of these
sets has been considered previously by Hirschfelder and Dahler.2 They found
that the kinetic energy of an N-particle system has the form'

T = 1/2[Q12 + Q22 + + QN2] (1)
if the co-ordinates are given by

Qi = M2) (r2 - Ti), (2)

QM?3)(2m )1) (3)
Q2 =MM) [Ml(r3- rl) + M2(r3 - 72)] (3)
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over i to a sum over the particles in C plus a sum over the particles in D.

ZE- AiAAil = I-tAkA + A- A (29)
i mi yec me SeD mS

now

A l= 1 m for yEC,

As' - MS for 5ED,
MD

E-Ai Af' = mYMA(MC +E ma(MA)(MD)

MA [MC (y C MD (z ma)] 0. (30)

Case III. The ql is defined as a vector between the centers of mass of two sets
such that both A and B lie in one of the sets. This case is proved by interchanging
the roles of q1 and qk to obtain Case II. The proof remains true if q I is drawn
from the origin to the center of mass of the set.
The reduced masses are given by

Xk = E- (Alk)2 = E (M ) + E (MB)
~~ c~aA ~a \MA/ &BM,\MB/

MA2 fin+ ZM#~ + .(31)MA2 Ea +MB2 6SOB MA MB

Note that if B is empty, the second summation is absent and Ak = 1/MA.

* This research was supported in part by the United States Air Force monitored by Aeronautic
Research Laboratory, Wright Air Development Center.

t Present address: Clarendon Laboratory, University of Oxford, Oxford, England.
1 H. Eyring and M. Polanyi, Z. physik. Chem., -B12,- 279,- 1931.
2 J. 0. Hirschfelder and J. S. Dahler, these PROCEEDINGS, 42, 363, 1956.
3In our notation, Q,2 = (Qt)X2 + (Q,),2 + (Q,),2. This also applies to qi' in eq. (12) and the

pj2 and pj2 in eq. (16).
4As E. P. Wigner has pointed out to us in private correspondence, if the masses of the four

particles are equal, then there is a co-ordinate system which treats each of the four particles in
the same manner:

(Q1). = 2 [r + 7-r3 -r4l,2

(Q2). =+2[r, - T2 +T3 -4],

(Q3)w =-2 [r- T2 -73 + 41,

2
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Comparing with our co-ordinates of Fig. 4, b,

(Q1). = Q3,
(Q2)w = -(Qi + Q2)/V/2,
(Q3)D = (Q2 - Q1)//2,
(Q4)w = Q4.

There are similar relations between the Wigner co-ordinates and our co-ordinates of Fig. 4, d.
Wigner states that if the number of particles is a power of 2 and the masses are equal, there is a
co-ordinate system of high symmetry in which all particles are treated equally. Unfortunately
the form of the potential energy in the collision of diatomic molecules would make these Wigner
co-ordinates inconvenient.

ELECTRON-SPIN RESONANCE STUDIES OF RADIATION DAMAGE
TO CERTAIN LIP[DS, HORMONES, AND VITAMINS*

BY HARVEY N. REXROADt AND WALTER GORDY

DUKE UNIVERSITY, DEPARTMENT OF PHYSICS, DURHAM, NORTH CAROLINA

Communicated by Charles R. Hauser, December 19, 1958

In the present work we have applied the method of microwave electron-spin
resonance to the study of radiation damage to certain lipids, hormones, and vita-
mins. In the accompanying paper on the nucleic acids and their constituents,
references are given to descriptions of the theory and experimental methods which
are employed. The samples, which were in a powdered form, were irradiated by a
kilo-curie cobalt 60 e-ray source. They were irradiated and observed under
vacuum, were later exposed to air or oxygen and observed again at various intervals.
The steroid lipids and hormones are too complicated in structure to permit any

detailed or complete interpretation of the paramagnetic resonance spectra induced
by irradiation of them. Nevertheless, it has proved possible by comparison of the
resonances produced in related steroids which differ only slightly in composition or
structure to gain information about the relative effects of ionizing radiation upon
various members of this biologically significant class of compounds.

Sitosterol, Cholesterol, and Cholic Acid. Sitosterol and cholesterol have the same
steroid ring structure,

CH3 X

CH3

HO/
and differ only in the group X, which is CH(CH3)(CH2)3CH(CH3)2 for cholesterol
and CH(CH3)((CH2)CH2)CH(C2H5)CH(CH3)2 for sitosterol. Upon irradiation in
a high vacuum with ionizing gamma rays, they give the same type of resonance
pattern, a triplet with a doublet substructure, apparently arising from three cou-
pling protons, two with equivalent coupling and the third with somewhat less cou-
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GROUP THEORY OF HARMONIC OSCILLATORS 

(III). States with Permutational Symmetry 
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Instituto de Fisica, Universidad de M#xico, Mdxico, D.F. 
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Abstract: This article continues the analysis of  the problem of n particles in a common harmonic 
oscillator potential that was initiated in two previous papers under the same general title. The 
first objective of the paper is to give an analytic procedure for the explicit construction of  the 
states in the U3nD q/3×Un, qb 8 D ~3 D ~ ,  U. D U.-1 D . . . D  U1 chain of subgroups, 
where the 3n dimensional unitary group Ua~ is the symmetry group of the Hamiltonian while 
q/~ is the symmetry group of the harmonic oscillator, As is the ordinary rotation group, and 
U n is the unitary group in n dimensions associated with the particle indices. The second and main 
objective of this paper is to construct states with definite permutational symmetry. After taking 
out the centre-of-mass motion the states given in terms of n-- 1 relative Jacobi vectors will be a 
basis for irreducible representations of the unitary group U._I and its orthogonal subgroup 
O~_~. The characterization of the states is completed with the help of the irreducible representa- 
tions of the symmetric group S~, which, through its representations Din'l, 1 ](Sn) , is a subgroup 
of O~_~. This implies that the states transform irreducibly under the groups in the chain 
U. D U._~ D O.-x D S.  rather than under those in the chain U,, D U._I D • • • D U1. The 
states classified in this way contain as particular cases, those of both the shell and the cluster 
model. Explicit expressions are given for two, three and four particles. 

1. Introduction 

The present paper is a continuation of the two papers with the same general title 
by Bargmann and Moshinsky 1, 2) that will be denoted in what follows as BM I,II. 

As indicated in BM I, this series will deal with the classification and determination 
of states of n particles when these particles move in a three-dimensional harmonic 
oscillator central potential. The main advantage of using a harmonic oscillator in- 
stead of an arbitrary common potential for the particles stems from the fact that in 
the former case the Hamiltonian is invariant under a unitary group in 3n dimen- 
sions 1-4) U3" while in the latter the Hamiltonian is invariant only under the direct 
product of the rotation group in three dimensions and the permutation group of n 
particles, i.e. ~ 3  x S,. The group Us,  has as a subgroup 1-4) the direct product of the 
unitary group in three dimensions q/3 which is the symmetry group of the three di- 
mensional harmonic oscillator 4) and of the unitary group in n dimensions U, as- 
sociated with the particle indices 4), i.e. q/3 x U~. The group q/3 has as a subgroup 
the rotation group 1-4) ~ 3 ,  while U, has as a subgroup the permutation group of n 

t Forschungsstipendiat der N.A.T.O. 
tt Member of the Comisi6n Nacional de Energta Nuclear, M6xico. 
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referred to the system S = (ele2e3) of coordinates. We shall use rather the system 
= ( ~ 2 ~ 3 )  which, in turn, corresponds to relative coordinates 

ij~ = ½(,/x +, /3  _,/2 _,/4), 
~2 __ ½(,/1 + , / 4  __,/2 __,/3)~, 

~3 = 3( , /1 ..[_,/2 __,/3 __,/4-). ( 6 .9 )  

Before we proceed we briefly state the notation for finite rotations as used in the 
book of  Edmonds 2s) to which we refer as E. With a rotation matrix R, parametrized 
by angles o~fly denoting positive rotations around ~3-axis, new ~2-axis and new ~3- 
axis in that order, 

R(~fly) = R(y)R(f l)R(~),  (6.10) 

we associate an operator O(~fly) given by 

O(~f17) = e"~'~e~;/~e ~i'~, Jl, = e~,Jl ~, (6.11) 

with the property 

O ( 0 ~ f l y ) ( / j [ x ) . # )  = ( R - l i j l x 2 # )  

E .. . ! ), (6.12) 
//' 

where here, and in what follows, we shall use the notation 

(ijlx2#) = (iTI [hlh2h3]coLM, q~).#), (6.13) 

keeping only the quantum numbers x (defined by (6.2)), 2 and # related to 0 3 and 
its subgroups. 

To each element of S 4 ,~ Ta corresponds a finite rotation R(~fly) which for the 
elements of classes (212) and (4) is multiplied by an inversion L For example, the trans- _ l  
position (1, 2) corresponds to (~1~2~.~) -+ ( - ~ z - ~ l ~ a )  and we denote it by (213). 
We take out the inversion by writing (213) = I(213) and find for (213) the Euler angles 
(0 7r ½re), so that I(0 rc ½r 0 corresponds to the transposition (1, 2). Table 3 gives all 
elements of  S 4 ~ Ta in this notation. The Euler angles take the values 0, ½7r, 7r, ½re 
and their effect on the states is given by the representation matrix 

D~,X~,(o~fly) = d"(q)e'~"~'d~,,(fl)e '~'r, q = e, I. (6.14) 

We shall need the following properties of the d~,~,(fl) (E p. 59): 

d~,~(0) = fi~,,, (6.15) 

= D x+"',5 (6.16) d~,.(n) ( - /  _u,_., 

= 1) d . , . ( ½ ~ ) = ( - 1 ) " + " ' d ~ , _ . ( ½ ~ ) .  (6.17) 







The two systems of coordinates, (y1, y2) and (ξ1, ξ2), are related via via
counterclockwise rotation by the angle φ = π/12.
The two systems of coordinates, (y1, y2, y3) and (ξ1, ξ2, ξ3), are related via via three
counterclockwise rotations by the angles φ1 = 3π/4, φ2 = π − arctan

√
2, and

φ3 = π/3.
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Abstract
We present an extension of the spin-adapted configuration-interaction method (SACI) for the
computation of four electrons in a quasi two-dimensional quantum dot. By a group-theoretical
decomposition of the basis set and working with relative and center-of-mass (cm) coordinates we
obtain an analytical identification of all spurious cm states of the Coulomb-interacting electrons.
We find a substantial reduction in the basis set used for numerical computations. At the same
time we increase the accuracy compared to the standard SACI due to the absence of distortions
caused by an unbalanced cut-off of cm excitations.

Keywords: few-electron quantum dot, variational principle, block-diagonal basis sets

(Some figures may appear in colour only in the online journal)

1. Introduction

The Schrödinger equation of an interacting many-body sys-
tem can be solved analytically only for specific interaction
potentials and for a very restricted number of particles. A
wide range of approximation methods has been developed to
determine the ground and excited states of many-body sys-
tems found in nuclear, atomic, and condensed matter systems.
Here, we focus on quasi two-dimensional electronic systems,
which are experimentally realized in quantum-dots. Quantum
dots are often embedded in layered semiconductor structures.
The strong confinement along the vertical direction perpen-
dicular to the layer suggests an effectively two-dimensional
description along the remaining two lateral dimensions.
Besides the electron–electron interactions, an additional
external confinement potential along the lateral directions is
created by etching and gating of the semiconductor device.
Quantum dots can be regarded as artificial atoms, albeit with
a central potential different from the nuclear Coulomb
attraction. Their excitation spectra are probed by electronic
and optical measurements, also under the influence of addi-
tional magnetic fields, which gives rise to a Landau-level
structure.

With the discovery of the fractional quantum Hall effect
in systems of interacting electrons in quasi two-dimensional
systems, many theoretical approaches for studying interacting
electrons have been proposed, including the celebrated
Laughlin wave-function for electrons in the lowest Landau
level. In the experimentally realized Hall devices translational
symmetry is broken by the current source and drain contacts,
which lead to the formation of hot-spots with high electric
field values [20, 21].

A comparison of the various theoretical approaches with
numerical methods is often performed for few-electron
quantum dots. Analytic [28, 31] and numerical [32] solutions
for the two electron case show the interplay of Coulomb
interaction and confinement potential, leading to alternating
spin polarization of the ground state in a quantum-dot as
function of magnetic field [27]. By separation of the two-
electron case into the center-of-mass (cm) motion and the
relative part, semiclassical solutions have been constructed
[11] and compared to the exact solutions [6, 7, 19]. For three
electrons, the relative-coordinate basis set and expressions for
the Coulomb matrix elements are given in [30].

In the popular configuration interaction (CI) approach a
diagonalization of the Hamiltonian including the Coulomb-
interaction is done with respect to a product basis of single-
particle Slater determinants. Convergence is generally
checked by systematically enlarging the size of the basis set,

| Royal Swedish Academy of Sciences Physica Scripta
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find: all class operators equation (A.2) have diagonal repre-
sentations, see table A2. This proves:

Prop. All basis states of the irreps of the subgroup D2d in the
chosen representations are basis states of irreducible repre-
sentations of the bigger group S (4).

This remarkable result allows in table A3 , up to certain
ambiguities, to almost avoid the use and projection with
Young operators for the bigger group S (4). In tables A4, A5
we use it in relation with the full scheme of groups including

>SU O R(3) (3, ) and subgroups to assign orbital symmetry
to the oscillator states.

Of two states separated by ∣, one and only one can belong to
the listed tableau. The states [4], [1 ]4 are identified as eigenstates
under the transposition T (2, 3) with eigenvalue ±1 respectively.
If a state is not reproduced under T (2, 3), it necessarily
belongs to =f [22] and spin S = 0. We conclude that the
states equation (A.1) yield all the bases of the orbital Young
tableaus.

Appendix B. Symmetrized relative coordinates for
n > 4 electrons and their permutations

The efficiency of the tetrahedral coordinates raises the
question if similar relative coordinates exist for >n 4. As a
generalization of the tetrahedral coordinates from [13], new
symmetrized coordinates for n particles were proposed
by Gusev et al [8]. The matrix that gives the n new coordinates
η η η −( , ,.., )n0 1 1 in terms of the old ones x x x( , ,.., )n1 2 reads

=

…
…
……
…
…

= = =

= − = +

−

−

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡⎣ ⎤⎦

C
n

b a a a a
a b a a a

a a a b a
a a a a b

C C C C C I

a n b a n

1

1 1 1 1 1 1
1
1
. . . . . .
1
1

,

, , ,

1 , . (B.1)

T 1 2

1

The cm coordinate is included as η0. We shall explore
the properties of these coordinates under the action of

Table A4. Continued on next table.

πN Λπ μ∣ ∣ κ ϵ ρ = 1 ρ = −1 (λ’, μ’) Λπ f

+0 +0 0 0 1 [4]+ — (0,0) +0 [4]
−1 −1 1 1 0 [31]1+ [31]2+ (1,0) −1 [31]

0 1 1 — [31]3+
+2 +2 2 0 −1 [22]1+ [31]3+ (2,0) +2 [31][22]

1 0 0 [31]1+ [31]2+
0 0 1 [22]2+ —

+1 1 0 0 [211]1+ [211]2+ (0,1) +1 [211]
0 0 1 — [211]3+

+0 0 0 1 [4]+ — (2,0) +0 [4]
3− 3− 3 1 0 ∣[211]1 [31]1* ∣[211]2 [31]2* (3,0) −3 [211][31][4]

2 1 −1 [4]+ [211]3+
1 1 0 ∣[211]1 [31]1* ∣[211]2 [31]2*
0 1 1 — [31]3+

−2 2 1 −1 [22]2+ [211]3+ (1,1) −2 [211][22]
1 1 0 [211]1+ [211]2+
0 1 1 [22]1+ —

−1 1 1 0 [31]1+ [31]2+ (3,0), (1,1) −(1 )2 [31]2

0 1 1 — [31]3+
+4 +4 4 0 1 ∣[22]2 [4]* [211]3* (4,0) +4 [4][31][22][211]

3 0 0 ∣[31]1 [211]1* ∣[31] 2[211]2*
2 0 −1 [22]1+ [31]3+
1 0 0 ∣[31]1 [211]1* ∣[31]2 [211]2*
0 0 1 ∣[22]2 [4]* [211]3*

+3 3 0 0 ∣[31]1 [211]1* ∣[31]2 [211]2* (2,1) +3 [31][211][1 ]4

2 0 −1 [1 ]4 [31]3+
1 0 0 ∣[31]1 [211]1* ∣[31]2 [211]2*
0 0 1 — [211]3+

+2 2 0 −1 [22]1+ [31]3+ (4,0), (2,1), (0,2) +(2 )3 [31] [22]3 3

1 0 0 [31]1+ [31]2+
0 0 1 [22]2+ —

+1 1 0 0 [211]1+ [211]2+ (2,1) +1 [211]
0 0 1 — [211]3+

+0 0 0 1 [4]+ — (4,0), (0,2) +(0 )2 [4]2

12

Phys. Scr. 90 (2015) 074014 P Kramer and T Kramer







From calculation Zh. Wang et al is following that all states of the system are
non-degenerate in one dimension, and this result is against with that of J. M.
Levy-Leblond.
WANG Zhao-Liang, WANG An-Min, YANG Yang, and LI Xue-Chao Exact
Eigenfunctions of N-body System with Quadratic Pair Potential Commun. Theor.
Phys. 58 (2012) 639�644 Vol. 58, No. 5, November 15, 2012
J.M. Levy-Leblond, Generalized uncertainty relations for many-fermion system Phys.
Lett. A 26 (1968) 540.
As is showing below in our approach we have degenerate states start from A=3
identical particle case.



SE in the symmetrized coordinates

[
− ∂2

∂ξ2
0
+

A−1∑
i=1

[
− ∂2

∂ξ2
i
+ (ξi)

2
]
+

A∑
i=1

V (xi(ξ0, ..., ξA−1))− E

]
Ψ(ξ0, ..., ξA−1;E) = 0,

which is invariant w.r.t. perm. ξi ↔ ξj at i , j=1, ...,A−1 (instead of Jacobi coords.) as
follows from the invariance SE w.r.t. perm. xi ↔ xj at i , j=1, ...,A is preserved.

Galerkin expansion in the symmetrized coordinates

Ψio (ξ0)(ξ0, ..., ξA−1) =

jmax∑
j=1

Φj(ξ1, ..., ξA−1)χjio (ξ0),

The close-coupling Galerkin equations in symmetrized coordinates

[
− d2

dξ2
0
+ Ei − E

]
χiio (ξ0) +

jmax∑
j=1

(Vij(ξ0))χjio (ξ0) = 0,

Vij(ξ0) =

∫
dξ1...dξA−1Φi(ξ1, ..., ξA−1)

(
A∑

k=1

V (xk (ξ0, ..., ξA−1))

)
Φj(ξ1, ..., ξA−1),



Symbolic-numerical algorithm for generating cluster eigenfunctions:

identical particles with pair oscillator interactions in 1D Euclidian space

Eq for (A − 1)-dimensional oscillator with known eigenfunctions Φj(ξ1, ..., ξA−1) and
eigenenergies Ej

[
A−1∑
i=1

[
− ∂2

∂ξ2
i
+ (ξi)

2
]
− Ej

]
Φj(ξ1, ..., ξA−1) = 0, Ej = 2

A−1∑
k=1

ik + A − 1,

where the indices ik , k = 1, ...,A − 1 take integer values ik = 0, 1, 2, 3, ....

We de�ne the SCR in the form of linear combinations of the conventional oscillator
eigenfunctions Φ̄[i1,i2,...,iA−1](ξ1, ..., ξA−1):

Φj(ξ1, ..., ξA−1) =
∑

2
A−1∑
k=1

ik+A−1=Ej

β
(j)
[i1,i2,...,iA−1]

Φ̄[i1,i2,...,iA−1](ξ1, ..., ξA−1),

Φ̄[i1,i2,...,iA−1](ξ1, ..., ξA−1) =
A−1∏
k=1

Φ̄ik (ξk ), Φ̄ik (ξk ) =
exp(−ξ2

k/2)Hik (ξk )
4
√
π
√

2ik
√

ik !
,

where Hik (ξk ) are Hermite polynomials.



Step 1. Symmetrization with respect to permutation of A − 1 particles

The states, symmetric with respect to permutation of A−1 particles i = [i1, i2, ..., iA−1]

β
(i)
[i′1,i

′
2,...,i

′
A−1]

=

{
1/
√

Nβ , [i ′1, i
′
2, ..., i

′
A−1] is a multiset permutation of [i1, i2, ..., iA−1],

0, otherwise.

Here Nβ = (A − 1)!/
∏Nυ

k=1 υk ! is the number of multiset permutations of
[i1, i2, ..., iA−1], Nυ ≤ A − 1 is the number of di�erent values ik in the multiset
[i1, i2, ..., iA−1], and υk is the number of repetitions of the given value ik .

The states, antisymmetric with respect to permutation of A − 1 particles

Φa
j (ξ1, ..., ξA−1) =

1√
(A − 1)!

∣∣∣∣∣∣∣∣∣
Φ̄i1(ξ1) Φ̄i2(ξ1) · · · Φ̄iA−1(ξ1)

Φ̄i1(ξ2) Φ̄i2(ξ2) · · · Φ̄iA−1(ξ2)
...

...
. . .

...
Φ̄i1(ξA−1) Φ̄i2(ξA−1) · · · Φ̄iA−1(ξA−1)

∣∣∣∣∣∣∣∣∣ ,

i.e., β
(i)
[i′1,i

′
2,...,i

′
A−1]

= εi′1,i
′
2,...,i

′
A−1

/
√

(A − 1)! where εi′1,i
′
2,...,i

′
A−1

is a totally antisymmetric

tensor.



Step 2. Symmetrization with respect to permutation of A particles

Case A = 2 (ξ1 = (x2 − x1)/
√

2)

Function being even (or odd) with respect to ξ1 appears to be symmetric (or
antisymmetric) with respect to permutation of two particles, i.e. x2 ↔ x1.

Case A ≥ 3

The functions, symmetric (or antisymmetric) with respect to permutations in
Cartesian coordinates xi ↔ xj , i , j = 1, ...,A become symmetric (or antisymmetric)
with respect to permutations of symmetrized coordinates ξi ↔ ξj , at
i ′, j ′ = 1, ...,A − 1
Φ(..., xi , ..., xj , ...) = ±Φ(..., xj , ..., xi , ...) → Φ(..., ξi′ , ..., ξj′ , ...) = ±Φ(..., ξj′ , ..., ξi′ , ...).

Here and below we use the above property of the symmetrized coordinates

xij ≡ xi − xj = ξi−1 − ξj−1 ≡ ξi−1,j−1, i , j = 2, ...,A, x1 =
1√
A

A−1∑
i′=0

ξi′ .



Step 2. Symmetrization with respect to permutation of A particles

However, the converse is not true, because we deal with a projection map:


ξ1

ξ2

· · ·
ξA−1

 =



1 a1 a0 a0 · · · a0 a0

1 a0 a1 a0 · · · a0 a0

1 a0 a0 a1 · · · a0 a0
...

...
...

...
. . .

...
...

1 a0 a0 a0 · · · a1 a0

1 a0 a0 a0 · · · a0 a1




x1

x2

· · ·
xA−1

xA



Thus, the functions, symmetric (or antisymmetric) with respect to permutations of
symmetrized coordinates (i.e. by permutations xi ↔ xj at i , j = 2, ...,A), are divided
into two types, namely,
the physical symmetric (antisymmetric) solutions, symmetric (or antisymmetric)
with respect to permutations x1 ↔ xj+1 at j = 1, ...,A − 1
Φ(x1, ..., xi+1, ...) = ±Φ(xi+1, ..., x1, ...),
and the nonphysical solutions, Φ(x1, ..., xi+1, ...) ̸= ±Φ(xi+1, ..., x1, ...), which should be
eliminated.
This step is equivalent to only one permutation x1 ↔ x2, that simpli�es its practical
implementation.



1 2 3 4

5 6 7 8

1

ΦB
[i1,i2 ]

(ξ1, ξ2) = Ckm(ρ2)3m/2 exp(−ρ2/2) cos(3m(φ + π/12))L3m
k (ρ2),

(ξ1 = ρ cosφ, ξ2 = ρ sinφ, k = 0, 1, ..., m = 0, 1, ....)

ΦF
[i1,i2 ]

(ξ1, ξ2) = Ckm(ρ2)3m/2 exp(−ρ2/2) sin(3m(φ + π/12))L3m
k (ρ2),

(ξ1 = ρ cosφ, ξ2 = ρ sinφ, k = 0, 1, ..., m = 1, 2, ...)

Pro�les of the �rst eight
oscillator symmetric
(upper panels) and
antisymmetric (lower
panels) eigenfunctions
Red line correspond to
pair collision x2 = x3, and
blue lines correspond to
pair collisions x1 = x2

and x1 = x3 of projection
(x1, x2, x3) → (ξ1, ξ2).
Our result about
degeneracy of the basis
agrees with J. M.
Levy-Leblond, Physics
Letters A 26 (1968) 540
and disagrees with:
Zh.Wang et al.,
arXiv:1108.1607v4
[math-ph], Commun.
Theor. Phys. 58 (2012)
639�644.



1 2 3

4 5 6

Pro�les of the �rst six
oscillator symmetric
eigenfunctions
ΦS

[i1,i2,i3]
(ξ1, ξ2, ξ3) at

A = 4 in coordinate
frame (ξ1, ξ2, ξ3).

1 2 3

4 5 6

Pro�les of the �rst six
oscillator antisymmetric
eigenfunctions
ΦA

[i1,i2,i3](ξ1, ξ2, ξ3) at
A = 4 in coordinate
frame (ξ1, ξ2, ξ3).



[c40P0
4 (η)+c44P4

4 (η) cos(4φ)]

[c60P0
6 (η)+c64P4

6 (η) cos(4φ)]

[c80P0
8 (η)+c84P4

8 (η) cos(4φ)+c88P8
8 (η) cos(8φ)]

[c32P2
3 (η) sin(2φ)]

[c72P2
7 (η) sin(2φ) + c76P6

7 (η) sin(6φ)]

[c92P2
9 (η) sin(2φ) + c96P6

9 (η) sin(6φ)]

octahedral symmetry tetrahedral symmetry



[
∑

i=2,6,10 c12i P
i
12(η) cos(iφ)

[
∑

i=2,6,10,14 c16i P
i
16(η) cos(iφ)

[
∑

i=2,6,10,14 c18i P
i
18(η) cos(iφ)

[
∑

i=4,8 c9i P
i
9(η) sin(iφ)

[
∑

i=4,8,12 c13i P
i
13(η) sin(iφ)

[
∑

i=4,8,12 c15i P
i
15(η) sin(iφ)



The degeneracy multiplicities p, ps = pa and pS = pA of s-, a-, S-, and
A-eigenfunctions of the oscillator energy levels ∆Ej = E•

j − E•
1 , • = ∅, s, a,S,A.

A 3 4 5 6 3 4 5 6 3 4 5 6

∆Ej p ps(a) pS(A)

0 1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 1 1 1 1 0 0 0 0
4 3 6 10 15 2 2 2 2 1 1 1 1
6 4 10 20 35 2 3 3 3 1 1 1 1
8 5 15 35 70 3 4 5 5 1 2 2 2
10 6 21 56 126 3 5 6 7 1 1 2 2
12 7 28 84 210 4 7 9 10 2 3 3 4
14 8 36 120 330 4 8 11 13 1 2 3 3
16 9 45 165 495 5 10 15 18 2 4 5 6
18 10 55 220 715 5 12 18 23 2 3 5 6



The close-coupling Galerkin equations in symmetrized coordinates

[
−

d2

dξ2
0

+ Ei − E

]
χiio (ξ0) +

jmax∑
j=1

(Vij (ξ0))χjio (ξ0) = 0,

Vij (ξ0) =

∫
dξ1...dξA−1Φi (ξ1, ..., ξA−1)

(
A∑

k=1

V (xk (ξ0, ..., ξA−1))

)
Φj (ξ1, ..., ξA−1),

Scattering problem (with real eigenvalues E)

χ
v
ξ0→±∞ =


{

X(+)(ξ0)Tv , ξ0>0,
X(+)(ξ0)+X(−)(ξ0)Rv , ξ0<0,

v=→,{
X(−)(ξ0)+X(+)(ξ0)Rv , ξ0>0,
X(−)(ξ0)Tv , ξ0<0,

v=←,

where Rv and Tv are the re�ection and transmission
No × No matrices, No is number of open channels, v
denote the initial direction of the particle motion,
Open channels io = 1, ..., No:

X (±)
iio

(ξ0) =
exp
(
±ı
(

pio ξ0
))

√
pio

δjio

Closed channels ic = No + 1, . . . , N: χi ic (ξ0)→ 0

Metastable states (with complex
eigenvalues E = ℜE + ıℑE ,
ℑE < 0)
Siegert boundary conditions

dχ(ξ0)

dξ0

∣∣∣∣
ξ0=ξt

0

= R(ξt
0)χ(ξt

0),

t = min,max .

Rio io (ξ
max
0 ) = ıpio ,

Rio io (ξ
min
0 ) = −Rio io (ξ

max
0 ),

pio =
√

E − Eio ,



The total transmission probabilities

The repulsive barrier is chosen to be a Gaussian potential V (xi) =
α√
2πσ

exp(− x2
i

σ2 ).

The total transmission probabilities |T |211 vs energy E (in oscillator units) from the
symmetric ground state of the system of A = 2, 3, 4, 5 of particles, coupled by the
oscillator potential, through the repulsive Gaussian potential barriers

V (xi) =
α√
2πσ

exp(− x2
i

σ2 ) at σ = 0.1 and α = 2, 5, 10, 20.



Sub-barrier transmission

- 8 - 4 0 4 80
1
2
3
4
5
6
7

|χ i(ξ 0)|2

ξ0

 1
 2
 3 , 4 , . . .

| T | 21 1 = 0 . 9 5 9 4

α = 1 0
E = 5 . 3 9 2 6

σ = 1 / 1 0
A = 2

- 8 - 4 0 4 80

1

2

3
|χ i(ξ 0)|2

 1
 2
 3
 4 , 5 , . . .

| T | 21 1 = 0 . 9 8 2 2
E = 9 . 0 8 0 2

ξ0

α = 1 0
σ = 1 / 1 0
A = 2

- 8 - 4 0 4 80 , 0
0 , 2
0 , 4
0 , 6
0 , 8
1 , 0
1 , 2
1 , 4
1 , 6

|χ i(ξ 0)|2

ξ0

 1
 2
 3 , 4 , . . .

| T | 21 1 = 0 . 0 0 2 7
E = 6 . 8 7 7 6

α = 1 0
σ = 1 / 1 0
A = 2

The probability densities |Ψ(ξ0, ξ1)|2 of functions and their components |χi(ξ0)|2 of
functions of symmetric ground state for A = 2 identical particles.



Sub-barrier transmission

A = 3, σ = 1/10, α = 20

l ES
l |T |211 m EM

m
1 8.175 0.775 1 8.175−ı5.1(�3)

8.306 0.737 2 8.306−ı5.0(�3)
2 11.111 0.495 3 11.110−ı5.6(�3)

11.229 0.476 4 11.229−ı5.5(�3)
3 12.598 0.013 5 12.598−ı6.4(�3)

6 12.599−ı6.3(�3)

A = 4, σ = 1/10, α = 20

l ES
l |T |211 m EM

m
1 10.121 0.321 1 10.119−ı4.0(�3)

2 10.123−ı4.0(�3)
2 11.896 0.349 3 11.896−ı6.3(�5)
3 12.713 0.538 4 12.710−ı4.5(�3)

12.717 0.538 5 12.720−ı4.5(�3)

A = 5, σ = 1/10, α = 20.

l ES
l |T |211 m EM

m
1 11.794 1.6(�4) 1 11.794−ı1.3(�3)

2 11.794−ı1.3(�3)
2 14.166 0.014 3 14.166−ı1.1(�3)

4 14.166−ı1.1(�3)
3 14.764 0.666 5 14.764−ı6.6(�6)

14.774 0.666 6 14.774−ı5.6(�6)



Over-barrier transmission

red lines are threshold
energies

ES
i |T |211 EM

m

5.8228 0.3794
9.6479 0.3779 9.614−ı0.217
13.5548 0.4765 13.505−ı0.144

13.9648 0.8536(|T |233) 14.018−ı0.286
17.4512 0.4874 17.445−ı0.103



Over-well transmission

E th
i EM

m (A = 2) E th
i EM

m (A = 3) E th
i EM

m (A = 4)
-0.3588 {-0.2605,1.5082} {-0.1938, 1.7084 2.7046}

1 4.4348−ı0.2572 2 5.3307−ı0.0620 3 5.7747−ı0.0742
4.6764−ı0.0058 5.7911−ı0.0621 6.4441−ı0.1050

5 8.5158−ı0.0506 6 6.9922−ı0.0751 6.7934−ı0.0033
8.7675−ı0.1261 7.9457−ı0.0565 7 8.3668−ı0.0651

9 12.6009−ı0.1215 8 8.9601−ı0.0588 8.7797−ı0.0080
12.7330−ı0.0142 9.4950−ı0.2251 9 9.4050−ı0.1995

13 16.6841−ı0.0364 9.8617−ı0.0852 9.9926−ı0.1225
16.7050−ı0.0914 10 11.4173−ı0.1678 10.0755−ı0.0676



Over-well transmission



Resume

Quantum tunnelling of a cluster comprised of several identical particles, coupled
via the oscillator-type potential, through short-range repulsive barrier potentials
is studied in the s-wave approximation of the symmetrised-coordinate
representation.
A procedure is described that allows construction of states, symmetric or
asymmetric with respect to permutations of A identical particles, from the
harmonic oscillator basis functions expressed via the newly introduced
symmetrized coordinates [Lecture Notes in Computer Science 8136, 155�168
(2013).].
The description of quantum tunneling (and channeling) of clusters of several
identical particles through the barriers and wells in a coupled-channel
approximation of symmetrized-coordinate representation of harmonic oscillator
basis symmetric or antisymmetric w.r.t. the permutation of particles is
presented.
E�ciency of the proposed approach and computer codes (KANTBP, KANTBP
3.0 & KANTBP 4M) is demonstrated by analysis of metastable states with
complex values of energy of composite systems leading to a quantum
transparency e�ect of the barriers and wells in dependence on number of
identical particles and type of symmetry of their states.
The proposed model can be used as a benchmark to test di�erent methods of
calculating the metastable states of composite systems of several identical
particles and con�nement induced resonances in optical traps.



References

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar, V.L. Derbov, A. G�o�zd�z and P.M. Krassovitskiy
Metastable states of a composite system tunnelling through repulsive barriers.Theoretical
and Mathematical Physics 186, 21�40 (2016).

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar, A. G�o�zd�z, V.L. Derbov, Resonance tunnelling
of clusters through repulsive barriers, Physica Scripta 89, pp. 054011�1�7 (2014).

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar, L.L. Hai, V.L. Derbov and P.M.
Krassovitskiy, Resonant tunneling of the few bound particles through repulsive barriers,
Physics of Atomic Nuclei 77, pp. 389�413 (2014)

A.A. Gusev, O. Chuluunbaatar, S.I. Vinitsky and A.G. Abrashkevich, KANTBP 3.0: New
version of a program for computing energy levels, re�ection and transmission matrices, and
corresponding wave functions in the coupled-channel adiabatic approach, Comput. Phys.
Commun. 185, pp. 3341�3343 (2014).

KANTBP - a program package for solution of two-dimensional discrete and continuum
spectra boundary-value problems in Kantorovich (adiabatic) approach
https://wwwinfo.jinr.ru/programs/jinrlib/kantbp/indexe.html

Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I.: KANTBP 4M: Program for
Solving Boundary Problems of the System of Ordinary Second Order Di�erential Equations.
https://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.html

A. Gusev, S. Vinitsky, O. Chuluunbaatar, V.A. Rostovtsev, L.L. Hai, V. Derbov, A. Gozdz
and E. Klimov, Symbolic-numerical algorithm for generating cluster eigenfunctions: identical
particles with pair oscillator interactions, Lecture Notes in Computer Science 8136, pp.
155�168 (2013).

Thank you for your attention!


