SPECTRUM AND POINT SYMMETRIES OF N IDENTICAL

1D-OSCILLATORS

S.I. Vinitsky, O. Chuluunbaatar

(Joint Institute for Nuclear Research),
V.L. Derbov (Saratov State University,
Russia),

P.M. Krassovitskiy (Institute of Nuclear
Physics, Almaty, Kazakhstan)

L.L. Hai (Ho Chi Minh city University of
Education, Vietnam)

19-23 February, 2024 Dubna, Russia

Problems of the Modern Mathematical
Physics.

The statement of the
problem

New symmetrized
coordinates

Symmetric and
antisymmetric basis
functions

Close-coupling equations
The metastable states with
complex values of energy

Resume

The work was supported partially by grant of Plenipotentiary Representative of the
Government of the Republic of Kazakhstan, Ho Chi Minh city University of

Education - Grant CS.2021.19.47.



The statement of the problem

The Schrédinger equation for the problem of penetration of A identical spinless

quantum particles in Oscillator units

A g2 A=ty A
-> 5E + SN Z(x,-,-)2 + V() — E| W(xi,.... xa; E) = 0.
i=1 i j=2 i=1 i=1

The problem under consideration is to find the
solutions of SE that are totally symmetric (or
antisymmetric) with respect to the permutations
of A particles, i.e. the permutations of
coordinates X; <> X; at i,j = 1,..., A, or symmetry
operations of permutation group Sp.

Barrier potential in configuration space A = 2




Example of interaction potential in center-of-mass plane at A = 3.
Intersections in R* of the coordinate spaces R® (labelled 1, 2, 3, 4) and the spaces R®
of pair collisions (labelled 12, etc.) with the sphere S2 in the center-of-mass space R.
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Solution of a Three-Body Problem in One Dimension

F. CaLoGERO*
Physics Department, Imperial College, London SW7, England

(Received 27 January 1969)

The problem of three equal particles interacting pairwise by inversecube forces (“centrifugal
potential™) in addition to linear forces (“*harmonical potential™) is solved in one dimension.

1. INTRODUCTION

It has been known for some time that the one-
dimensional three-body problem with linear (“har-
monical”) and inverse-cube (“centrifugal”) pair forces
is separable,’? but apparently there has been no
attempt at its actual solution. In this paper this
problem is solved in the case of equal particles: The
complete energy spectrum is determined, and all the
corresponding eigenfunctions are explicitly written out.

The particles may satisfy Boltzmann, Bose, or
Fermi statistics; in fact, the nature of the problem is
such that the type of statistics does not modify the
energy spectrum and affects the wavefunctions only
in a trivial way. The problem which obtains from that
described above eliminating the inverse-cube force
between two pairs (so that it acts only between one
pair) is also solved.

In Sec. 2 we discuss the two-body problem with
the same “oscillator plus centrifugal” forces. This
treatment is useful both as a preliminary for the
solution and as a model for the interpretation of the

three-body problem, which is discussed in Sec. 3.
F——— .

Tact comtingm . Tl

of-mass (CM) and relative coordinates,*

R® = 3(x; + x,),
x = 274(x; — x),

(2.2a)
(2.2b)

and eliminating the center-of-mass motion, we get
2
]:— ifz + to® 4 dgxt — E}p =0, (23)

where now E is the energy in the CM system.
The physically acceptable solutions of this equation
(in the interval 0 < x < o) are
P = exp (—jox)L(Gwx®), n=0,1,2,
(2.4)
with
a=11+29% @3)
Here L is a generalized Laguerre polynomial, defined
as in Ref. 5. By changing the sign of a, namely, by
taking the negative determination of the square root
in Eq. (2.5), one would still obtain a solution of the
Schrédinger equation, but it would not be an accept-
able one owing to its behavior at x = 0.8
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SET OF CO-ORDINATE SYSTEMS WHICH DIAGONALIZE THE KINETIC
ENERGY OF RELATIVE MOTION*

By DoxaLp W. JepseNt AND JosEpH O. HIRSCHFELDER

UNIVERSITY OF WISCONSIN NAVAL RESEARCH LABORATORY, MADISON, WISCONSIN
Communicated December 15, 1958

A simple scheme is given whereby one can write down any one of a large number
of possible sets of co-ordinates, to use in an N-particle problem, which have the
property of expressing the relative kinetic energy of the system in diagonal form.
This gives a Schrédinger equation without cross-derivatives. These sets of co-
ordinates can be visualized in terms of oemm “moblle” models. Il s easy to
construct a “mobile” which leads to a set i
physlcal problem
«As E. P. Wigner has pointed out to us in private correspondence, if the masses of the four

particles are equal, then there is a co-ordinate system which treats each of the four particles in
the same manner:

(@ = %" Mtn—n—r
©. = %‘ n—rtr—rl,
@ =Yl ==+,

@ =Y lr 4r il

Comparing with our co-ordinates of Fig. 4, b,

(Q)e = 05,

(@2)e = —(Qu + @)/ V2,

(@)e = (Q: = QU/V2,

(Qe = Qu.
There are similar relations between the Wigner co-ordinates and our co-ordinates of Fig. 4, d.
Wigner states that if the number of particles is a power of 2 and the masses are equal, there is
co-ordinate system of high symmetry in which all particles are treated equally. Unfortunately
the form of the potential energy in the collision of diatomic molecules would make these Wigner
co-ordinates inconvenient.




P. Kramer and M. Moshinsky,Nucl. Phys. 82, 241 (1966)

Nuclear Physics 82 (1966) 241—274; © North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

GROUP THEORY OF HARMONIC OSCILLATORS
(II). States with Permutational Symmetry

P. KRAMER ' and M. MOSHINSKY ft
Instituto de Fisica, Universidad de México, México, D.F.

Received 22 June 1965

Abstract: This article continues the analysis of the problem of  particles in a common harmonic
oscillator potential that was initiated in two previous papers under the same general title. The
first objective of the paper is to give an analytic procedure for the explicit construction of the
states in the Us, D %% U, Uy D #3 D HAy, Uy D Upy O ...D Uy chain of subgroups,
where the 3 dimensional unitary group Us, is the symmetry group of the Hamiltonian while
@, is the symmetry group of the harmonic oscillator, ®, is the ordinary rotation group, and
U, is the unitary group in # dimensions associated with the particle indices. The second and main
objective of this paper is to construct states with definite permutational symmetry. After taking
out the centre-of-mass motion the states given in terms of n— 1 relative Jacobi vectors will be a
basis for irreducible representations of the unitary group U,_, and its orthogonal subgroup

0,_,. The characterization of the states is complcted with the help of the irreducible representa-

tions of the symmetric group S, which, through its representations Din-1, 11(S,,), is a subgroup

of O,.,. This implies that the states transform irreducibly under the groups in the chain

Uy D Up-y D Opy D S, rather than under those in the chain UpD UpyD...D U The

states classmed in this way contain as particular cases, those of both the shell and the cluster

model. Explicit expressions are given for two, three and four particles.

‘GROUP THEORY (1m1) 261

referred to the system § = (&,é,¢é;) of coordinates. We shall use rather the system
§ = (&,€,8;) which, in turn, ds to relative

7t =3 +n*—n*—n*),
=3+t —n—n®),
=30+’ —n’—n*). (6.9)
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Resonant Tunneling of a Few-Body Cluster
Through Repulsive Barriers*

A. A. Gusev" ™, S. L. Vinitsky”, 0. Chuluunbaatar"?),
L. L. Hai", V. L. Derbov®, A. G6zdz?, and P. M. Krassovitskiy®
Received April 18,2013

Abstract—A model for quantum tunnelling of a cluster comprised of A identical particles, interacting
via oscillator-type potential, through short-range repulsive barrier potentials is introduced for the first
time in symmetrized-coordinate representation and numerically studied in the s-wave approximation. A
constructive method for symmetrizing or antisymmetrizing the (A — 1)-dimensional harmonic oscillator
basis functions in the new symmetrized coordinates with respect to permutations of coordinates of A
identical particles is described. The effect of quantum transparency, manifesting itself in nonmonotonic
resonance-type dependence of the transmission coefficient upon the energy of the particles, their number
A =2,3,4 and the type of their symmetry, is analyzed. It is shown that the total transmission coefficient
demonstrates the resonance behavior due to the existence of barrier quasi-stationary states, embedded in

the continuum.

DOI: 10.1134/81063778814030107

1. INTRODUCTION

During a decade the mechanism of quantum pen-
etration of two bound particles through repulsive har-
riers, manifested in [1], attracts attention from both
theoretical and experimental viewpoints in relation
with such problems as near-surface quantum diffu-
sion of molecules [2—5], fragmentation in producing
very neutron-rich light nuclei [6—9], and heavy-ion
collisions through multidimensional barriers [10—16].
In a general formulation of the scattering problem
for ions havino different masses a9 henchmark model

interaction, through a repulsive potential barrier. We
assume that the spin part of the wave function is
known, so that only the spatial part of the wave
function is to be considered, which may be symmetric
or antisymmetric with respect to a permutation ol
A identical particles [21—24]. The initial problem is
reduced to penetration of a composite system with
the internal degrees of freedom, describing an (A —
1) x d-dimensional oscillator, and the external de-
grees of freedom, describing the center-of-mass mo-
tion of A particles in d-dimensional Euclidean space.
For simplicity, we restrict our consideration to the



RESONANT TUNNELING OF A FEW-BODY CLUSTER

so that Eq. (1) takes the form

{ A
2y — ()
=N d
+U(yo, - v,y,m)’E} Dlyoy -+ ya-1) =0,
Uyo,---,y4-1)
A
Z UP(5(y1, .- va-1)
ige1i<
A
+ 3 Vi@, ya1)),
i=1

which, as follows from Eq. (2), is not inc ummzf wnh
rerect to permutations y; < yjati,j=1,..., 4 —

The construction ol desirable soluuons ol Eq. (1)
in the form ol linear combinations of the solu-
tions of Eq. (3), totally symmetric (antisymmetric)
with respect to permutations of coordinates z; <
xj (at 4,5 =1,...,4) ol A identical particles is
implemented u<mg various special procedures (see,
e.g.,[26-35]).

Symmetrized Coordinates

As will be shown below, a simple and clear way to
construct the states keeping the symmetry (antisym-
metry) under the permutations of A initial Cartesian
coordinates, which we refer as S (A) states, is to use
the symmetrized relative coordinates rather than the
Jacobi coordinates.

The transformation from the Cartesian coordi-
nates to one of the possible choices of symmetrized
ones & has the form:

1 (&)
So=—~ ( £ ) (3J
vA ; A
PHYSICS OF ATOMIC NUCLEL Vol.77 No.3 2014
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A g
+ Eum +VAze ) X
=2 /
ald =1
TR
(X&)
\i=0 /
A-1 \
£ S+ v aoks + VAEs1 ) )
1:1 £
B=8,
or, in the matrix form,
; / ;
\
& @y [ @ &
& 3 @ &

: - 5 ¢
& | _o 3 | 1| &
§a2 A1 TA-1 §a2
§a-1) \ %A \ %4 / éa 1}

¥
1 1 A 1, 3
o %, By o> il
1 ap a1 ap -+ ao Go

o i

C/*ﬁ 1agap ap -+~ ap ap | »
1apap ap -+ a1 ap
\1 ag agiay =2 mg.ag

where ag=1/(1-vA4) <0, ag =ag+ VA The

inverse coordinate 1m.n<iurrmm/n is peﬁurmed using
the same matrix C 1=, €2 =1, ie C=CTis
a symmetric orthogonal matrix with the eigenvalues

1=-1, =1 ..., Aa=1and detC =—-1. At
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The two systems of coordinates, (y1,Y2) and (&1, &2), are related via via

counterclockwise rotation by the angle ¢ = 7/12.

The two systems of coordinates, (y1, Y2, y3) and (&1, &2, &3), are related via via three

counterclockwise rotations by the angles p1 = 37/4, o =7 — arctany/2

and

)
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Interacting electrons in a magnetic field in a
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CrossMark
Abstract
We present an extension of the spin-adapted configuration-interaction method (SACI) for the
computation of four electrons in a quasi two-dimensional quantum dot. By a group-theoretical
decomposition of the basis set and working with relative and center-of-mass (cm) coordinates we
obtain an analytical identification of all spurious cm states of the Coulomb-interacting electrons.
We find a substantial reduction in the basis set used for numerical computations. At the same
time we increase the aceuracy compared to the standard SACI due to the absence of distortions
caused by an unbalanced cut-off of cm excitations.

Keywords: few-clectron quantum dot, variational principle, block-diagonal basi

find: all class operators equation (A.2) have diagonal repre-
sentations, see table A2. This proves:

Prop. All basis states of the irreps of the subgroup Dy in the
chosen representations are basis states of irreducible repre-
sentations of the bigger group § (4).

This remarkable result allows in table A3 , up to certain
ambiguities. to almost avoid the use and projection with
Young operators for the bigger group S (4). In tables Ad, AS
we use it in relation with the full scheme of groups including
SU(3) > O(3. R) and subgroups to assign orbital symmetry
0 the oscillator states.

Of two states separated by, one and only one can belong to
the listed tableau. The states [4], [1*] are identified as cigenstates
under the transposition 7'(2, 3) with eigenvalue 1 respectively.
If a state is not reproduced under T'(2.3), it necessarily
belongs to f=[22] and spin § = 0. We conclude that the
states equation (A.1) yield all the bases of the orbital Young

Appendix B. Symmetrized relative coordinates for
n> 4 electrons and their permutations

The efficiency of the tetrahedral coordinates raises mc
question if similar relative coordinates exist for n >

generalization of the tetrahedral coordinates from [13], new
symmetrized coordinates for n particles were proposed
by Gusev er al [8]. The matrix that gives the n new coordinates

(g My Ty in terms of the old ones (x1, x2....xy) reads
T 11
1baa aa
laba.. aal
laaa b oa
aaa.. ab
c=cl.c'=c.C*=1.
a=[1-val" b=a+m. B.1)

The em coordinate is included as 7, We shall explore
the properties of these coordinates under the action of




Commun. Theor. Phys. 58 (2012) 639-644

Vol. 58, No. 5, Novembor 15, 2012

Exact Eigenfunctions of N-body System with Quadratic Pair Potential*

WANG Zhao-Liang (4

Department of Modern Physics, University of Science and Technology of Chins, Hefei

(Received May 7, 2012; revised manuscript received September 13, 2012)

Abstract We obtain the energy spectrum and all the ¢
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Introduction

Operating on quantum many-body systems prov

way to understand the world, so hunting an exactly
quantum many-body model becomes more important, es-
/ for pair interaotion modlels. Over a period of more

, there has heen mu

in deal-
ing with quantum many-body problems, but only a few
models can be solved exactly. Calogero-Sutherland (CS)
model=%] is one celebrated example of solvable many-

body problems. It has been wide applications in quantum
chaos and fractional statistics.l’] Up to now, Calogero—
Sutherland model is still not a completely solved prob-
lem. Calogerol™™) and Kharel*~* made a big step forward
that they gave partial exact solutions of the Calogero

Sutherland model, such as the Boson and Fermion ground

and radial excitations over .

As a special case of CS model, one-dimensional sys-
air polential was studied by Post, /1]
who obtained the ground state encrgy. Levy-Leblondf]
obtained the encrgy spectrum in one dimension and the
ground state energy in three dimension. Malll con-
sidered thres particle system and he pointed out that
some states were disappeared by antisymmetric opera-
one-dimensional energy spectrum and
three-dimensional ground-state energy and partial eigen-
functions had been achieved before. Some detailed meth-

tem with quadra

tions. In gene

ods to solve this system can be referred to Refs. [12-15]

As wo know, exact eigenfunctions have not been given

and eigenfunctio

re important for us to compute many

kinds of correlations, which motivate us to restudy th

ground-state eigenfunctions and the degree of degeneracy.
Especially in one dimension, we obtain all the excited-
state eigenfunctions.

In history, quadratic pair potential model is not only
an interesting many-body model, but has a significant re-
lationship with shell model of nuelei®18) and baryons

in the quark modell??l as well. They use quadralic pair
potential model as a phenomenological model to explain
some phenomena of nuclei and quark.

In this article, we will first exhibit the exact eigen-
values and the corresponding eigenfunctions of N-body
and Fermi

ems with quadratic pair potentials in
one dimension. Second, we will give cur findings of Fermi
n with quadratic pair potenti

in two and higher
mensions. At last, our results will be compared with the
existing results of Khare.

2 N-Body System with Quadratic Pair
Potentials in One Dimension
The Hamiltonian of one-dimensional N-body problems
with quadrat

ir potentials is
A 5 5
ol %W—(x, e

i

H=

With the Jacobin coordinates

®

(w1 22+t ay),

i=N,

i Fhonsiic Toeaerrns: s oo s, 36



functions of N-particle Fermi s

stem could be obtained = {1,2,..

2,N + k}, and its eigenfunction is

Gm ﬁr = (7 o irz ) (k+e(k))/2 2z+l~é(}v‘)<4)vv\/71 nw) (—)" o Vai e i)
k= 'kD] 9P\ 9Nk ol (N—D)h ) ((k+e(k)2—0) 5N + 2i—j—e(R))INT |"
where o is the clementary symmetric polynomial. For | =H, +Hy++H,, (20)
N-variable polynomials, :
53 with
i
T =36 + yey + o+ néy
o= z;, L<i<N, (16)
s the D-dimensional coordinate vector. For Bose system,
o the ground state wave fimction is just like Eq. (11) ex-
1, i=0, cept transforming a;; to ;5. For Fermi system, things
oiios ga v gk are a bit more complicated. We have only obtained the
oo o o2 - oi _ ground state energy and eigenfunction through the sum-
00100 o oo gealoiddis () nary of the caleulated results about fixed N. The cor-
rectness of all the following equations can be verified by
(‘) (‘) 0 : . checking whether they meet the stationary Schrodinger
- ot equation or not.
X v 1S even , 2
£y = 18 The ground state energy is
(k) { kis odd. as)
The Fermi exchange anti-symmetry is eflcted in the (1) _ /37 [(A+ )w S i _2],(21)
factor [T ; +j, and it is lucky for us to see this factor ap- 2 D+ g 2
pears in all eigenfunctions. The rest factors that appear e ]
: : where K is an integer obeying
in 4 and v, are all functions of the clementary exchange
symmetric polynomials. 12 . o ”
From (iii), we know that {1,2,3,..., N—2, N+i} is one oL+ <N 1< ﬁ ](1‘ +, @)

kind of combinations standing for the i-th excited states
of N-particle system. The exact eigenvalues correspond-  the result of Levy-Leblond® is a special case for D = 3
ing to o and . of the Fermi system with quadratic pair  here. For large NV, the result is asymptotically changes to
potentials in one dimension are

<D) N—oo 3 (N _ 1)1/D N 9
E é(whl)ﬁm. i=0, o £o mﬁ{ [D” vl +O(M}.(23)
T Bt e This result is the same as Eq. (20) in Khare’s article,?

small amount term.

except the las

3 Solutions of D-Dimensional Fermi System The corresponding ground state eigenfunction is

T T




©=1)
w000 - 0=2)
« (D=3)|
w000 ©=4)

0 20 40 60 80 100

From calculation Zh. Wang et al is following that all states of the system are
non-degenerate in one dimension, and this result is against with that of J. M.
Levy-Leblond.

WANG Zhao-Liang, WANG An-Min, YANG Yang, and LI Xue-Chao Exact
Eigenfunctions of N-body System with Quadratic Pair Potential Commun. Theor.
Phys. 58 (2012) 639-644 Vol. 58, No. 5, November 15, 2012

J.M. Levy-Leblond, Generalized uncertainty relations for many-fermion system Phys.
Lett. A 26 (1968) 540.

As is showing below in our approach we have degenerate states start from A=3
identical particle case.



SE in the symmetrized coordinates

82 A—1 62 ) A
[_BE§+ 2 [7875,2 + (&) ] 4+ ; V(xi(o, -+, €a-1)) — E| W(&, ., €a—1; E) =0,

which is invariant w.r.t. perm. & > & at i, j=1,..., A—1 (instead of Jacobi coords.) as
follows from the invariance SE w.r.t. perm. X; <> X; at /,j=1,..., A is preserved.

Galerkin expansion in the symmetrized coordinates

Jmax

Vi (€0)(€0, - €a1) = D (&, - Ea—1) x50 (G0),

J=1

The close-coupling Galerkin equations in symmetrized coordinates

2 jmax
[_c%z + E;i — E} Xii, (§0) + Z(Vl]’(fo))ing(Eo) =0,
0 =

A
Vi() = /d§1---d§A—1¢i(§1,---,§A—1) (Z V(Xk(§07~--7€A—1))> ®;(&1, .. €a-1),
pa




Symbolic-numerical algorithm for generating cluster eigenfunctions:
identical particles with pair oscillator interactions in 1D Euclidian space

Eq for (A — 1)-dimensional oscillator with known eigenfunctions ®;(&y,...,{a—1) and

eigenenergies E;

A1 92 A—1
[Z -2+ (@F | - E,-] 6 nba 1) =0, E =23 i+ A1,
i=1 ! k=1

where the indices ik, Kk = 1,..., A— 1 take integer values ik = 0,1,2,3,....

We define the SCR in the form of linear combinations of the conventional oscillator

eigenfunctions P, ;... (&1, -0, Eam1):

(&1, ..,8a1) = > ﬂ[(]h)’,'zym),'A_d(T)[ﬁ,ig,...,iA,1](§17-'~,§A—1)7

A—1
2SS i +A-1=E
k=1

exp(—€2/2)H, (&)

At
Pl iria (&t oo amt) = H ;i (&k), (&) =
k=1

where Hj (&) are Hermite polynomials.




Step 1. Symmetrization with respect to permutation of A — 1 particles

The states, symmetric with respect to permutation of A— 1 particles i = [i1, 2, ..., ia_1]

30) | 1//Ns, [i{,B,...,ia_1] is a multiset permutation of [i, iz, ..., ia_1],
[ 0, otherwise.

Here Ng = (A—1)!/ HQL vk! is the number of multiset permutations of

[i1, 2y ...y ia—1], Nu < A—1 is the number of different values i, in the multiset

[it, k2, ..., ia—1], and v is the number of repetitions of the given value i.

The states, antisymmetric with respect to permutation of A — 1 particles

®i(&1)  ®(&) o Py (&)
1 (&) (&) o Py (&)
(&1, s bam1) = e
/ ) eey GA—1) — (A—1)| c o ; B
P (am1) Pp(8a1) - Dy (an)
ie., ﬂ[(,.';,{iép_.,i/,‘_‘] =€iri,..., ,-;H/\/(A —1)! where Eif ip,...ip_, 18 a totally antisymmetric

tensor.




Step 2. Symmetrization with respect to permutation of A particles

Case A=2 (&1 = (X2 — x1)/V/2)

Function being even (or odd) with respect to & appears to be symmetric (or
antisymmetric) with respect to permutation of two particles, i.e. Xo <> Xj.

Case A>3
The functions, symmetric (or antisymmetric) with respect to permutations in
Cartesian coordinates X; <> X, i,/ = 1,..., A become symmetric (or antisymmetric)

with respect to permutations of symmetrized coordinates & <+ &, at
ij=1.,A-1
q)(...,X,', ey Xjy ) = :|:¢(,X], ey Xiy ) — ¢(...,£,‘/, ...,fj/, ) = ﬂ:q)(...,gj/, ...,5,'/7 )

Here and below we use the above property of the symmetrized coordinates

A—1
- 1
X,]'EX,‘*infi71 75/‘*1 Efi*h/‘*h 171:27"'7A7 X1 = ﬁzé_i/'

i’=0




Step 2. Symmetrization with respect to permutation of A particles

However, the converse is not true, because we deal with a projection map:

1 ai dp da - a ao
& 1 a a a -+ a a Xy
& 1 a a a -+ a a X2
o o o o o o Xa_1
£A71 1 Qo o ao e a ao X
1 a a a --- a a

Thus, the functions, symmetric (or antisymmetric) with respect to permutations of
symmetrized coordinates (i.e. by permutations X; <> X; at i,j = 2, ..., A), are divided
into two types, namely,

the physical symmetric (antisymmetric) solutions, symmetric (or antisymmetric)
with respect to permutations Xy <> Xj.1 at j=1,...,A—1

¢(X1 s ooy Xig1, ) = :|:¢(X,'+1 sy X1, ),

and the nonphysical solutions, ®(X1, ..., Xit1, ...) # £P(Xit1, ..., X1, ...), which should be
eliminated.

This step is equivalent to only one permutation X; <> Xz, that simplifies its practical
implementation.




6
8 . 1(61,€2) = Cim(p?)*™/2 exp(—p?/2) cos(3m(p + /12))L3" (o),

(& = pcosp, &2 = psingp, k=0,1,..., m=0,1,....)

5 6 8
OF 1 1(€1,€2) = Cim(0?)°™'2 exp(—42/2) sin(38m(p + m/12))L3" (),
(& = peosp, &2 = psing, k=0,1,..., m=1,2,...)

Profiles of the first eight
oscillator symmetric
(upper panels) and
antisymmetric (lower
panels) eigenfunctions
Red line correspond to
pair collision X2 = X3, and
blue lines correspond to
pair collisions X1 = Xz
and xq = X3 of projection
(X1 ) X2, X3) - (&1 ) 52)
Our result about
degeneracy of the basis
agrees with J. M.
Levy-Leblond, Physics
Letters A 26 (1968) 540
and disagrees with:
Zh.Wang et al.,
arXiv:1108.1607v4
[math-ph|, Commun.
Theor. Phys. 58 (2012)
639-644.
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Profiles of the first six
oscillator symmetric
eigenfunctions

OF (&1, &, &) at

A =4 in coordinate

frame (&1, &2, &3)-

Profiles of the first six
oscillator antisymmetric
eigenfunctions
q)fz ,ig,i3](£1 ’ £27 §3) at

=4 in coordinate

frame (51 ) 527 63)




[ca0P§ (n)+¢aa P4 (1) cos(4¢)]

[CGOPg('1)+Ca4Pg(71) cos(4¢)]

[672P5(n) sin(2¢p) + 076 P8 (n) sin(6¢)]

[CBOPB 11)+L‘84P4(77 ) cos(4¢ )+083Pg(77 ) cos(8)]

Qoo

[c92P3 (1) sin(2¢p) + Cog P§ (1) sin(6¢)]

octahedral symmetry

tetrahedral symmetry




i . X
[Xi=2,6,10 C12iP12(n) cos(iv) 4.8 CoiPh(n) sin(ip)

i . i
[Xi=2,6,10,14 C16iP16(1) cos(ie) [Xi—4,8,12 C13iPi3(n) sin(ie

’ . i w
[>2i—2,6,10,14 C18iP1g(n) cos(i¢) [Xi—4,8,12 C15iPi5(n) sin(ie)




The degeneracy multiplicities p, ps = pa and ps = pa of s-, a-, S-, and
A-eigenfunctions of the oscillator energy levels AE; = E? — E7, e =0, 5,a,S, A.

A 3]4]5 ] 6 [[3[4]5]6]3[4]5]6
AE; p Ps(a) Ps(a)

0 1111 111111 ]1]1
2 23] 4|5 |11 |1 |1]0]0|l0|O
4 (3|6 |10 |15 |22 2|2 1]1[1]1
6 | 4]10]2 |3 |[2[3 |3 |3 |1]1[1]1
8 | 5 |15]3 | 70 |34 |5 |5 |1[2]|2]2
10 || 6 [21| 56 [126 (3|5 | 6 | 7 ||[1|1]2]2
12 || 7 [ 28| 84 [210 (4|7 |9 |10 2|3|3]4
14 || 8 [ 36| 120 [ 330 (|4 | 8 |11 |13 |1 |2|3]3
16 || 9 |45 | 165 | 495 || 5 (10 |15 |18 |[ 2 |4 |5 | 6
18 || 10 | 55 | 220 | 715 || 5 |12 |18 [23 || 2|3 |5 |6




The close-coupling Galerkin equations in symmetrized coordinates

d2 Jmax
[—ng +Ei — E:| Xip (§0) + > (Vii(£0))xiip (€0) = 0,
0 j=1

A
Vij(&o) = /d€1-~‘d§A—1¢i(§17 2009 EA=1) <Z V(X (&o, ~~~’§A—1))> (&1, 05 €a—1),
p

Metastable states (with complex
eigenvalues E = RE +1SE,
SE < 0)

Scattering problem (with real eigenvalues E)

{X”’(&;)Tv, £>0, ,_ - — —
X! _ X(+)(€0)+X(7)(€0)Rv, £<0, ’ iegert boundary conditions
£g— oo {X(*)(fo)-‘rx(*)(go)Rv, £0>0, = e dX(fo) _ R(gt)x(é.t)
X (&o)Ty, £<0, ’ o leguet 0
where R, and T, are the reflection and transmission t = min, max.
N, x N, matrices, N, is number of open channels, v max
denote the initial direction of the particle motion, Rigio(€0 ) = Wiy
A Rigo(E5™) = ~Rigo (65,
X io $0
X (§0) = ——5 = 3ji

Closed channels ic = No +1,..., N: xij,(§0) = O
pi, = /E — Ei, J




The total transmission probabilities

2
The repulsive barrier is chosen to be a Gaussian potential V(X;) = Toes exp(—%). J

1 9 17 25 33 41 2 6 10 14 18 3 7 11 15 19 4 8 12 16
08 08 \F’V—V - 08 YV e 084 4=2
06 VV'TT " I [ [ " 06 o5e 06 v e 06 s
04 0,4 04 A=4 04
0.2 A=2 o=1/10 =2 0,2 0-1/10 0,2 =110 02 o=1/10
08 08 08 a=5 067 o=5
0,6 0,6 0,6 04
0,4 0,4 0,4 02
" 03 . L5 .;::02 ”::0'2 s y
= 08 =08 a=t0f — 08 u=10 ~ 04] a=10
0,6 0,6 04 j !
04 04 M m 02
0,2 g
0.2 0.2 A MI' i il
0,8 a—ZO 0,8 s = 067 _
TinnE N
04 : 02 I I
. 0,2
0.2 LAl 0.2 I I ll Ll
o 17 25 3 41 6 10 e 18 15 1o 4 8 12 16

The total transmission probabilities |T|34 vs energy E (in oscillator units) from the
symmetric ground state of the system of A= 2,3,4,5 of particles, coupled by the
oscillator potential through the repulsive Gaussian potential barriers

V(x) = exp(——’z) at 0 = 0.1 and o = 2,5, 10, 20.

27r<7




Sub-barrier transmission

74 A=2
6 o=1/10
%= 5a=10 o
= 4 e-sse26 = -
3 = E=9.0802
= ITI?,=0.9594 1] ITI;,=0.9822 g-j E=6.8776
a 0'2 IT[;,=0.0027
® o L AN 00
-8 a4 0 . a 8 < o 4 8 -4 8
o

The probability densities |W(&, &1)[? of functions and their components |x;(£)|? of
functions of symmetric ground state for A = 2 identical particles.




Sub-barrier transmission

A=3,0=1/10, =20

EM
8. 175—7,5 1

Il B JITE [ m
T | 8175 | 0775 | 1 =3)
8.306 | 0.737 | 2 .0(=3)
3 [ TL.111 | 0.495 | 3 | IL.I10—45.6(-3)
4 -5(=3)
5 (=3)
6 (=3)

11.229 0.476
3 12.598 0.013

12 598 —16. 4
12.599—16.3

A=40=1/10, =20

] B [ITE [ m e
T [ 10.121 | 0820 | T | 10.119—14.0(3)
2 | 10.123—:4.0(-3)
2 | 11.896 | 0.349 | 3 | 11.896—16.3(—5)
3 | 12.713 | 0.538 | 4 | 12.710—4.5(-3)
12.717 | 0.538 | 5 | 12.720—14.5(-3)

| E T, | m B
T [ 11794 | 1.6(—4) | 1 [ 11. 794—@1 3(=3)
2 | 11.794—11.3(-3)
2 | 14.166 0.014 3 | 14.166—1.1(-3)
4 | 14.166—11.1(-3)
3 | 14.764 0.666 5 | 14.764—16.6(-6) J
14.774 0.666 6 14.774—125.6(—6)



Over-barrier transmission

A=2
a=1/10
=2
10| E=9.6479

T =0.3779

A=2
15] o=1110

5 qo]Estassa |
<m0 47&5/

1.9 17 25 33 41 ES |T|$1 EA’/I

L 08 V“ 5.8228 | 0.3794
=8 AL Lo 4 9.6479 | 0.3779 9.614—10.217
e 13.5548 | 0.4765 13.505—10.144
, e 13.9648 | 0.8536(|T|35) | 14.018—10.286
red lines are threshold| 17 4519 | 4874 17.445—40.103

energies




Over-well transmission

9 17 25 3B 4
E

5
715 19 28 27
E

37

EP EV(A=2) | EP EM(A=3) | EF EV(A = 4)
-0.3588 {-0.2605,1.5082} | {-0.1938, 1.7084 2.7046}

1 14348—0.2572 | 2 5.3307—10.0620 | 3 5.7747—10.0742
4.6764—10.0058 5.7911—10.0621 6.4441—40.1050

5 8.5158—10.0506 | 6 6.9922—10.0751 6.7934—10.0033
8.7675—10.1261 7.9457—10.0565 | 7 8.3668—20.0651

9 12.6009—0.1215 | 8 8.9601—10.0588 8.7797—10.0080
12.7330—10.0142 9.4950—10.2251 | 9 9.4050—10.1995

13 16.6841—20.0364 9.8617—10.0852 9.9926—10.1225
16.7050—20.0914 | 10  11.4173—:0.1678 10.0755—10.0676




Over-well transmission

703 A2
605 a=1/10

50
o E=46728
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301 M =10"
20
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=110
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Resume

o Quantum tunnelling of a cluster comprised of several identical particles, coupled
via the oscillator-type potential, through short-range repulsive barrier potentials
is studied in the s-wave approximation of the symmetrised-coordinate
representation.

o A procedure is described that allows construction of states, symmetric or
asymmetric with respect to permutations of A identical particles, from the
harmonic oscillator basis functions expressed via the newly introduced
symmetrized coordinates [Lecture Notes in Computer Science 8136, 155-168
(2013).].

@ The description of quantum tunneling (and channeling) of clusters of several
identical particles through the barriers and wells in a coupled-channel
approximation of symmetrized-coordinate representation of harmonic oscillator
basis symmetric or antisymmetric w.r.t. the permutation of particles is
presented.

o Efficiency of the proposed approach and computer codes (KANTBP, KANTBP
3.0 & KANTBP 4M) is demonstrated by analysis of metastable states with
complex values of energy of composite systems leading to a quantum
transparency effect of the barriers and wells in dependence on number of
identical particles and type of symmetry of their states.

o The proposed model can be used as a benchmark to test different methods of
calculating the metastable states of composite systems of several identical
particles and confinement induced resonances in optical traps.
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