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Introduction and motivation



What do I mean by geometry?

Geometry is a branch of mathematics concerned with properties of space such as the distance,
shape, size and relative position of figures

[Wikipedia]

For example, (pseudo)-Riemannian geometry allows one to define lengths, straight lines
(geodesics), angles, volumes, parallel transport, curvature of space-time etc in terms of metric



What do I mean by higher-spin geometry?

Higher-spin theories are theories of massless higher-spin fields

These involve (moditied) gravity in the spin-2 sector

Geometry for the spin-2 sector is the pseudo-Riemannian geometry built in terms of the metric

Higher-spin symmetries mix non-trivially fields of different spins

Accordingly, when higher-spi

Riemannian geometry shoulc

n fields are present the geometric notions available in the pseudo-
non-trivially depend on higher-spin fields



What do I mean by higher-spin geometry?

Definition:

Higher-spin _geometry is _an extension of the pseudo-Riemannian geometry to higher-spin
backgrounds, which is consistent with higher-spin symmetries and dynamics




Geometry and point particles

All geometric notions can be derived from point particle’s motion in given backgrounds
Examples:

Length is the on-shell action
Angles are defined in terms of lengths
Volumes are defined in terms of lengths

Space-time curvature is defined in terms of tidal forces

Thus, the key goal is to consistently couple a point particle to the higher-spin background

«Background» means that particle’s back reaction can be ignored



Chiral higher-spin backgrounds

Chiral higher-spin theories are natural higher-spin extension of SDYM and SDGR to higher-spins

[Metsaev '?91: DP, Skvortsov '16]

Properties:

Defined in 4d Minkowski space, not real in the Lorentzian signature, integrable, scattering is
trivial

SDYM and SDGR form closed sectors of YM and GR, the same holds for chiral higher-spin theory

Key advantage of Chiral HS: known in a closed form, very simple




Concrete problem

We will explore the coupling of a point-particle to the background of the chiral higher-spin

theory




Motivation

Extensions of the Riemannian geometry are interesting in their own right

In the actual U
with reality, it s

niverse we can measure lengths etc. So if higher-spin theories have anything to do

nould be possible to extend the geometric notions to the higher-spin case

The Riemannian geometry + GR have some difficulties, e. g. geodesic incompleteness. Higher-

spin theories

higher-spin geometry can potentially resolve these problems



Previous work



De Wit and Freedman

Metric-like formalism. The action ot a point particle was found at the leading order in higher-spin

fields by requiring HS gauge invariance and reparametrisation invariance

At this order interactions of higher-spin fields are irrelevant
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[de Wit, Freedman '80]



Solution to all orders

A general reparametrization-invariant action in the Hamiltonian form

S = /dT(pui‘“ — AH(p, z))
is symmetric with respect to

0H(p,z) = |e(p,x), H(p,x)] + a(p,z)H(p, v) ()

Expanding around the Minkowski space background
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the first term in (*) reproduces the Fronsdal HS transformations for h. In the Lagrangian torm
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[Segal '00]



Problem

The problem is that there is no reasonable higher-spin theory known with symmetry (*)

The best one has achieved so far is the conformal higher-spin theory. It, however, requires the
Moyal deformation of (*)

5H(p, .CL’) — [g(pv ZIJ’),H(p, CB)]* {a(p, :C),H(p, ZIZ’)}* (**)

[Tseytlin ‘02; Segal '02]




Other setups

Chern-Simons HS theories, Vasiliev's theories: connections on some bundles. Other type of
geometry

Chern-Simons HS theories: black holes, conical detects, BH thermodynamics. Another story

[Kraus, Castro, Campoleoni et al]

Usually one one is content with saying that the interval is not HS invariant. As a result, e. g.
location of BH horizon cannot be defined

[Sundell, Sezgin, Vasiliev, Didenko et al]



Light-cone formalism: generalities



Covariant vs light-cone formalism

Covariant formalism (e. g. Fronsdal’s fields):
Fields are Lorentz tensors. Thus, Lorentz invariance is manifest

Lorentz tensors carry more dof than UIR’s. Gauge invariance is required

Light-cone formalism:

There are no redundant (gauge) degrees of freedom
Lorentz invariance is not manifest, has to be checked/imposed

Can be connected to the result of gauge fixing of a covariant theory



Imposing Poincare symmetry
Any symmetry by the Noether theorem entails the associated conserved current

Integrating over a constant-time surface one obtains a conserved charge

In the Hamiltonian formalism conserved charges generate the action of symmetries on phase
space via the Poisson (Dirac) bracket (time translation -> the Hamiltonian flow)

The charges commute with the Dirac bracket the same way as the associated generators with the

Lie bracket

Q1] Q[TQHD = Q|[T1,T>] 1| (5 * *)

Solution of this equation defines a Poincare invariant theory. For example, the action in the
Hamiltonian form can be easily found: the Hamiltonian is a conserved charge associated with

time translations
[Dirac '49]



Constructing interacting Poincare invariant theories

One starts with a free Poincare invariant theory

Q2[T1], Q2[T2HD = Q2|[T1, T»] L]

Then one deforms the theory with non-linear terms. The charges get deformed
Q2|T] = QT = Q[T + 0Q[T]

Then (***) entails

Q[T QQ[TQHD + [Q2[T1], 5Q[T2HD + [6Q[11], 5Q[T2HD = 0Q|[T1, T3]

[t is to be solved order by order in perturbations



Light-cone formalism and Fronsdal fields



Light-cone gauge fixing

Starting with the Fronsdal action

1
52—5/d4$(’9uga”1“‘”83“90y1,,,y8—I—...

one imposes the light-cone gauge

¢+M2---,us — O

From equations of motion one finds that the only two independent components of the field are

Hs = gOx(s), H—5 SOa‘:(s)

The action is

S = —/d4x8M<I>58“CI>S



Light-cone coordinates

ds® = 2dxTdx™ + 2dxdz



Poincare symmetry

The gauge-fixed theory is also Poincare invariant. Transformations induced from the Fronsdal

theory
PrON = 9HP?,
J PN = (zH0” — ¥ OF + SH) P,
where
STHP = 0,
STEPN = —\P?,
9,
T— A[A A
SN = A0,
0

T—F\ _ A
STTON = )\8+<I>



Chiral higher-spin theory



Chiral higher-spin theory

Proceeding this way one can construct the chiral higher-spin theory

S:SQ—/d.CIZ’_'_Hg

- /d4x20 OO DN + ) ; /d‘*x(m/\l T e,
2 - — (A + A2+ X3 — 1)) ' By? B

Here

Bi = 0;

7 )

P — 518; — 528;_

[Metsaev '‘91;: DP, Skvortsov '16]

Individual vertices were found earlier

[Bengtsson, Bengtsson, Brink ‘83; Bengtsson, Bengtsson, Linden '86]



Light-cone formalism: point particle on a chiral
higher-spin background



Key consistency condition

In the covariant approach (de Wit, Freedman; Segal):

One requires higher-spin gauge invariance and reparametrization invariance

In the light-cone formalism:

Reparametrization invariance and higher-spin gauge invariance are fixed. However, the Poincare

symmetry is not manifest.
Poincare symmetry is the key consistency condition




Free point particle in the light-cone gauge

S = —m/dT\/—an'“x'V — —m/alfL \/—Qx'_ — 247, T=2x"

No reparametrization invariance, no manifest Poincare symmetry any more

Conserved quantities associated with the Poincare symmetry

QO[Px] — _pa:" QO[PE] — _pa?’ QO[P—I_] — _p—l_? qo P—] — Hp7
Q[J") = zp" —ap®, @I =—xpT, @[] =-ap",
QQ[J:C_] — HpCE —|—p f_, C]()[JZE_] — pr —I—pa_j:v_, QO[J+_] — p+:€_.
where
pxpiz m2

szp_a’:_—l—pmx'—l—pff—l}: |
D_ 2D _



Solution at the leading order

Eventually, one finds

A A

_ o) 0L
Hpy=qP =) (C/\—cp/\(a:)+c 77z /\(az))
NS>0 P— P—
where
+ +
_ P L p
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Locality and fake interaction were taken into account

Agrees with the result of de Wit and Freedman after gauge fixing



The second order analysis

After a tedious analysis one finds that there are no local solutions for H2, no mater how we

choose couplings C




The second order analysis

In other words, there is no local Poincare invariant action for a point particle on a chiral higher-

spin background!

Considering that the chiral higher-spin theory is an inevitable sector of any higher-spin theory in
flat space and the way how point particles define geometry, we conclude:

There is no higher-spin geometry, at least, one, which is based on scalar point particles



Side observation: color-kinematics duality



SDYM and SDGR

-or point particles on SDYM and SDGR backgrounds the 2nd order consistency conditions can
e solved

Color factor , ,
Kinematic factor

dx™

SSDYM Sfree + g/ QT (Tab)ael (LE)
d:z:'

SSDGR = Ofree + g/

Alternatively, it can be found by gauge fixing the known covariant actions

ere theta are point particle’s internal coordinates, T is a matrix of the associate representation of
the color algebra

Quite remarkably, they both terminate at the leading order in tfield (recall square root in GR)

Quite manifestly has the double copy structure



SDYM and SDGR

Besides that, sigma’s also define a representation of the area-preserving ditteomorphisms in the
following way

02€1(),0262(2)|D = 02 |€1(7), €2(7)]ap
Where the area-preserving diffeos
[61 (:1:), 62(56)]ap — 8$51(x)8_52 (QZ’) — 8_81($)8x€2(£€)

is the kinematic algebra of the SDYM theory

So, all typical feature of color-kinematics duality are explicit here in complete analogy with the
field theory case: scalar field coupled to SDYM and SDGR

[Monteiro, O'Connell "11]



Why scalar point particles do not couple to
higher-spin fields?



Hypothesis (almost a fact):

For a particle to be able to couple to a theory, its phase space should carry a representations of

theories’ global symmetry algebra

Analogous to: one-particle states should realise the global symmetry ot a given QFT



Examples:

Massless scalar field in d dimensions forms a representation of the conformal higher-spin algebra
in d dimensions. Accordingly, massless scalar can couple to background higher-spin fields

[Tseytlin ‘02; Segal '02]

Classical limit: a point particle can couple to a classical version of background conformal higher-
spin fields

[Segal '00]



Massless scalar field in AdS of d dimensions does not carry a representation of the AdS massless

nigher-spin algebra in d dimensions. Accordingly, massless scalar cannot couple to background

massless higher-spin fields in AdS

Classical limit: analogously, one expects that a scalar point particle cannot couple to massless
higher-spin fields in AdS

In the core of out talk we found a counterpart of this statement in Minkowski space

Expectation: a tower of massless spinning point particles can couple to chiral higher spin
background



This argument strongly suggests that:

The approach by Segal based on point particles cannot be amended so that it describes a
massless higher-spin theory

Einstein gravity amplitudes can be extracted from those of conformal gravity by an appropriate
orojection of the Hilbert space (Maldacena’11). The same does not work for conformal and
massless higher-spin theories

[Joung, Nakach, Tseytlin’15; Adamo, Hahnel, McLoughlin'16; Adamo, Nakach, Tseytlin’18]



Conclusions and future directions



Conclusions

A scalar point particle cannot be coupled to a chiral higher-spin background
One can regard this as a no-go for the extension of the tamiliar geometry to the higher-spin case

Point particle actions in self-dual Yang-Mills and gravity backgrounds have a manifest double-
copy structure



Future directions

't seems reasonable to reconsider the problem for point particles with additional spinning

degrees of freedom

Clarity how the double-copy and additional global symmetries emerge in the light-cone

formalism from Poincare symmetry alone



Thank you!



k.Xxtras



Particle on HS background

Joint phase space

Joint Dirac bracket

Conserved quantities in the joint system

QT =Q|T] + qT1,
QIT] = QT+ Qs3[T] + ...,
g7 = @[T+ @1 [T) + g2[T]+ . ...




Consistency of the joint system

Consistency condition, as usual

Q[Th], Q[Tb]] = Q|[T1, T5].

Expand in Q and g. Take into account that field theory is Poincare invariant already

q[T1], Q[TQHP + [q[Th], q[T2]| , + [a[T1], QT3] , + |Q[T1], q[T2]] 5 = q|[Th, T3]

Dropping the back-reaction terms, one gets

q[T1], Q[Tzﬂp + [q[Th], Q[T2]] , + |Q[Th], ¢[T2]|, = q|[Th, T3]

Should be solved order by order



The second order analysis

The consistency condition becomes

[Q2[T1]>QO[T2HP + (a1 [Th], ¢ [TQHp + |qo[T1], 2 [TQHP + 2[Th], Q2[T2] |, + |@1[Th]), Qs[T2]]
+1Q2[T], g2[T2]] 4 + (Q3[T1], 1 [T2]] ;, = a2 {[T1, T>]]

Here g2 is quadratic in higher-spin fields. Moreover, Q3 is the contribution from HS interactions.

After a tedious analysis one finds that there are no local solutions for H2, no mater how we

choose couplings C




