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Banana diagram

Coordinate space Momentum space
0 loop (□+m2)Gm = 0

Fourier⇐===⇒ (p2−m2)F [Gm] = 0

n-1 loop (???)∏
n
i=1Gmi

= 0
???⇐=⇒ (???)F

[
∏

n
i=1Gmi

]
= 0
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General construction scheme

Single line satisfies:
(□+m2)Gm (⃗x) = 0

The equation implies that G is the function of modulus |⃗x | what allows to
move to more convenient Λ = x⃗∂x⃗ = x∂x operators:(

Λ2+(D−2)Λ+ x2m2
)
Gm(x) = 0

This relation allows to write equation on Gn
m in rather simple way:

ΛkGm =
k

∑
i=0

ak,ix
2iΛGm+

k

∑
i=1

bk,ix
2iGm
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One loop example

As Λ2 can be expressed through Λ, it’s reasonable t distinguish 4 “basis”
functions:

I0,0 = G1G2, I1,0 = (ΛG1)G2, I0,1 = G1 (ΛG2) , I1,1 = (ΛG1)(ΛG2)

Then acting by Λ on I0,0 we get the linear system:
ΛI0,0 = I1,0+ I0,1

Λ2I0,0 = 2I1,1− (D−2)I1,0− (D−2)I0,1− (m2
1+m2

2)x
2I0,0

Λ3I0,0 = B1I1,1+B2I1,0+B3I0,1+B4I0,0

Λ4I0,0 = C1I1,1+C2I1,0+C3I0,1+C4I0,0
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One loop example

It’s convenient to express this system in matrix form:

A=


1 0 0 0 I0,0
0 1 1 0 ΛI0,0

−(m2
1+m2

2)x
2 −(D−2) −(D−2) 2 Λ2I0,0

B1 B2 B3 B4 Λ3I0,0
C1 C2 C3 C4 Λ4I0,0


The kernel of this matrix is of the form (I0,0, I1,0, I0,1, I1,1,−1), which implies

detA= 0
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One loop example

detA=
{
Λ4+2(2D−5)Λ3+

(
2x2(m2

1+m2
2)+(D−2)(5D−16)

)
Λ2+

+2
(
(m2

1+m2
2)x

2(2D−3)+(D−4)(D−2)2
)
Λ+ x2

(
(m2

1−m2
2)

2x2+

+2(D−1)(D−2)(m2
1+m2

2)
)}

I0,0 = 0
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Equal mass case

The case of equal masses implies new identity:

I1,0 = I0,1

Then the linear system reduces to:

A=


1 0 0 I0,0
0 1 0 Λ1I0,0

−2m2x2 2−D 2 Λ2I0,0
2(D−4)m2x2 (D−2)2−4m2x2 −6(D−2) Λ3I0,0


Repeating the same argument we get the equation

detA=
(
Λ3+3(D−2)Λ2+

(
2(D−2)2+4m2x2

)
Λ+4(D−1)m2x2

)
I0,0 = 0

Maxim Reva PMMP24 February 22, 2024 8 / 21



Momentum space

As we are interested in “maximal cut” solutions, the Green function reads:

G =
∫

e ipx f (p)δ (p2−m2)dp

So for n-loop integral we have:

Gn =
∫

e ipx f (p)δ (∑
i

ki −p)∏
i

δ (k2
i −m2

i )∏
i

dkidp =
∫

e ipx f (p)Indp

Using Feynman trick and integrating over ki we arrive at

In =
∫
Rn

n

∏
i=1

dαiδ

(
1−

n

∑
i=1

αi

)
U

n
2 (2−D)

F 1− (n−1)(D−2)
2

U =
n

∏
i=1

αi

n

∑
i=1

α
−1
i , F =

(
n

∏
i=1

αi

n

∑
i=1

α
−1
i

)(
n

∑
i=1

m2
i αi

)
−p2

n

∏
i=1

αi

Maxim Reva PMMP24 February 22, 2024 9 / 21



Momentum space

As the integrand is homogeneous we can move to projective form

In =
∫
Γn

U
n
2 (2−D)

F 1− (n−1)(D−2)
2

ω

where Γn =
{
(α1, . . . ,αn) ∈ CPn−1|(α1, . . . ,αn) ∈ Rn

}
and

ω = ∑
n
i=1(−1)i+1αidα1∧·· ·∧ d̂α i ∧·· ·∧dαn.

Using Hopf fibration we move the integrration to complex domain

In =
1

2π i

∫
Γ̃n

U
n
2 (2−D)

F 1− (n−1)(D−2)
2

n

∏
i=1

d α̃i

with Γ̃n =
{
(α̃1, . . . , α̃n) ∈ Cn | α̃i = αie

iφ , αi ∈ Γn, φ ∈ S1
}

.
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General construction scheme

As Γ̃n is closed the differential equation can be easily found

k

∑
i=1

ai (t)
∂ i

∂ t i
In = P̂F · In = 0 ⇐⇒ P̂F ·

(
U

n
2 (2−D)

F 1− (n−1)(D−2)
2

n

∏
i=1

d α̃i

)
= dβ

For convenience we put t = p2.
The right hand side can be expanded as

dβ = ∑
i

∂gi
∂αi

, gi = fi
Ua

F b

where fi are homogeneous polynomials of certain degree.
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One loop example

U = α1+α2, F = (α1+α2)(m
2
1α1+m2

2α2)− tα1α2

In different mass case:{
2t(t− (m1−m2)

2)(t− (m1+m2)
2)

∂

∂ t
+

+
(
(D−2)(m2

1−m2
2)

2−2(m2
1+m2

2)t+(4−D)t2
)}U2−D

F 2−D
2

=

= 2

(
m2

2(t+m2
1−m2

2)
∂

∂α1
+m2

1(t+m2
2−m2

1)
∂

∂α2

)
U3−D

F 2−D
2

In equal mass case:{
t(t−4m2)

∂

∂ t
− (D−4)t−4m2

}
U2−D

F 2−D
2

=m2

(
∂

∂α1
+

∂

∂α2

)
U3−D

F 2−D
2

Maxim Reva PMMP24 February 22, 2024 12 / 21



Calabi-Yau case

In(D = 2) =
∫
Γn

ω

F
Res−−→ X : F = 0

The integral becomes the period of CY X , possibly singular. This allows to
derive the additional property on differential operator annihilating
integral.
Let P = ∑

n
i=0 ai

∂ i

∂ t i
, P · In = 0 and its formal adjoint P∗ = ∑

n
i=0(−1)i ∂ i

∂ t i
ai , then

the following relation holds:

Pf (t) = (−1)degP f (t)P∗

where f (t) is some function depending on operator.

f (2an−1−na′n)+nanf
′ = 0
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Fourier transform

The Fourier transform from x to p space:

Λ̂∼=−D−2t
∂

∂ t

x2 ∼=−2D
∂

∂ t
−4t

∂ 2

∂ t2

And from p to x :

t ∼= ∂
2− (D−1)

|x |
∂

Θ= t
∂

∂ t
∼=−1

2
(D+Λ̂)
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Fourier transform

coordinate Fourier transform momentum

Minimal in Λ∼ ∂

∂X can be Large in X =⇒ Large in ∂

∂ t

↓ factorization
↑ factorization

Minimal in ∂

∂ t = PF
Large in ∂

∂X ∼ Λ ⇐= can be Large in t
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One loop, equal masses, arbitrary D

coordinate Fourier transform momentum

bi-degree (3,2) =⇒ bi-degree (3,3)

x · ↑ ↓ left div. by
(
D+2t ∂

∂ t

)
∂

∂ t ≃ x2

bi-degree (3,2−1) ⇐= bi-degree (1,2)
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One loop, different masses, arbitrary D

coordinate Fourier transform momentum

bi-degree (4,3) =⇒ bi-degree (4,4)

left div. by x−3(x ∂

∂x −1) ↑ ↓ left div. by
(
D+2t ∂

∂ t

)
∂2

∂ t2

bi-degree (5,4−3) ⇐= bi-degree (1,3)
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Two loop, equal masses, arbitrary D

coordinate Fourier transform momentum

bi-degree (4,3) =⇒ bi-degree (4,4)

left div. by x−3
(
x ∂

∂x −1
)(

x ∂

∂x +D−3
)
↑ ↓ left div. by

(
D+2t ∂

∂ t

)
∂

∂ t

bi-degree (6,5−3) ⇐= bi-degree (2,3)
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Two loop, different masses, D = 2

coordinate Fourier transform momentum

bi-degree (8,11) =⇒ bi-degree (12,10)

factorization ↑ ↓ factorization

bi-degree (14,13−11) ⇐= bi-degree (2,7)
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The End
Questions? Comments?
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