From equations in coordinate space on Feynman integrals to Picard-Fuchs and back

Maxim Reva
MIPT, ITEP
reva.ma@phystech.edu

Presentation Overview

(1) Introduction
(2) Coordinate space equation General construction scheme Example
Comment on equal mass case
(3) Momentum space

General construction scheme
Example
Calabi-Yau case
(4) Fourier transform

Examples
(5) References

Banana diagram

	Coordinate space		Momentum space
0 loop	$\left(\square+m^{2}\right) G_{m}=0$	$\stackrel{\text { Fourier }}{\Longleftrightarrow}$	$\left(p^{2}-m^{2}\right) F\left[G_{m}\right]=0$
n-1 loop	$(? ? ?) \prod_{i=1}^{n} G_{m_{i}}=0$	$\stackrel{? ? ?}{ }$	$(? ? ?) F\left[\prod_{i=1}^{n} G_{m_{i}}\right]=0$

General construction scheme

Single line satisfies:

$$
\left(\square+m^{2}\right) G_{m}(\vec{x})=0
$$

The equation implies that G is the function of modulus $|\vec{x}|$ what allows to move to more convenient $\Lambda=\vec{x} \partial_{\vec{x}}=x \partial_{x}$ operators:

$$
\left(\Lambda^{2}+(D-2) \Lambda+x^{2} m^{2}\right) G_{m}(x)=0
$$

This relation allows to write equation on G_{m}^{n} in rather simple way:

$$
\Lambda^{k} G_{m}=\sum_{i=0}^{k} a_{k, i} i^{2 i} \Lambda G_{m}+\sum_{i=1}^{k} b_{k, i} x^{2 i} G_{m}
$$

One loop example

As Λ^{2} can be expressed through Λ, it's reasonable t distinguish 4 "basis" functions:

$$
l_{0,0}=G_{1} G_{2}, \quad l_{1,0}=\left(\Lambda G_{1}\right) G_{2}, \quad l_{0,1}=G_{1}\left(\wedge G_{2}\right), \quad l_{1,1}=\left(\wedge G_{1}\right)\left(\wedge G_{2}\right)
$$

Then acting by Λ on $I_{0,0}$ we get the linear system:

$$
\left\{\begin{array}{l}
\Lambda_{0,0}=I_{1,0}+I_{0,1} \\
\Lambda^{2} I_{0,0}=2 I_{1,1}-(D-2) I_{1,0}-(D-2) I_{0,1}-\left(m_{1}^{2}+m_{2}^{2}\right) x^{2} I_{0,0} \\
\Lambda^{3} I_{0,0}=B_{1} I_{1,1}+B_{2} I_{1,0}+B_{3} I_{0,1}+B_{4} I_{0,0} \\
\Lambda^{4} I_{0,0}=C_{1} I_{1,1}+C_{2} I_{1,0}+C_{3} I_{0,1}+C_{4} I_{0,0}
\end{array}\right.
$$

One loop example

It's convenient to express this system in matrix form:

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & I_{0,0} \\
0 & 1 & 1 & 0 & \Lambda I_{0,0} \\
-\left(m_{1}^{2}+m_{2}^{2}\right) x^{2} & -(D-2) & -(D-2) & 2 & \Lambda^{2} I_{0,0} \\
B_{1} & B_{2} & B_{3} & B_{4} & \Lambda^{3} I_{0,0} \\
C_{1} & C_{2} & C_{3} & C_{4} & \Lambda^{4} I_{0,0}
\end{array}\right)
$$

The kernel of this matrix is of the form $\left(I_{0,0}, I_{1,0}, I_{0,1}, l_{1,1},-1\right)$, which implies

$$
\operatorname{det} A=0
$$

One loop example

$$
\begin{aligned}
\operatorname{det} A= & \left\{\Lambda^{4}+2(2 D-5) \Lambda^{3}+\left(2 x^{2}\left(m_{1}^{2}+m_{2}^{2}\right)+(D-2)(5 D-16)\right) \Lambda^{2}+\right. \\
& +2\left(\left(m_{1}^{2}+m_{2}^{2}\right) x^{2}(2 D-3)+(D-4)(D-2)^{2}\right) \Lambda+x^{2}\left(\left(m_{1}^{2}-m_{2}^{2}\right)^{2} x^{2}+\right. \\
& \left.\left.+2(D-1)(D-2)\left(m_{1}^{2}+m_{2}^{2}\right)\right)\right\} l_{0,0}=0
\end{aligned}
$$

Equal mass case

The case of equal masses implies new identity:

$$
I_{1,0}=I_{0,1}
$$

Then the linear system reduces to:

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & I_{0,0} \\
0 & 1 & 0 & \Lambda^{\Lambda} \rho_{0,0} \\
-2 m^{2} x^{2} & 2-D & 2 & \Lambda^{2} l_{0,0} \\
2(D-4) m^{2} x^{2} & (D-2)^{2}-4 m^{2} x^{2} & -6(D-2) & \Lambda^{3} l_{0,0}
\end{array}\right)
$$

Repeating the same argument we get the equation

$$
\operatorname{det} A=\left(\Lambda^{3}+3(D-2) \Lambda^{2}+\left(2(D-2)^{2}+4 m^{2} x^{2}\right) \Lambda+4(D-1) m^{2} x^{2}\right) I_{0,0}=0
$$

Momentum space

As we are interested in "maximal cut" solutions, the Green function reads:

$$
G=\int e^{i p x} f(p) \delta\left(p^{2}-m^{2}\right) d p
$$

So for n-loop integral we have:

$$
G^{n}=\int e^{i p x} f(p) \delta\left(\sum_{i} k_{i}-p\right) \prod_{i} \delta\left(k_{i}^{2}-m_{i}^{2}\right) \prod_{i} d k_{i} d p=\int e^{i p x} f(p) I_{n} d p
$$

Using Feynman trick and integrating over k_{i} we arrive at

$$
\begin{gathered}
I_{n}=\int_{\mathbb{R}^{n}} \prod_{i=1}^{n} d \alpha_{i} \delta\left(1-\sum_{i=1}^{n} \alpha_{i}\right) \frac{U^{\frac{n}{2}(2-D)}}{F^{1-\frac{(n-1)(D-2)}{2}}} \\
U=\prod_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i}^{-1}, \quad F=\left(\prod_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i}^{-1}\right)\left(\sum_{i=1}^{n} m_{i}^{2} \alpha_{i}\right)-p^{2} \prod_{i=1}^{n} \alpha_{i}
\end{gathered}
$$

Momentum space

As the integrand is homogeneous we can move to projective form

$$
I_{n}=\int_{\Gamma^{n}} \frac{U^{\frac{n}{2}(2-D)}}{F^{1-\frac{(n-1)(D-2)}{2}}} \omega
$$

where $\Gamma_{n}=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C P}^{n-1} \mid\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}\right\}$ and
$\omega=\sum_{i=1}^{n}(-1)^{i+1} \alpha_{i} d \alpha_{1} \wedge \cdots \wedge \widehat{d \alpha}_{i} \wedge \cdots \wedge d \alpha_{n}$.
Using Hopf fibration we move the integrration to complex domain

$$
I_{n}=\frac{1}{2 \pi i} \int_{\widetilde{\Gamma}_{n}} \frac{U^{\frac{n}{2}(2-D)}}{F^{1-\frac{(n-1)(D-2)}{2}}} \prod_{i=1}^{n} d \widetilde{\alpha}_{i}
$$

with $\widetilde{\Gamma}_{n}=\left\{\left(\widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{n}\right) \in \mathbb{C}^{n} \mid \widetilde{\alpha}_{i}=\alpha_{i} e^{i \phi}, \alpha_{i} \in \Gamma_{n}, \phi \in S^{1}\right\}$.

General construction scheme

As $\widetilde{\Gamma}_{n}$ is closed the differential equation can be easily found

For convenience we put $t=p^{2}$.
The right hand side can be expanded as

$$
d \beta=\sum_{i} \frac{\partial g_{i}}{\partial \alpha_{i}}, \quad g_{i}=f_{i} \frac{U^{a}}{F^{b}}
$$

where f_{i} are homogeneous polynomials of certain degree.

One loop example

$$
U=\alpha_{1}+\alpha_{2}, \quad F=\left(\alpha_{1}+\alpha_{2}\right)\left(m_{1}^{2} \alpha_{1}+m_{2}^{2} \alpha_{2}\right)-t \alpha_{1} \alpha_{2}
$$

In different mass case:

$$
\begin{aligned}
& \left\{2 t\left(t-\left(m_{1}-m_{2}\right)^{2}\right)\left(t-\left(m_{1}+m_{2}\right)^{2}\right) \frac{\partial}{\partial t}+\right. \\
& \left.\quad+\left((D-2)\left(m_{1}^{2}-m_{2}^{2}\right)^{2}-2\left(m_{1}^{2}+m_{2}^{2}\right) t+(4-D) t^{2}\right)\right\} \frac{U^{2-D}}{F^{2-\frac{D}{2}}}= \\
& \quad=2\left(m_{2}^{2}\left(t+m_{1}^{2}-m_{2}^{2}\right) \frac{\partial}{\partial \alpha_{1}}+m_{1}^{2}\left(t+m_{2}^{2}-m_{1}^{2}\right) \frac{\partial}{\partial \alpha_{2}}\right) \frac{U^{3-D}}{F^{2-\frac{D}{2}}}
\end{aligned}
$$

In equal mass case:

$$
\left\{t\left(t-4 m^{2}\right) \frac{\partial}{\partial t}-(D-4) t-4 m^{2}\right\} \frac{U^{2-D}}{F^{2-\frac{D}{2}}}=m^{2}\left(\frac{\partial}{\partial \alpha_{1}}+\frac{\partial}{\partial \alpha_{2}}\right) \frac{U^{3-D}}{F^{2-\frac{D}{2}}}
$$

Calabi-Yau case

$$
I_{n}(D=2)=\int_{\Gamma_{n}} \frac{\omega}{F} \quad \xrightarrow{\text { Res }} \quad X: F=0
$$

The integral becomes the period of CY X, possibly singular. This allows to derive the additional property on differential operator annihilating integral.
Let $P=\sum_{i=0}^{n} a_{i} \frac{\partial^{i}}{\partial t^{i}}, P \cdot I_{n}=0$ and its formal adjoint $P^{*}=\sum_{i=0}^{n}(-1)^{i} \frac{\partial^{i}}{\partial t^{i}} a_{i}$, then the following relation holds:

$$
P f(t)=(-1)^{\operatorname{deg} P} f(t) P^{*}
$$

where $f(t)$ is some function depending on operator.

$$
f\left(2 a_{n-1}-n a_{n}^{\prime}\right)+n a_{n} f^{\prime}=0
$$

Fourier transform

The Fourier transform from x to p space:

$$
\begin{array}{r}
\hat{\Lambda} \cong-D-2 t \frac{\partial}{\partial t} \\
x^{2} \cong-2 D \frac{\partial}{\partial t}-4 t \frac{\partial^{2}}{\partial t^{2}}
\end{array}
$$

And from p to x :

$$
\begin{array}{r}
t \cong \partial^{2}-\frac{(D-1)}{|x|} \partial \\
\Theta=t \frac{\partial}{\partial t} \cong-\frac{1}{2}(D+\hat{\Lambda})
\end{array}
$$

Fourier transform

coordinate

Fourier transform

Minimal in $\Lambda \sim \frac{\partial}{\partial X} \quad$ can be Large in $X \quad \Longrightarrow \quad$ Large in $\frac{\partial}{\partial t}$
\uparrow factorization
Large in $\frac{\partial}{\partial X} \sim \Lambda$
\downarrow factorization
Minimal in $\frac{\partial}{\partial t}=P F$ can be Large in t

One loop, equal masses, arbitrary D

bi-degree $(3,2)$

$$
x \cdot \uparrow
$$

bi-degree (3,2-1)
\Longrightarrow
bi-degree $(3,3)$
\downarrow left div. by $\left(D+2 t \frac{\partial}{\partial t}\right) \frac{\partial}{\partial t} \simeq x^{2}$
bi-degree $(1,2)$

One loop, different masses, arbitrary D

bi-degree $(4,3)$

bi-degree $(4,4)$
left div. by $x^{-3}\left(x \frac{\partial}{\partial x}-1\right) \uparrow$
bi-degree (5,4-3)
\downarrow left div. by $\left(D+2 t \frac{\partial}{\partial t}\right) \frac{\partial^{2}}{\partial t^{2}}$
bi-degree $(1,3)$

Two loop, equal masses, arbitrary D

bi-degree $(4,3)$
\Longrightarrow
bi-degree $(4,4)$
left div. by $x^{-3}\left(x \frac{\partial}{\partial x}-1\right)\left(x \frac{\partial}{\partial x}+D-3\right) \uparrow$
bi-degree (6,5-3)
\downarrow left div. by $\left(D+2 t \frac{\partial}{\partial t}\right) \frac{\partial}{\partial t}$
bi-degree $(2,3)$

Two loop, different masses, $D=2$

coordinate
Fourier transform
momentum
bi-degree $(8,11)$
factorization \uparrow
bi-degree (14,13-11)
\Longrightarrow
bi-degree $(12,10)$
\downarrow factorization
bi-degree $(2,7)$

References

V. Mishnyakov, A. Morozov, and M. Reva.

On factorization hierarchy of equations for banana feynman amplitudes.
2023.
V. Mishnyakov, A. Morozov, and M. Reva.

From equations in coordinate space to picard-fuchs and back (to be published).
2024.

The End

Questions? Comments?

