From equations in coordinate space on Feynman integrals to Picard-Fuchs and back

Maxim Reva

MIPT, ITEP reva.ma@phystech.edu

axi		

Presentation Overview

1 Introduction

Coordinate space equation General construction scheme Example Comment on equal mass case

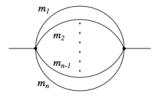
3 Momentum space

General construction scheme Example Calabi-Yau case

4 Fourier transform Examples

6 References

Banana diagram



	Coordinate space		Momentum space
0 loop	$(\Box + m^2)G_m = 0$	Fourier	$(p^2-m^2)F[G_m]=0$
n-1 loop	$(???)\prod_{i=1}^{n}G_{m_{i}}=0$	$\stackrel{???}{\longleftrightarrow}$	$(???)F\left[\prod_{i=1}^n G_{m_i}\right]=0$

Single line satisfies:

$$(\Box + m^2)G_m(\vec{x}) = 0$$

The equation implies that *G* is the function of modulus $|\vec{x}|$ what allows to move to more convenient $\Lambda = \vec{x}\partial_{\vec{x}} = x\partial_x$ operators:

$$\left(\Lambda^2 + (D-2)\Lambda + x^2m^2\right)G_m(x) = 0$$

This relation allows to write equation on G_m^n in rather simple way:

$$\Lambda^{k} G_{m} = \sum_{i=0}^{k} a_{k,i} x^{2i} \Lambda G_{m} + \sum_{i=1}^{k} b_{k,i} x^{2i} G_{m}$$

As Λ^2 can be expressed through $\Lambda,$ it's reasonable t distinguish 4 "basis" functions:

 $I_{0,0} = G_1 G_2, \quad I_{1,0} = (\Lambda G_1) G_2, \quad I_{0,1} = G_1 (\Lambda G_2), \quad I_{1,1} = (\Lambda G_1) (\Lambda G_2)$

Then acting by Λ on $I_{0,0}$ we get the linear system:

$$\begin{cases} \Lambda I_{0,0} = I_{1,0} + I_{0,1} \\ \Lambda^2 I_{0,0} = 2I_{1,1} - (D-2)I_{1,0} - (D-2)I_{0,1} - (m_1^2 + m_2^2)x^2I_{0,0} \\ \Lambda^3 I_{0,0} = B_1I_{1,1} + B_2I_{1,0} + B_3I_{0,1} + B_4I_{0,0} \\ \Lambda^4 I_{0,0} = C_1I_{1,1} + C_2I_{1,0} + C_3I_{0,1} + C_4I_{0,0} \end{cases}$$

It's convenient to express this system in matrix form:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & l_{0,0} \\ 0 & 1 & 1 & 0 & \Lambda l_{0,0} \\ -(m_1^2 + m_2^2)x^2 & -(D-2) & -(D-2) & 2 & \Lambda^2 l_{0,0} \\ B_1 & B_2 & B_3 & B_4 & \Lambda^3 l_{0,0} \\ C_1 & C_2 & C_3 & C_4 & \Lambda^4 l_{0,0} \end{pmatrix}$$

The kernel of this matrix is of the form $(I_{0,0}, I_{1,0}, I_{0,1}, I_{1,1}, -1)$, which implies

 $\det A = 0$

$$\det A = \left\{ \Lambda^4 + 2(2D - 5)\Lambda^3 + \left(2x^2(m_1^2 + m_2^2) + (D - 2)(5D - 16) \right) \Lambda^2 + 2\left((m_1^2 + m_2^2)x^2(2D - 3) + (D - 4)(D - 2)^2 \right) \Lambda + x^2 \left((m_1^2 - m_2^2)^2 x^2 + 2(D - 1)(D - 2)(m_1^2 + m_2^2) \right) \right\} I_{0,0} = 0$$

Ξ.

The case of equal masses implies new identity:

 $I_{1,0} = I_{0,1}$

Then the linear system reduces to:

$$A = \begin{pmatrix} 1 & 0 & 0 & I_{0,0} \\ 0 & 1 & 0 & \Lambda^1 I_{0,0} \\ -2m^2 x^2 & 2-D & 2 & \Lambda^2 I_{0,0} \\ 2(D-4)m^2 x^2 & (D-2)^2 - 4m^2 x^2 & -6(D-2) & \Lambda^3 I_{0,0} \end{pmatrix}$$

Repeating the same argument we get the equation

 $\det A = \left(\Lambda^3 + 3(D-2)\Lambda^2 + \left(2(D-2)^2 + 4m^2x^2\right)\Lambda + 4(D-1)m^2x^2\right)I_{0,0} = 0$

Momentum space

As we are interested in "maximal cut" solutions, the Green function reads:

$$G=\int e^{ipx}f(p)\delta(p^2-m^2)dp$$

So for *n*-loop integral we have:

$$G^{n} = \int e^{ipx} f(p) \delta(\sum_{i} k_{i} - p) \prod_{i} \delta(k_{i}^{2} - m_{i}^{2}) \prod_{i} dk_{i} dp = \int e^{ipx} f(p) I_{n} dp$$

Using Feynman trick and integrating over k_i we arrive at

$$I_n = \int_{\mathbb{R}^n} \prod_{i=1}^n d\alpha_i \delta\left(1 - \sum_{i=1}^n \alpha_i\right) \frac{U^{\frac{n}{2}(2-D)}}{F^{1 - \frac{(n-1)(D-2)}{2}}}$$
$$U = \prod_{i=1}^n \alpha_i \sum_{i=1}^n \alpha_i^{-1}, \quad F = \left(\prod_{i=1}^n \alpha_i \sum_{i=1}^n \alpha_i^{-1}\right) \left(\sum_{i=1}^n m_i^2 \alpha_i\right) - \rho^2 \prod_{i=1}^n \alpha_i$$

As the integrand is homogeneous we can move to projective form

$$I_{n} = \int_{\Gamma^{n}} \frac{U^{\frac{n}{2}(2-D)}}{F^{1-\frac{(n-1)(D-2)}{2}}} \omega$$

where
$$\Gamma_n = \{(\alpha_1, \dots, \alpha_n) \in \mathbb{CP}^{n-1} | (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n\}$$
 and $\omega = \sum_{i=1}^n (-1)^{i+1} \alpha_i d\alpha_1 \wedge \dots \wedge \widehat{d\alpha_i} \wedge \dots \wedge d\alpha_n.$

Using Hopf fibration we move the integrration to complex domain

$$I_n = \frac{1}{2\pi i} \int_{\widetilde{\Gamma}_n} \frac{U^{\frac{n}{2}(2-D)}}{F^{1-\frac{(n-1)(D-2)}{2}}} \prod_{i=1}^n d\widetilde{\alpha}_i$$

with $\widetilde{\Gamma}_n = \{ (\widetilde{\alpha}_1, \dots, \widetilde{\alpha}_n) \in \mathbb{C}^n \mid \widetilde{\alpha}_i = \alpha_i e^{i\phi}, \ \alpha_i \in \Gamma_n, \ \phi \in S^1 \}.$

As $\tilde{\Gamma}_n$ is closed the differential equation can be easily found

$$\sum_{i=1}^{k} a_{i}(t) \frac{\partial^{i}}{\partial t^{i}} I_{n} = \widehat{PF} \cdot I_{n} = 0 \qquad \Longleftrightarrow \qquad \widehat{PF} \cdot \left(\frac{U^{\frac{n}{2}(2-D)}}{F^{1-\frac{(n-1)(D-2)}{2}}} \prod_{i=1}^{n} d\widetilde{\alpha}_{i} \right) = d\beta$$

For convenience we put $t = p^2$. The right hand side can be expanded as

$$d\beta = \sum_{i} \frac{\partial g_{i}}{\partial \alpha_{i}}, \quad g_{i} = f_{i} \frac{U^{a}}{F^{b}}$$

where f_i are homogeneous polynomials of certain degree.

$$U = \alpha_1 + \alpha_2,$$
 $F = (\alpha_1 + \alpha_2)(m_1^2\alpha_1 + m_2^2\alpha_2) - t\alpha_1\alpha_2$

In different mass case:

$$\begin{cases} 2t(t - (m_1 - m_2)^2)(t - (m_1 + m_2)^2)\frac{\partial}{\partial t} + \\ + ((D - 2)(m_1^2 - m_2^2)^2 - 2(m_1^2 + m_2^2)t + (4 - D)t^2) \end{cases} \frac{U^{2-D}}{F^{2-\frac{D}{2}}} = \\ = 2\left(m_2^2(t + m_1^2 - m_2^2)\frac{\partial}{\partial\alpha_1} + m_1^2(t + m_2^2 - m_1^2)\frac{\partial}{\partial\alpha_2}\right)\frac{U^{3-D}}{F^{2-\frac{D}{2}}} \end{cases}$$

In equal mass case:

$$\left\{t(t-4m^2)\frac{\partial}{\partial t}-(D-4)t-4m^2\right\}\frac{U^{2-D}}{F^{2-\frac{D}{2}}}=m^2\left(\frac{\partial}{\partial \alpha_1}+\frac{\partial}{\partial \alpha_2}\right)\frac{U^{3-D}}{F^{2-\frac{D}{2}}}$$

$$I_n(D=2) = \int_{\Gamma_n} \frac{\omega}{F} \qquad \xrightarrow{\text{Res}} \qquad X: F=0$$

The integral becomes the period of CY *X*, possibly singular. This allows to derive the additional property on differential operator annihilating integral.

Let $P = \sum_{i=0}^{n} a_i \frac{\partial^i}{\partial t^i}$, $P \cdot I_n = 0$ and its formal adjoint $P^* = \sum_{i=0}^{n} (-1)^i \frac{\partial^i}{\partial t^i} a_i$, then the following relation holds:

$$Pf(t) = (-1)^{\deg P} f(t) P^*$$

where f(t) is some function depending on operator.

 $f(2a_{n-1}-na_n')+na_nf'=0$

Fourier transform

The Fourier transform from *x* to *p* space:

$$\hat{\Lambda} \cong -D - 2t \frac{\partial}{\partial t}$$
$$x^{2} \cong -2D \frac{\partial}{\partial t} - 4t \frac{\partial^{2}}{\partial t^{2}}$$

And from *p* to *x*:

$$t \cong \partial^2 - \frac{(D-1)}{|x|} \partial$$
$$\Theta = t \frac{\partial}{\partial t} \cong -\frac{1}{2} (D + \hat{\Lambda})$$

∃ ▶ ∢

æ

Image: A matrix and a matrix

coordinate		Fourier transform	momentum
Minimal in $\Lambda \sim \frac{\partial}{\partial X}$	can be Large in X	\Rightarrow	Large in $\frac{\partial}{\partial t}$
↑ factorization			\downarrow factorization
Large in $\frac{\partial}{\partial X} \sim \Lambda$		\	Minimal in $\frac{\partial}{\partial t}$ = PF can be Large in <i>t</i>

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ξ.

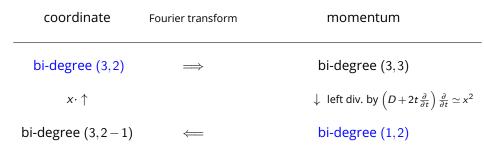
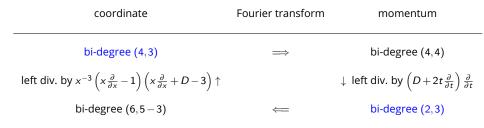


Image: A matrix and a matrix

One loop, different masses, arbitrary D

coordinate	Fourier transform	momentum
bi-degree (4,3)	\Rightarrow	bi-degree (4,4)
left div. by $x^{-3}(xrac{\partial}{\partial x}-1)$ \uparrow		\downarrow left div. by $\left(D+2trac{\partial}{\partial t}\right)rac{\partial^2}{\partial t^2}$
bi-degree (5,4-3)	\Leftarrow	bi-degree (1,3)



A D > A A P > A

coordinate	Fourier transform	momentum
bi-degree (8,11)	\Rightarrow	bi-degree (12,10)
factorization \uparrow		\downarrow factorization
bi-degree (14,13-11)	⇐=	bi-degree (2,7)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

V. Mishnyakov, A. Morozov, and M. Reva.

On factorization hierarchy of equations for banana feynman amplitudes. 2023.

V. Mishnyakov, A. Morozov, and M. Reva.

From equations in coordinate space to picard-fuchs and back (to be published). 2024.

The End

Questions? Comments?

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへで