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• Large-c CFT and conformal blocks

• Wilson networks in AdS

• AdS/CFT correspondence



large-c CFT



Conformal correlation functions
• The n-point correlation function of O∆i ,∆̄i

(zi , z̄i ), i = 1, ..., n:

〈O∆1,∆̄1
(z1, z̄1) . . .O∆n,∆̄n

(zn, z̄n)〉 =
∑

(∆̃1,
¯̃∆1),...,(∆̃n−3

¯̃∆n−3)

C121̃ . . . Cñ−3n−1n F F̄

(Holomorphic) conformal blocks F(z1, ..., zn|∆1, ...,∆n ; ∆̃1, ..., ∆̃n−3|c) in the OPE comb channel (there are many others)

Remarkably, the OPE ties monodromy of solutions around particular contours to dimen-

sions of the exchanged operators in a particularly simple way. For the degenerate primary

inserted as on Fig. 1 we find that the conformal block is dominated by (zm�y)�̃m+1��(1,2)��̃m .

By the OPE argument, moving y around zm is equivalent to moving around insertion points

of those operators which have been fused into the exchanged operator. Thus, computing the

monodromy of the above power-law function we easily find the monodromy along the contour

�k (2.1).

Indeed, using the Liouville parameterization2 we find that �(1,2) = �1/2 � 3b2/4, while

conformal dimensions of exchanged operators are related by the fusion rule as �̃m+1 � �̃m =

�b2/4 ± ibPm [21]. Then, the monodromy matrix associated with �k is given by

eM(�k) =

 
e2⇡iM+k 0

0 e2⇡iM�k

!
, M±k =

1

2
+

b2

2
± ibPk�1 . (2.2)

The classical conformal blocks arise in the limit when the central charge and conformal

dimensions simultaneously tend to infinity. Both external and exchanged dimensions �m and

�̃n grow linearly with the charge c in such a way that ratios ✏m = 6�m/c and ✏̃n = 6�̃n/c

called classical dimensions remain fixed in c ! 1. Then, the quantum conformal block is

represented as an exponential of the classical conformal block [17]. Operators with fixed

classical dimensions are heavy, while those with vanishing classical dimensions are light.

z1,�1

z2,�2 zn�2,�n�2· · · · · ·

zn,�n

zn�1,�n�1

�̃1 �̃n�3�̃n�2· · · · · ·

Figure 2. The n-point conformal block. Two bold black lines are background heavy operators,

thin blue lines represent primary and exchanged perturbative heavy operators which are discussed in

Section 3.

In our case of the (n + 1)-point conformal block all operators are supposed to be heavy

while the degenerate operator is light, limb!0 �(1,2) = 1/2. Thus, in the semiclassical

limit it decouples from the other operators, while adjacent exchanged dimensions get equal

limb!0(�̃m � �̃m+1) = 0, see Fig. 1. The limiting (n+1)-point conformal block factorizes as

F(y, z|�m, �̃n)
���
c!1

!  (y|z) exp
⇥
� c

6
f(z|✏i, ✏̃j)

⇤
, (2.3)

where we denoted z = {z1, ... , zn}, function  (y|z) describes the semiclassical contribution

of the degenerate operator, while the exponential factor f(z|✏i, ✏̃j) is the n-point classical

2We change (�, c) ! (P, b) according to �(P ) = c�1
24

+ P 2 and c = 1 + 6(b + b�1)2 [21]. The limit c ! 1
can equivalently be described as b ! 0.
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• The 4-point conformal block (z1 =∞, z2 = 1, z3 = z < 1, z4 = 0):

F(z|∆i , ∆̃, c) = z∆̃−∆1−∆2
∞∑
N=0

FN zN ∼ 1 +
(∆̃− ∆1 + ∆2)(∆̃− ∆4 + ∆3)

2∆̃
z + F2z

2 + ...

where

F2 =
(∆̃ + ∆2 − ∆1)(∆̃ + ∆2 − ∆1 + 1)(∆̃ + ∆3 − ∆4)(∆̃ + ∆3 − ∆4 + 1)

4∆̃(2∆̃ + 1)
+

+2

(
∆1 + ∆2

2
+

3(∆1 − ∆2)2

2(1 + 2∆̃)
+

(∆̃− 1)∆̃

2(1 + 2∆̃)

)(
c +

2∆̃(8∆̃− 5)

(1 + 2∆̃)

)−1 (
∆3 + ∆4

2
+

3(∆4 − ∆3)2

2(1 + 2∆̃)
+

(∆̃− 1)∆̃

2(1 + 2∆̃)

)



Large-c CFT
• Different large-c regimes of conformal blocks depend on the behavior of ∆i and ∆̃i :

• ∆, ∆̃ = O(c0): light operators

• ∆, ∆̃ = O(c1): heavy operators

• ∆, ∆̃ = O(cα): α-heavy operators, α ≥ 0

• E.g. Kac dimensions of degenerate operators:

∆r,s =
c − 1

24
+

1

4
(a+r + a−s)2

, where a± =

√
1− c ±√25− c

√
24

, r, s ∈ N

Large-c expansion:

∆r,s =
1

24
c
(

1− r2
)

+
1

24

(
13r2 − 12rs − 1

)
+

3(r − s)(r + s)

2c
+ O(c−2)

Note that at r = 1 one has −∆1,s = s−1
2

(i.e. degenerate sl(2,R) modules)

• E.g. the twist operators in the replica trick:

∆n =
c

24

(
n −

1

n

)
, n ∈ N

• Three types of conformal blocks:

• Global conformal block — all operators are light (this is the sl(2,R) block; in CFTd all conformal blocks are global)

• Classical conformal block — all operators are heavy (F ∼ exp (c Fcl (∆/c, ∆̃/c)), Zamolodchikov 1988)

• Heavy-light blocks interpolate between these two extreme regimes



Global conformal symmetry in the large-c

• Virasoro algebra commutation relations

[Lm, Ln ] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , m, n ∈ Z

Primary operators transform as
[Lm,O∆(z)] = zm(z∂z + (m + 1)∆)O∆(z)

• Inönu-Wigner contraction for the Virasoro algebra, where the deformation parameter is c−1.

Rescaled Virasoro generators:
L0,±1 → l0,±1 = L0,±1 , Lm → am = Lm/c , |m| ≥ 2

The contracted Virasoro algebra splits into sl(2) algebra and the inf-dim Abelian algebra A,

[lm, ln ] = (m − n)lm+n , [am, an ] = 0

In the limit c →∞, keeping the conformal dimension ∆ finite we find that the primary operator transforms as

[lm,O∆(z)] = zm(z∂z + (m + 1)∆)O∆(z) , [am,O∆(z)] = 0

i.e. O∆(z) are sl(2) primary operators and am−singlets.

• Global blocks can be calculated via sl(2,R) matrix elements.



Global conformal blocks
The n-point global conformal block in the comb channel (Ferrara et al 1976, K.A., Belavin 2015, Rosenhaus 2018):

F
∆,∆̃

(z) = L∆(z) G
∆,∆̃

(χ(z))

• leg factor

L∆(z) =

(
z23

z12z13

)h1
(

zn−2,n−1

zn−2,nzn−1,n

)hn n−2∏
i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

• cross-ratios

χi =
zi,i+1zi+2,i+3

zi,i+2zi+1,i+3

, 1 ≤ i ≤ n − 3

• n-point (bare) conformal block

G
∆,∆̃

=

n−3∏
i=1

χ
∆̃i
i

 FK

[
∆1 − ∆2 + ∆̃1, ...,∆n − ∆n−1 + ∆̃n−3

∆̃1, ..., ∆̃n−3

∣∣∣∣χ1, ..., χn−3

]

• and FK is the comb function (Rosenhaus 2018)

FK

[
a1, b1, ... , bk−1, a2

c1, ... , ck

∣∣∣∣x1, ... , xk

]

=
∞∑

l1,...,lk=0

(a1)l1 (b1)l1+l2
(b2)l2+l3

...(bk−1)lk−1+lk
(a2)lk

(c1)l1 ...(ck )lk

x
l1
1

l1!
...

x
lk
k

lk !

• (x)n = Γ(x + n)/Γ(n) are Pochhammer symbols

• Gauss 2F1 and Appell F2 functions

• the blocks = eigenfunctions of sl(2,R) Casimir equations in each exchange channel



Gravity in AdS



Topological gravities in lower dimensions

There are no local PDoF:
vanishing Weyl tensor: Cmn,kl = 0

Indeed,
Rmn,kl = Cmn,kl + on-shell terms

• The cosmological constant Λ 6= 0

• d = 3: the metric gmn and EOM Rmn + Λgmn = 0 – Einstein theory

• d = 2: the metric gmn , the scalar φ and EOM R + Λ = 0 – Jackiw-Teitelboim theory

The frame formulations:

• d = 3: SCS =

∫
M3

Tr(dAA + A3), where A is o(2, 2)-connection (Achucarro, Townsend 1986, Witten 1988)

• d = 2: SBF =

∫
M2

Tr(BF ), where A is o(2, 1)-connection, F = dA + A2 and B – 0-form (Fukuyama, Kamimura 1985)

• The chiral factorization: o(2, 2) ≈ o(2, 1)⊕ o(2, 1) and o(2, 1) ≈ sl(2,R)

The common EOM:

F = dA + A2 = 0 : gravitational flat connections



AdS2 spacetime

• Any solution is locally AdS

• From now on, assuming the chiral factorization we will be discussing AdS2 flat connections

• The gauge algebra is sl(2,R):
[Jm, Jn ] = (m − n)Jm+n

where n,m = 0,±1

• The local coordinates on AdS2: xµ = (ρ, z), where ρ, z ∈ R
• The AdS2 solution (Banados 1998):

A = e−ρJ0 (J1dz)eρJ0 + J0dρ ≡ Am
µdx

µJm

• The associated metric gµν = eµ · eν , where (eµ, ωµ) = Aµ:

ds2 = e2ρdz2 + dρ2

with the conformal boundary at ρ =∞ (actually, there are two conformal boundaries)



A primer on sl(2,R) representations Rj
• Finite-dimensional series. Rj = Dj with weights j ∈ N0/2, dimDj = 2j + 1. The standard ladder basis is given by

{Dj 3 |j,m〉 : J0 |j,m〉 = m |j,m〉 , m = −j,−j + 1, ..., j − 1, j}

where the highest-weight (HW) vector |j, j〉 is defined by

J0 |j, j〉 = j |j, j〉 J−1 |j, j〉 = 0

• Negative discrete series. Rj = D−j with weights j ∈ R, dimDj =∞. The basis is given by

{D−j 3 |j,m〉 : J0 |j,m〉 = m |j,m〉 , m = j, j − 1, j − 2, ...,−∞}

where |j, j〉 is a HW vector and m is generally non-integer.
• If j ∈ N0/2 then the respective module contains a singular vector (light Kac dimensions) so that

D−j /S−j−1 ≈ Dj

where S−j−1 ⊂ D−j is the singular subspace.

In both types of modules Rj the action of sl(2,R) algebra is defined as

J0 |j,m〉 = m |j,m〉

J1 |j,m〉 =
√

(m + j)(j − m + 1) |j,m − 1〉 ≡ M(j,m − 1) |j,m − 1〉

J−1 |j,m〉 = −
√

(m + j + 1)(j − m) |j,m + 1〉 ≡ −M(j,m) |j,m + 1〉

The zeros of M(j,m) define the passage from D−j to Dj since they correspond to singular vectors.



Gravitational Wilson line
The basic object is a Wilson line:

Wj [L] = P exp−
∫
L
Aj

where
#1 L – a path in AdS2 from x1 to x2 and P is the path-ordering operator

#2 Aj takes values in sl(2,R) module Rj , fin-dim or inf-dim.

#3 a gauge transformation: A −→ gA g−1 + gdg−1 , Wj [L] −→ g(x2)Wj [L]g−1(x1)

#4 a path transitivity: Wj [L1 + L2] = Wj [L2]Wj [L1]

#5 The main property:

Wj [L] = Wj [x1, x2]

i.e. for a flat connection it depends on x1,2 only! In our case:

Wj [x1, x2] = e−ρ2J0 ez12J1 eρ1J0 , where xi = (zi , ρi )

0 z

ρ

x1 x2 x3 x4 x5 xn−1 xn

0 z

ρ

x1 x2 x3 x4 xn−3 xn−2 xn−1

y1
y2 y3 yn−5

yn−4

0 z

ρ

x1 x2 x3 x4 xn−3 xn−2 xn−1 xn

y1
y2 y3 yn−5

yn−4 yn−3

0 z

ρ

x1

x2

0 z

ρ

x3

x1

x2

y

1



Gravitational Wilson networks, I

Let us now compose Wilson lines into a network:

0 z

⇢

x1

x2

x3

x4

x5

xn�1

xn

y1
y2

y3 y4

yn�3

(a)

0 z

⇢

x1 x2 x3 x4 x5 xn�1 xn

y1
y2 y3 y4

yn�3

(b)

0 z

⇢

x1 x2 x3 x4 x5 xn�1 xn

0 z

⇢

x1 x2 x3 x4 xn�3 xn�2 xn�1

y1
y2 y3 yn�5

yn�4

0 z

⇢

x1 x2 x3 x4 xn�3 xn�2 xn�1 xn

y1
y2 y3 yn�5

yn�4 yn�3

1

Figure 1. The Wilson line network in the comb channel with arbitrary (a) and aligned (b) endpoints.

Arrows indicate orientations of Wilson lines (Rj and its dual R⇤
j have opposite orientations).

first Wilson operator Wj1 [y1, x1] in the first line has a reversed order of points compared to

other Wilson operators Wjk
[xk, yk�1] in the second line. From Fig. 1 it can be seen that the

Wilson line Wj1 [y1, x1] transfers a state from the point y1 to the boundary point x1 while

Wjk
[xk, yk�1] transfers a state from the boundary point xk to the vertex point yk�1.

The sets of endpoints and vertices will be denoted, respectively, as

x = (x1, ..., xn) and y = (y1, ..., yn�3) . (2.19)

The endpoints x in the Wilson network operator (2.18) are so far arbitrary. However, from

the CFT perspective they are to be taken on the boundary. Since the conformal boundary

lies at ⇢ = 1 it is convenient to place all the endpoints on a hypersurface of constant radial

coordinate ⇢, i.e. x = (⇢, z), where, eventually, ⇢ ! 1 (see Fig. 1 (b)), and the boundary

coordinate set is

z = (z1, ..., zn) . (2.20)

Let us now associate to each endpoint a particular cap state |aii 2 Rji . Then, denoting

the Wilson network operator (2.18) as cW j1...jn

j̃1...j̃n�3
(x,y) one can introduce its matrix element

as

Vjj̃(x,y) ⌘ ha1|cW j1...jn

j̃1...j̃n�3
(x,y) |a2i ⌦ |a3i ⌦ · · · ⌦ |ani , (2.21)

which we call an AdS vertex function. Using the intertwiner invariance property (2.9) one can

directly show that the AdS vertex function is independent of positions of the vertices yi 2 y

that can be equivalently expressed by a convenient choice y = 0 [8, 9, 22]. Since the radial

components of vertex points are zero, ⇢i = 0, then it follows that any such point lies deep

inside the bulk and not on or near the boundary (⇢ ' 1), see Fig. 2. Using that y = 0 we

change notation for the AdS vertex function as

Vjj̃(x,y) ! Vjj̃(⇢, z) , (2.22)
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There are:

1. n endpoints (green dots, coordinates xi )

2. n external legs (Wilson lines)

3. n − 3 internal legs (Wilson lines)

4. n − 3 three-valent vertices (red dots, coordinates yi )

5. Each Wilson line carries its own Rj



Motivation, finally



Why conformal blocks and networks?

• Ryu-Takayanagi entanglement entropy formula (2006): SA = minγA

area(γA)

4GN

• Replica trick for the entanglement entropy:

Renyi entropies S
(n)
A

= 1
1−n

log TrρnA and SA = limn→1 S
(n)
A

When A consists of N disjoint intervals, the Renyi entropy can be realized as a 2N-point conformal correlation function of
the twist operators (Calabrese, Cardy 2009):

TrρnA ∼ 〈O1....O2N〉 , ∆(Oi ) ∼ c

The SA in CFT2 is calculated in the large-c regime by the Zamolodchikov conformal block (Hartman 2013)

∼ exp (c Fcl )



Why conformal blocks and networks?

The Brown-Henneaux relation c ∼ 1/GN

• Geodesic networks vs large-c conformal blocks (Fitzpatrick et al 2013, Hijano et al 2015, K.A., Belavin 2015, Datta et al
2016)

area(γA) ∼ Fcl

J
H
E
P
0
8
(
2
0
1
5
)
0
4
9

w2, ε2

w1, ε1

wn´2, εn´2

.
.

.

.

.
.

.
.

.
.

Figure 2. Multi-particle graph embedded into a constant time slice of a conical defect geometry.
Solid lines represent external particles, wavy lines represent intermediate particles. The original
heavy fields produce the background geometry with the singularity placed in the center representing
a cubic vertex of two heavy fields and a light intermediate field.

heavy-light classical conformal 5-pt block. The corresponding worldline configuration in

the bulk is described by a system of irrational equations which are too difficult to solve

exactly. It properly reflects the complexity of finding closed expressions for (classical)

conformal blocks [16, 17]. Instead, to solve the equation system we propose to use a series

expansion method. Starting with a known exact (seed) solution to the equation system

and expanding around the seed with respect to some deformation parameter one finds the

perturbative solution. As the seed solution we use a 5-pt block with one of the fields taken

to be the unit operator what precisely corresponds the 4-pt block considered previously

in [8, 10].

The next sections discuss bulk/boundary realizations technically. The exposition is

organized as follows. In section 2 we consider the AGT representation of n-point conformal

blocks. In particular, in section 2.2 we explicitly compute the classical 5-point conformal

block. Then, in section 3 we switch to the bulk analysis and discuss general properties

of a probe particle worldlines in the background geometry. In this paper we consider the

case of conical deficit only (α2 ą 0). In section 4 we explicitly formulate the system

of equations underlying the respective five-line graph in the bulk. Section 5 discusses

the perturbation method that treats the 5-pt case as a deformation of the 4-pt case. In

section 6 we find an exact formula for the corresponding worldline action and compare it

with the boundary results. In the last section 7 we propose a multi-line generalization of

the approach supported in the 5-line case. Section 8 contains our conclusions and outlooks.

2 Boundary computation

The boundary computation is reduced to the analysis of the classical conformal block in

the Virasoro CFT. In this context there exist many different methods, each one having
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• Metric vs frame formulation of gravity theory and Wilson lines/loops vs geodesics (Amon et al 2016, Castro et al 2018)

the representation we need to specify its Casimirs: we relate the quadratic Casimir to the

central charge of the theory and argue that all higher-order Casimirs are zero.2

X

C C

FIG. 1: Left: Entanglement entropy of an interval X is found by computing a particular Wilson line

along a curve C; the line ends on the boundary at @X. Right: The thermal entropy of a black hole

can be found by evaluating a closed Wilson loop around the horizon.

This formula may appear somewhat strange: in (1.1), the actual bulk path C taken

does not matter (even for N = 2). The only relevant data of the curve is the location of

the endpoints, and whether or not the background contains a black hole (see Figure 1).

However in the case of N = 2 gravity this Wilson line is actually the natural coupling of a

massive point particle to AdS3 gravity, a connection that we review in section II. It should

then not be surprising that it computes the length of a bulk geodesic and is thus equivalent

to the Ryu-Takayanagi prescription. For N > 2 it generalizes these ideas in a manner that

is manifestly invariant under higher-spin gauge symmetry.

We do not feel that we have really proven that this proposal is correct. Rather it should

be thought of as a conjecture motivated by the following:

1. This is the natural generalization of the idea of a proper distance in a sense that we

expound upon at length.

2. Under some reasonable assumptions—the same that appear when trying to justify the

Ryu-Takayanagi prescription—this object implements the replica trick approach to

computing entanglement entropy.

It may seem daunting to compute a trace in an infinite-dimensional representation. Fol-

lowing [12, 13], we construct this representation as the Hilbert space of an auxiliary quantum-

mechanical system described by the path integral of a field U that lives on the Wilson line

and couples to the bulk gauge connections A, Ā. In an appropriate classical limit the on-

shell action of U computes the Wilson line and the problem reduces to solving its classical

2 The Casimirs do not specify uniquely the representation R; additional data is needed. However for the

cases studied here it will su�ce to specify only this data of the representation.

5

As it turns out (2.34) is actually very familiar. Expressing the connections in terms of

the vielbein and spin connection using (2.5), and further using ! a
µ ✏

c
ab = ! c

µ b, we find

d

ds

✓
e a

µ

dxµ

ds

◆
+ ! a

µ be
b
⌫

dxµ

ds

dx⌫

ds
= 0 . (2.35)

This is precisely the geodesic equation for the curve xµ(s) on a spacetime with vielbein ea

and spin connection ! a
µ b. It is equivalent to the more familiar form involving the Christo↵el

symbols, as can be shown explicitly by relating them to the spin connection and vielbein

(see e.g. Appendix J of [21]).

Furthermore, on-shell the action (2.31) for U = 1 reduces to

SC =
p

c2

Z

C

ds

s
Tr

✓
(A � Ā)µ(A � Ā)⌫

dxµ

ds

dx⌫

ds

◆

=
p

2c2

Z

C

ds

r
gµ⌫(x)

dxµ

ds

dx⌫

ds
, (2.36)

which is manifestly the proper distance along the geodesic. Note that the prefactor
p

c2

indicates that the value of the Casimir controls the bulk mass of the probe, as we alluded

to previously.

FIG. 2: The final on-shell action does not depend on the actual bulk path taken, which can be

arbitrarily complicated: however the calculation simplifies if it is taken to be a bulk geodesic, as in

the dashed line.

We have shown that the calculation is simple for a particular choice of bulk path for the

Wilson line. However by the flatness of the bulk connections the final result (2.36) must hold

for any path, provided that path can be continuously deformed to a geodesic as illustrated

in Figure 2. Thus, in the classical limit, we find that the value of the Wilson line between

any two points is

WR(xi, xf ) ⇠ exp
�
�
p

2c2L(xi, xf )
�
, (2.37)

where L(xi, xf ) is the length of the bulk geodesic connecting these two points. Here ‘⇠’

denotes the limit c2 large and hence the classical saddle point approximation is valid.
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AdS, back again



3-valent intertwiner

0 z

ρ

x1 x2 x3 x4 x5 xn−1 xn

0 z

ρ

x1 x2 x3 x4 xn−3 xn−2 xn−1

y1
y2 y3 yn−5

yn−4

0 z

ρ

x1 x2 x3 x4 xn−3 xn−2 xn−1 xn

y1
y2 y3 yn−5

yn−4 yn−3

0 z

ρ

x1

x2

0 z

ρ

x3

x1

x2

y

1
• The 3-valent intertwiner:

Inv(Rj1
⊗Rj2

⊗Rj3
) 3 Ij1 j2 j3 : Rj2

⊗Rj3
−→ Rj1

• The invariance property:
Ij1 j2 j3 Uj2

Uj3
= Uj1

Ij1 j2 j3

where Uj are SL(2,R) operators of the corresponding representations.

• The basic idea is an invariant contraction: IaαA X a Yα ZA

• To have a non-trivial intertwiner the weights of three representations must be constrained. The Clebsch-Gordon series

Rj2
⊗Rj3

=
⊕
j1

Rj1

If Dj1
does arise in the CG series then the intertwiner is just a projector, otherwise it is zero. In components, the CG coefficient

takes the form
|j2,m〉 ⊗ |j3, n〉 =

∑
k

(
〈j1, k| Ij1 j2 j3 |j2,m〉 ⊗ |j3, n〉

)
|j1, k〉

where the summation domain depends on the type of modules Rji
.



3j symbol

The intertwiner as 3j symbol:

〈j1, k| Ij1 j2 j3 |j2,m〉 ⊗ |j3, n〉 ≡ [Ij1 j2 j3 ]kmn = (−1)j1−k
(

j1 j2 j3
−k m n

)

The explicit form of the 3j symbol (e.g. in Varshalovich et all 1987)

(
j1 j2 j3
m1 m2 m3

)
= δm1+m2+m3,0

√
(j3 − j1 + j2)!

√
(−j3 + j1 + j2)!

√
(j3 + j1 + j2 + 1)!

(j3 + j1 + j2 + 1)!
√

(j3 + j1 − j2)!

×
√

(j3 − m3)!
√

(j1 − m1)!√
(j3 + m3)!

√
(j1 + m1)!

√
(j2 − m2)!

√
(j2 + m2)!

(−)j1+m2−m3 (2j3)! (j3 + j2 + m1)!

(j3 − j1 + j2)!(j3 − m3)!

× 3F2 (−j3 + m3,−j3 − j1 − j2 − 1,−j3 + j1 − j2;−2j3,−j3 − j2 − m1; 1)

• Note that weights j1, j2, j3 satisfy the selection rules (triangle inequalities).

•We assume that j! = Γ(j + 1) for j ∈ R (Holman et all 1966).



Gravitational Wilson networks: AdS vertex functions
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• The Wilson line network operator:

Ŵ
j1...jn

j̃1...j̃n−3
(x, y) :=

(
Wj1

[y1, x1]I
j1 j2 j̃1

W
j̃1

[y2, y1]I
j̃1 j3 j̃2

. . .W
j̃n−3

[yn−2, yn−3]I
j̃n−3 jn−1 jn

)
×
(
Wj2

[x2, y1] . . .Wjn−1
[xn−1, yn−2]Wjn [xn, yn−3]

)
where the sets of endpoints and vertices are x = (x1, ..., xn) and y = (y1, ..., yn−3).

• Let us now associate to each endpoint a particular cap state |ai 〉 ∈ Rji
. Then, one introduces the AdS vertex function

V
j j̃

(x, y) ≡ 〈a1| Ŵ
j1...jn

j̃1...j̃n−3
(x, y) |a2〉 ⊗ |a3〉 ⊗ · · · ⊗ |an〉 ,

• Using the intertwiner invariance property and the path transitivity one can set y = 0 (see Fig. 2 and Fig. 3)

V
j j̃

(x, y)→ V
j j̃

(z, ρ)

where z = (z1, ..., zn) are the boundary points and ρ labels the line which will be finally pulled at (conformal) infinity, ρ→∞.



• By using the identity resolutions

Ij =
∑
m

|j,m〉 〈j,m|

the AdS vertex function can be represented as a matrix product

V
j j̃

(z, ρ) =
∑
m, p

〈j1,m1|Ij1 j2 j̃1 |j2,m2〉 ⊗ |j̃1, p1〉 〈j̃1, p1|Ij̃1 j3 j̃2 |j3,m3〉 ⊗ |j̃2, p2〉 · · ·

· · · 〈j̃n−3, pn−3|Ij̃n−3 jn−1 jn
|jn−1,mn−1〉 ⊗ |jn,mn〉

(
〈ã1|j1,m1〉 〈j2,m2|ã2〉 · · · 〈jn,mn|ãn〉

)
where
• x-dependent cap states

〈ã1| = 〈a1|Wj1
[0, x1] and |ãi 〉 = Wji

[xi , 0] |ai 〉 , i = 2, ..., n

• (magnetic) indices m = (m1, ...,mn) and p = (p1, ..., pn−3)
• there are 3n − 3 independent (infinite) summations

• The AdS vertex function can be cast into the equivalent form:

V
j j̃

(z, ρ) = 〈ã1| Ij1...jn|j̃1...j̃n−3
|ã2〉 ⊗ · · · ⊗ |ãn〉

where the n-valent intertwiner is given by

I
j1...jn|j̃1...j̃n−3

= I
j1 j2 j̃1

I
j̃1 j3 j̃2

· · · I
j̃n−3 jn−1 jn

: (n − 2) 3j symbols in the comb channel

with the generalized intertwiner invariance property

I
j1...jn|j̃1...j̃n−3

= U−1
j1

I
j1...jn|j̃1...j̃n−3

Uj2
· · ·Ujn



AdS/CFT



AdS/CFT correspondence: extrapolate dictionary

• The standard AdS/CFT: ZAdS = ZCFT for two dual theories.

• For AdS2 scalar quantum fields Φ̂i (ρi , zi ) with masses mi the extrapolate dictionary gives

lim
ρ→∞

eρ
∑

∆i 〈Φ̂1(ρ, z1) · · · Φ̂n(ρ, zn)〉AdS = 〈Ô1(z1) · · · Ôn(zn)〉CFT

where

1. conformal dimensions ∆i are related to masses as m2
i = ∆i (∆i − 1)

2. all AdS fields are placed on the hypersurface ρ = const −→ conformal boundary

• Extrapolate dictionary↔ HKLL reconstruction (Hamilton, Kabat, Lifschytz, Lowe 2006) as for three types of Witten diagrams

• In our context the AdS vertex functions are assumed to reproduce CFT correlation functions in the way which is essentially the
same as the extrapolate dictionary relation.

#1 The AdS vertex functions are not literally AdS scalar correlation functions

#2 the AdS vertex functions must be subject to particular spacetime symmetry criteria that mimic those satisfied by AdS
scalar correlation functions



Spacetime invariance and cap states
•We require the AdS vertex functions to be invariant with respect to AdS2 spacetime isometry transformations:

V
j j̃

(x′) = V
j j̃

(x) , x′ = x′(x) ∈ SL(2,R)

The infinitesimal form of the symmetry condition is given by three global Ward identities

n∑
i=1

J (i)
m Vj j̃ (x1, ... , xi , ... , xn) = 0 m = 0,±1

where Jm = ξµm∂µ are the Lie derivatives along the Killing vector fields ξm(x) of the AdS2 spacetime

J−1 = ∂z , J0 = z∂z − ∂ρ , J1 = z2
∂z − 2z∂ρ − e−2ρ

∂z

The superscript i indicates that the derivative is taken with respect to the i-th coordinate.

• For general values of the radial coordinates ρi , i = 1, ..., n, the system of PDEs has 2n − 3 first integrals. The hypersurface
the AdS vertex functions are parameterized as

V
j j̃

(x)
∣∣∣
ρ1= ...=ρn=ρ

= V
j j̃

(z, ρ) = V
j j̃

(q12, ... , qn−1,n)

where
qi,i+1 = (zi+1 − zi )e

ρ
, i = 1, ... , n − 1



Spacetime invariance and cap states
The Ward identities uniquely fix the form of the cap states |a〉:

Ishibashi state : (J1 + J−1) |a〉 = 0

• At j 6= N0 there is a unique (up to a normalization) vector |a〉 ≡ |j〉〉 ∈ D−j :

|j〉〉 =
∞∑
n=0

n∏
k=1

(−)n

−4kj + 4k2 − 2k
(J1)2n |j, j〉

• At j ∈ N0 the module D−j has a singular vector which additionally generates a new solution: the kernel of J1 + J−1

becomes two-dimensional and the two basis cap states read

|j〉〉1 =

j∑
n=0

n∏
k=1

(−)n

−4kj + 4k2 − 2k
(J1)2n |j, j〉

|j〉〉2 =
∞∑
n=0

n∏
k=1

(−)n

4kj + 4k2 + 2k
(J1)2n |j,−j − 1〉

• The case of finite-dimensional modules Dj with j ∈ N0: |j〉〉 = |j〉〉1



Wilsonian extrapolate relation

• The extrapolate dictionary:

lim
ρ→∞

e−ρ
∑n

i=1 ji V
j j̃

(ρ, z) = C
j j̃
F

hh̃
(z)

where weights and conformal dimensions are identified as hi = −ji and h̃k = −j̃k .

• The normalization coefficients C
j j̃
≡ C

j1...jn j̃1...j̃n−3
:

n = 2 : Cj1 j2
=

δj1 j2

(2j1 + 1)
1
2

; n = 3 : Cj1 j2 j3
=

[
(2j1)!(2j2)!(2j3)!

∆(j1, j2, j3)

] 1
2

n > 3 : C
j j̃

= C
j1 j2 j̃1

[ n−4∏
i=1

C
j̃i ji+2 j̃i+1

]
C
j̃n−3 jn−1 jn

the comb channel

where ∆(a, b, c) = (a + b + c + 1)!(a + b − c)!(a + c − b)!(b + c − a)! is the modified triangle coefficient.
• AdS vertex functions are defined up to multiplicative constants. Non-vanishing and real Cj1 j2 j3

yield triangle inequalities:

1) j1, j2 ∈ N0/2, j3 ∈ Z : |j1 − j2| ≤ |j3| ≤ j1 + j2

2) in other cases : j3 ≤ j1 + j2



Wilson line matrix elements and their asymptotics

•We recall that

V
j j̃

(z, ρ) =
∑

m1,...,mn

〈j1,m1| Ij1...jn|j̃1...j̃n−3
|j2,m2〉 ⊗ |jn,mn〉

(
〈ã1|j1,m1〉 〈j2,m2|ã2〉 · · · 〈jn,mn|ãn〉

)

The x-dependence is in the blue terms only: 〈ã|j,m〉 = 〈a|Wj [0, x] |j,m〉 and 〈j,m|ã〉 = 〈j,m|Wj [x, 0] |a〉

• Denote q = −zeρ. The left and right Wilson matrix elements are given by:

〈j,m|ã〉 ∼ e+ρm (q + i)j−m
2F1

(
−j,m − j ; m + 1

∣∣ q − i

q + i

)
〈ã|j,m〉 ∼ e−ρm (q + i)j (q − i)m 2F1

(
−j,m − j ; m + 1

∣∣ q − i

q + i

)

• The radius of convergence of 〈ã|j,m〉 equals one, i.e. |q| < 1. In terms of ρ-coordinate one has ρ < − log |z|, which means
that for arbitrary z the radius of convergence in ρ goes to zero. Nonetheless, the function can be analytically continued past
|q| = 1 thereby making the large-ρ expansion possible.

• The asymptotic (ρ→∞ i.e. q →∞ ) Wilson matrix elements:

〈ã|j,m〉 ≈ e−ρmqj+m ∼ eρj z j+m 〈j,m|ã〉 ≈ eρmqj−m ∼ eρj z j−m

• There are singular vector subleading contributions.



Asymptotic conformal invariance
• Near the boundary the Ward identities for AdS vertex functions go to the Ward identities for CFT correlation functions. One
directly finds how the AdS2 Killing generators are restricted on the boundary:

Jn 〈j,m|ã〉 = Ln 〈j,m|ã〉 + O(eρ(j−1))

Jn 〈ã|j,m〉 = Ln 〈ã|j,m〉 + O(eρ(j−1))

where
Ln = zn+1

∂z − j(n + 1)zn , n = 0,±1

which is the standard realization of sl(2,R) on CFT primary fields of conformal dimension h = −j .

• Substituting these relations into the AdS Ward identities:

n∑
i=1

L(i)
m Vj j̃ (x1, ..., xi , ..., xn)

∣∣∣
ρ1= ...=ρn=ρ

= 0 + O
(
e
ρ
(∑n

i=1 ji−1
))
,

Taking the limit ρ→∞ and using the extrapolate dictionary identification one finds out that the above relation goes into the
sl(2,R) conformal Ward identities.

• Finite version. Using SL(2,R) : z → w(z) yields

V
j j̃

(ρ, z) =
( ∂z
∂w

)j1 ∣∣∣
w=w1

· · ·
( ∂z
∂w

)jn ∣∣∣
w=wn

V
j j̃

(ρ,w) + O
(
e
ρ
(∑n

i=1 ji−1
))



Asymptotic cap states
Requiring conformal symmetry of the AdS vertex function only at large-ρ one finds asymptotic equations

Wj [x, 0](J0 − j) |a〉 = 0 + O(eρ(j−1))

〈a′| (J0 + j)Wj [0, x] = 0 +O(eρ(j−1))

These are called quasi-Ishibashi cap states. Note that |a〉 and 〈a′| are generally two different vectors, 〈a′| 6= |a〉†.

• For infinite-dimensional modules D−j :

|a〉 = |j, j〉 + (J0 − j)−1 R̂ |j, j〉 and 〈a′| = 〈j, j| Ř (J0 + j)−1

where R̂, Ř ∈ U (sl(2,R)) are some constant elements.

• For finite-dimensional modules Dj the operator (J0 + j) has a kernel described by LW vectors (recall that (Dj )
∗ ≈ Dj )

so that in this case the general solution can be represented as

|a〉 = |j, j〉 + (J0 − j)−1 L̂ |j, j〉 and 〈a′| = 〈j,−j| + 〈j,−j| Ľ (J0 + j)−1

with some new constant L̂, Ľ ∈ U (sl(2,R)).

• It immediately follows that the LW/HW vectors from (Besken et al 2016) solve the asymptotic equations

|j〉〉 = |j, j〉 ∈ Dj , j ∈ N0/2



2-point functions
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• 2-point AdS vertex function

Vj1 j2 (ρ, z) = 〈ã1| Ij1 j2 |ã2〉 =
∑

m1,m2

[Ij1 j2 ]m1 m2
〈ã1|j1,m1〉 〈j2,m2|ã2〉

where the the 2-valent intertwiner (j3 = 0) is given by [Ij1 j2 ]m1 m2
∼ δj1 j2δ

m1 m2
. The final expression (see also Castro et all

2018):

Vj1 j2 (ρ, z) ∼ q
2j1
12 2F1

(
−j1,−j1;−2j1| −

4

q2
12

) ∣∣∣
q12=z12e

ρ→∞
−→ q

2j1
12 ∼ e2ρj1 z

2j1
12 ≡ e2ρj1

1

z
2h1
12

• Up to the constant, the 2-point AdS vertex function is the bulk-to-bulk propagator in AdS2 (Fronsdal 1974) on the ρ = const
hyperplane

Gh(x1, x2) = e−hσ(x1,x2)
2F1

(
h,

1

2
; h +

1

2

∣∣e−2σ(x1,x2)
)
, eσ(x1,x2) =

|q12|
√

4 + q2
12 + 2 + q2

12

2

where j1 = j2 = −h and σ(x1, x2) is the geodesic length between points x1 and x2.



Known results and perspectives

• 2-point AdS vertex and CFT functions (Castro et all 2018, Bhatta et all 2016, Besken et all 2016)

• 3-point and 4-point CFT functions (Bhatta et all 2016, Besken et all 2016)

• 5-point CFT functions (Bhatta et all 2016 for K.A., Belavin 2015)

No exact expressions for higher-point AdS vertex functions (no results) and their near-the-boundary asymptotics (CFT conformal
blocks (Rosenhaus 2018))



Recursion for asymptotic AdS vertex functions
Near-the-boundary analysis, ρ→∞:

0 z

⇢

x1

x2

x3

x4

x5

xn�1

xn

y1
y2

y3 y4

yn�3

0 z

⇢

x1 x2 x3 x4 x5 xn�1 xn

y1
y2 y3 y4

yn�3

0 z

⇢

x1 x2 x3 x4 x5 xn�1 xn

0 z

⇢

x1 x2 x3 x4 xn�3 xn�2 xn�1

y1
y2 y3 yn�5

yn�4

0 z

⇢

x1 x2 x3 x4 xn�3 xn�2 xn�1 xn

y1
y2 y3 yn�5

yn�4 yn�3

1

The recursion relation:

V(n)

j1···jn j̃1···j̃n−3
≈
∑
kn

γn,kn,jn V
(n−1)

j1···jn−2(j̃n−3−kn) j̃1···j̃n−4
, n = 5, 6, ...

• E.g. Appell F2 vs Gauss 2F1 (splitting identity)

• OPEs ordering in CFT

• Coordinates zi must organize into cross-ratios χj



Wilsonian networks with loops



Toroidal Wilson networks in the thermal AdS

• Let us build torus blocks from the Wilson networks described in the plane topology case by gluing together any two extra edges
modulo 2πτ and then identifying the corresponding irreps:

e↵ectively shrunk to points so that all diagrams with exchange channels expanded in trees

and loops are given by contact diagrams only. However, on non-trivial topologies like (rigid)

torus we discuss in this paper, there are non-contractible cycles. Then the associated Wilson

networks will contain non-contractible loops given by non-trivial holonomies.

The general idea is that we can build torus blocks from the Wilson networks described

in the sphere topology case simply by gluing together any two extra edges modulo 2⇡⌧ (see

Fig. 2), and then identifying the corresponding representations. Taking a trace in this

representation one retains the overall sl(2, R) gauge covariance. More concretely, one takes

(n + 2)-point sphere function (2.39) with n + 2 boundary states in Djl
, l = 1, ..., n + 2 with

any two of them belonging to the same representation, say Dj1 ⇡ Djk
for some k. Then,

taking a trace over Dj1 naturally singles out a part of the original (n + 2)�valent intertwiner

involving two Wilson line operators and a number of constituent 3-valent intertwiners (k,

for the above choice). By means of the intertwiner invariance property, the two Wilson

operators can be pulled through the intertwiners to form a single Wilson loop-like operator,

schematically, Trj1

⇣
Wj1 [0, 2⇡⌧ ] Ij1;a,b . . . Ic;d,j1

⌘
. A true Wilson loop is obtained only when

one starts from 2-point sphere function and in this case we get the sl(2, R) character (see

below), while for higher-point functions an operator under the trace necessarily contains at

least one intertwiner.

x
c

a

b x y
e
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b d
x y
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a c

e

Figure 2. Wilson networks with loops around non-contractible cycles on the (rigid) torus. Topologi-

cally di↵erent identifications of endpoints on the second and third graphs yield 2-point blocks in two

OPE channels.

Let us demonstrate how this works for the trivalent function (2.15) on the torus T2 with

local coordinates (w, w̄) giving rise to a toroidal one-point Wilson network. The Wilson

operators here are built using the respective background gravitational connection (2.5). We

identify any two endpoints of the trivalent graph on Fig. 2, which means that points w1 =

�2⇡⌧ and w2 = 0 lie on the thermal cycle. Identifying Da
⇠= Db, then choosing |ai =

|bi = |ja, mi and summing up over all basis states in Da (recall that the standard basis is

orthonormal) we find from (2.15) that

�
V a|c (⌧,w) =

X

m

⇣
hja, m| Wa[�2⇡⌧, 0] Ia;a,c |ja, mi

⌘
Wc[0, w]|ci

= Tra

⇣
Wa[0, 2⇡⌧ ] Ia;a,c

⌘
Wc[0, w]|ci ,

(3.1)

– 12 –

• Consider a toroidal 1-point Wilson network:

(1) The toroidal gravitational connection A = e−ρJ0
[
J1 + 1

4
J−1

]
dzeρJ0 + J0dρ.

(2) Identify any two endpoints: z1 = −2πτ and z2 = 0 lie on the thermal cycle.

(3) Identify Ra ∼= Rb , choose |a〉 = |b〉 = |ja,m〉 and sum up over all basis states in Ra .

◦
V a|c (τ, z) =

∑
m

(
〈ja,m|Wa[2πτ, 0] Ia,a,c |ja,m〉

)
Wc [0, z]|c〉

≡ Tra

(
Wa[2πτ ] Ia;a,c

)
Wc [0, z]|c〉

(a) If Dc = 1 (i.e. jc = 0), then Wc = 1c and Ia;a,0 = 1a so that we find the Wilson loop operator,

◦
V a|0 (τ) = Tra

(
Wa[2πτ ]

)
It is known to be a character of the representation Da (Witten 1988).

(b) For non-trivial Dc this yields 1-point global torus block (Kraus et al 2017, K.A., Belavin 2020).
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The irreps labelled by a, b, c, d are associated with endpoints ordered as z1, z2, z3, z4.

Wilson network in the t-channel (OPE)

(1) Identify irreps Dd
∼= Dc and respective endpoints z4 = −2πτ and z3 = 0.

(2) Choose |d〉 = |c〉 = |jc ,m〉 and sum up over all m to produce a trace over Dc .

◦
V(t) c,e|a,b (τ, z) = Trc

(
Wc [0, 2πτ ] Ic;c,e

)
Ie;a,bWa[0, z1]Wb [0, z2] |a〉 ⊗ |b〉

Wilson network in the s-channel (necklace)

(1) Fix endpoints as z4 = −2πτ and z2 = 0.

(2) Identify irreps Dd
∼= Db and then sum up over states |d〉 = |b〉 = |jb,m〉.

◦
V(s) b,e|a,c (τ, z) = Trb

(
Wb [0, 2πτ ] Ib;c,e Ie;a,b

)
Wa[0, z1] Wc [0, z3] |a〉 ⊗ |c〉

These two AdS vertex functions calculate 2-point global torus blocks in respectively t-channel and s-channel (K.A., Belavin 2020,
K.A., Mandrygin 2023, K.A., Khiteev, in progress).



Perspectives:

• HKLL reconstruction for n-point Wilsonian networks (K.A., Khiteev, Kanoda, in progress)

• Wilsonian networks on spaces with defects (2-point Wilson line around BTZ Castro et al 2018 and in BF JT gravity
Blommaert, Mertens, Verschelde 2018)

• Large-c CFT on Riemann surfaces of genus g (torus g = 1 CFT: K.A., Belavin 2016, 2020, Kraus et al 2017, K.A.,
Mandrygin 2023, K.A., Khiteev, in progress)

• 1/c corrections: general Virasoro conformal blocks via Wilson networks (Besken, Hegde, Kraus, D’Hoker 2017-2019 for
quasi-Ishibashi cap states of fin-dim sl(2,R) modules)

• Extended CFT – WN conformal algebras: adding higher spin fields in lower dimensions (Ammon et al 2013, de Boer et al
2015, Hegde et al 2015, Belavin et all 2022)

• HS gravity in higher dimensions within the unfolded formulation


