Gravitational Wilson networks and conformal field theory

Konstantin Alkalaev
Lebedev Physical Institute

K.A., Kanoda, Khiteev 2023
K.A., Belavin, 2020

Problems of the Modern Mathematical Physics, Dubna 2024

Outline

- Large-c CFT and conformal blocks
- Wilson networks in AdS
- AdS/CFT correspondence

large-c CFT

Conformal correlation functions

- The n-point correlation function of $\mathcal{O}_{\Delta_{i}, \bar{\Delta}_{i}}\left(z_{i}, \bar{z}_{i}\right), i=1, \ldots, n$:

$$
\left\langle\mathcal{O}_{\Delta_{1}, \bar{\Delta}_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{\Delta_{n}, \bar{\Delta}_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle=\sum_{\left(\tilde{\Delta}_{1}, \overline{\tilde{\Delta}}_{1}\right), \ldots,\left(\tilde{\Delta}_{n-3} \overline{\tilde{\Delta}}_{n-3}\right)} C_{12 \tilde{1}} \ldots C_{\tilde{n}-3 n-1 n} \mathcal{F} \overline{\mathcal{F}}
$$

(Holomorphic) conformal blocks $\mathcal{F}\left(z_{1}, \ldots, z_{n}\left|\Delta_{1}, \ldots, \Delta_{n} ; \tilde{\Delta}_{1}, \ldots, \tilde{\Delta}_{n-3}\right| c\right)$ in the OPE comb channel (there are many others)

- The 4-point conformal block ($z_{1}=\infty, z_{2}=1, z_{3}=z<1, z_{4}=0$):

$$
\mathcal{F}\left(z \mid \Delta_{i}, \tilde{\Delta}, c\right)=z^{\tilde{\Delta}-\Delta_{1}-\Delta_{2}} \sum_{N=0}^{\infty} F_{N} z^{N} \sim 1+\frac{\left(\tilde{\Delta}-\Delta_{1}+\Delta_{2}\right)\left(\tilde{\Delta}-\Delta_{4}+\Delta_{3}\right)}{2 \tilde{\Delta}} z+F_{2} z^{2}+\ldots
$$

where

$$
\begin{gathered}
F_{2}=\frac{\left(\tilde{\Delta}+\Delta_{2}-\Delta_{1}\right)\left(\tilde{\Delta}+\Delta_{2}-\Delta_{1}+1\right)\left(\tilde{\Delta}+\Delta_{3}-\Delta_{4}\right)\left(\tilde{\Delta}+\Delta_{3}-\Delta_{4}+1\right)}{4 \tilde{\Delta}(2 \tilde{\Delta}+1)}+ \\
+2\left(\frac{\Delta_{1}+\Delta_{2}}{2}+\frac{3\left(\Delta_{1}-\Delta_{2}\right)^{2}}{2(1+2 \tilde{\Delta})}+\frac{(\tilde{\Delta}-1) \tilde{\Delta}}{2(1+2 \tilde{\Delta})}\right)\left(c+\frac{2 \tilde{\Delta}(8 \tilde{\Delta}-5)}{(1+2 \tilde{\Delta})}\right)^{-1}\left(\frac{\Delta_{3}+\Delta_{4}}{2}+\frac{3\left(\Delta_{4}-\Delta_{3}\right)^{2}}{2(1+2 \tilde{\Delta})}+\frac{(\tilde{\Delta}-1) \tilde{\Delta}}{2(1+2 \tilde{\Delta})}\right)
\end{gathered}
$$

Large-c CFT

- Different large-c regimes of conformal blocks depend on the behavior of Δ_{i} and $\tilde{\Delta}_{i}$:
- $\Delta, \tilde{\Delta}=\mathcal{O}\left(c^{0}\right)$: light operators
- $\Delta, \tilde{\Delta}=\mathcal{O}\left(c^{1}\right)$: heavy operators
- $\Delta, \tilde{\Delta}=\mathcal{O}\left(c^{\alpha}\right): \quad \alpha$-heavy operators, $\alpha \geq 0$
- E.g. Kac dimensions of degenerate operators:

$$
\Delta_{r, s}=\frac{c-1}{24}+\frac{1}{4}\left(a_{+} r+a_{-} s\right)^{2}, \quad \text { where } a_{ \pm}=\frac{\sqrt{1-c} \pm \sqrt{25-c}}{\sqrt{24}}, \quad r, s \in \mathbb{N}
$$

Large-c expansion:

$$
\Delta_{r, s}=\frac{1}{24} c\left(1-r^{2}\right)+\frac{1}{24}\left(13 r^{2}-12 r s-1\right)+\frac{3(r-s)(r+s)}{2 c}+O\left(c^{-2}\right)
$$

Note that at $r=1$ one has $-\Delta_{1, s}=\frac{s-1}{2}$ (i.e. degenerate $s /(2, \mathbb{R})$ modules)

- E.g. the twist operators in the replica trick:

$$
\Delta_{n}=\frac{c}{24}\left(n-\frac{1}{n}\right), \quad n \in \mathbb{N}
$$

- Three types of conformal blocks:
- Global conformal block - all operators are light (this is the $s l(2, \mathbb{R})$ block; in CFT_{d} all conformal blocks are global)
- Classical conformal block - all operators are heavy $\left(\mathcal{F} \sim \exp \left(c F_{c l}(\Delta / c, \tilde{\Delta} / c)\right)\right.$, Zamolodchikov 1988)
- Heavy-light blocks interpolate between these two extreme regimes

Global conformal symmetry in the large-c

- Virasoro algebra commutation relations

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0}, \quad m, n \in \mathbb{Z}
$$

Primary operators transform as

$$
\left[L_{m}, \mathcal{O}_{\Delta}(z)\right]=z^{m}\left(z \partial_{z}+(m+1) \Delta\right) \mathcal{O}_{\Delta}(z)
$$

- Inönu-Wigner contraction for the Virasoro algebra, where the deformation parameter is c^{-1}.

Rescaled Virasoro generators:

$$
L_{0, \pm 1} \rightarrow I_{0, \pm 1}=L_{0, \pm 1}, L_{m} \rightarrow a_{m}=L_{m} / c, \quad|m| \geq 2
$$

The contracted Virasoro algebra splits into $s /(2)$ algebra and the inf-dim Abelian algebra \mathcal{A},

$$
\left[I_{m}, I_{n}\right]=(m-n) I_{m+n}, \quad\left[a_{m}, a_{n}\right]=0
$$

In the limit $c \rightarrow \infty$, keeping the conformal dimension Δ finite we find that the primary operator transforms as

$$
\left[I_{m}, \mathcal{O}_{\Delta}(z)\right]=z^{m}\left(z \partial_{z}+(m+1) \Delta\right) \mathcal{O}_{\Delta}(z), \quad\left[a_{m}, \mathcal{O}_{\Delta}(z)\right]=0
$$

i.e. $\mathcal{O}_{\Delta}(z)$ are $s l(2)$ primary operators and $a_{m}-$ singlets.

- Global blocks can be calculated via $s /(2, \mathbb{R})$ matrix elements.

Global conformal blocks

The n-point global conformal block in the comb channel (Ferrara et al 1976, K.A., Belavin 2015, Rosenhaus 2018):

$$
\mathcal{F}_{\Delta, \tilde{\Delta}}(z)=\mathcal{L}_{\Delta}(z) G_{\Delta, \tilde{\Delta}}(\chi(z))
$$

- leg factor

$$
\mathcal{L}_{\Delta}(z)=\left(\frac{z_{23}}{z_{12} z_{13}}\right)^{h_{1}}\left(\frac{z_{n-2, n-1}}{z_{n-2, n} z_{n-1, n}}\right)^{h_{n}} \prod_{i=1}^{n-2}\left(\frac{z_{i, i+2}}{z_{i, i+1} z_{i+1, i+2}}\right)^{h_{i+1}}
$$

- cross-ratios

$$
\chi_{i}=\frac{z_{i, i+1} z_{i+2, i+3}}{z_{i, i+2} z_{i+1, i+3}}, \quad 1 \leq i \leq n-3
$$

- n-point (bare) conformal block

$$
G_{\Delta, \tilde{\Delta}}=\left(\prod_{i=1}^{n-3} \chi_{i}^{\tilde{\Delta}_{i}}\right) F_{K}\left[\begin{array}{c}
\left.\Delta_{1}-\Delta_{2}+\tilde{\Delta}_{1}, \ldots, \Delta_{n}-\Delta_{n-1}+\tilde{\Delta}_{n-3} \mid \chi_{1}, \ldots, \chi_{n-3}\right] \\
\tilde{\Delta}_{1}, \ldots, \tilde{\Delta}_{n-3}
\end{array}\right]
$$

- and F_{K} is the comb function (Rosenhaus 2018)

$$
\begin{aligned}
& F_{K}\left[\left.\begin{array}{c}
a_{1}, b_{1}, \ldots, b_{k-1}, a_{2} \\
c_{1}, \ldots, c_{k}
\end{array} \right\rvert\, x_{1}, \ldots, x_{k}\right] \\
&= \sum_{l_{1}, \ldots, l_{k}=0}^{\infty} \frac{\left(a_{1}\right) l_{1}\left(b_{1}\right) l_{1}+l_{2}\left(b_{2}\right) l_{2}+l_{3} \ldots\left(b_{k-1}\right) I_{k-1}+l_{k}\left(a_{2}\right) I_{k}}{\left(c_{1}\right)_{l_{1}} \ldots\left(c_{k}\right)_{l_{k}}} \frac{x_{1}^{l_{1}}}{l_{1}!} \cdots \frac{x_{k}^{I_{k}}}{l_{k}!}
\end{aligned}
$$

- $(x)_{n}=\Gamma(x+n) / \Gamma(n)$ are Pochhammer symbols
- Gauss ${ }_{2} F_{1}$ and Appell F_{2} functions
- the blocks $=$ eigenfunctions of $s l(2, \mathbb{R})$ Casimir equations in each exchange channel

Gravity in AdS

Topological gravities in lower dimensions

There are no local PDoF:

$$
\text { vanishing Weyl tensor: } \quad C_{m n, k l}=0
$$

Indeed,

$$
R_{m n, k l}=C_{m n, k l}+\text { on-shell terms }
$$

- The cosmological constant $\Lambda \neq 0$
- $d=3$: the metric $g_{m n}$ and EOM $R_{m n}+\Lambda g_{m n}=0$ - Einstein theory
- $d=2$: the metric $g_{m n}$, the scalar ϕ and EOM $R+\Lambda=0$ - Jackiw-Teitelboim theory

The frame formulations:

- $d=$ 3: $S_{C S}=\int_{M^{3}} \operatorname{Tr}\left(d A A+A^{3}\right)$, where A is $o(2,2)$-connection (Achucarro, Townsend 1986, Witten 1988)
- $d=$ 2: $S_{B F}=\int_{M^{2}} \operatorname{Tr}(B F)$, where A is $o(2,1)$-connection, $F=d A+A^{2}$ and $B-0$-form (Fukuyama, Kamimura 1985)
- The chiral factorization: $o(2,2) \approx o(2,1) \oplus o(2,1)$ and $o(2,1) \approx s /(2, \mathbb{R})$

The common EOM:

$$
F=d A+A^{2}=0: \quad \text { gravitational flat connections }
$$

AdS_{2} spacetime

- Any solution is locally AdS
- From now on, assuming the chiral factorization we will be discussing AdS_{2} flat connections
- The gauge algebra is $s l(2, \mathbb{R})$:

$$
\left[J_{m}, J_{n}\right]=(m-n) J_{m+n}
$$

where $n, m=0, \pm 1$

- The local coordinates on $\mathrm{AdS}_{2}: x^{\mu}=(\rho, z)$, where $\rho, z \in \mathbb{R}$
- The AdS_{2} solution (Banados 1998):

$$
A=e^{-\rho J_{0}}\left(J_{1} d z\right) e^{\rho J_{0}}+J_{0} d \rho \equiv A_{\mu}^{m} d x^{\mu} J_{m}
$$

- The associated metric $g_{\mu \nu}=e_{\mu} \cdot e_{\nu}$, where $\left(e_{\mu}, \omega_{\mu}\right)=A_{\mu}$:

$$
d s^{2}=e^{2 \rho} d z^{2}+d \rho^{2}
$$

with the conformal boundary at $\rho=\infty$ (actually, there are two conformal boundaries)

A primer on $s /(2, \mathbb{R})$ representations \mathcal{R}_{j}

- Finite-dimensional series. $\mathcal{R}_{j}=\mathcal{D}_{j}$ with weights $j \in \mathbb{N}_{0} / 2, \operatorname{dim} \mathcal{D}_{j}=2 j+1$. The standard ladder basis is given by

$$
\left\{\mathcal{D}_{j} \ni|j, m\rangle: J_{0}|j, m\rangle=m|j, m\rangle, m=-j,-j+1, \ldots, j-1, j\right\}
$$

where the highest-weight (HW) vector $|j, j\rangle$ is defined by

$$
J_{0}|j, j\rangle=j|j, j\rangle \quad J_{-1}|j, j\rangle=0
$$

- Negative discrete series. $\mathcal{R}_{j}=\mathcal{D}_{j}^{-}$with weights $j \in \mathbb{R}, \operatorname{dim} \mathcal{D}_{j}=\infty$. The basis is given by

$$
\left\{\mathcal{D}_{j}^{-} \ni|j, m\rangle: J_{0}|j, m\rangle=m|j, m\rangle, m=j, j-1, j-2, \ldots,-\infty\right\}
$$

where $|j, j\rangle$ is a HW vector and m is generally non-integer.

- If $j \in \mathbb{N}_{0} / 2$ then the respective module contains a singular vector (light Kac dimensions) so that

$$
\mathcal{D}_{j}^{-} / \mathcal{S}_{-j-1} \approx \mathcal{D}_{j}
$$

where $\mathcal{S}_{-j-1} \subset \mathcal{D}_{j}^{-}$is the singular subspace.
In both types of modules \mathcal{R}_{j} the action of $s l(2, \mathbb{R})$ algebra is defined as

$$
\begin{aligned}
& J_{0}|j, m\rangle=m|j, m\rangle \\
& J_{1}|j, m\rangle=\sqrt{(m+j)(j-m+1)}|j, m-1\rangle \equiv M(j, m-1)|j, m-1\rangle \\
& J_{-1}|j, m\rangle=-\sqrt{(m+j+1)(j-m)}|j, m+1\rangle \equiv-M(j, m)|j, m+1\rangle
\end{aligned}
$$

The zeros of $M(j, m)$ define the passage from \mathcal{D}_{j}^{-}to \mathcal{D}_{j} since they correspond to singular vectors.

Gravitational Wilson line

The basic object is a Wilson line:

$$
W_{j}[L]=\mathbb{P} \exp -\int_{L} A_{j}
$$

where
\#1 L - a path in AdS_{2} from x_{1} to x_{2} and \mathbb{P} is the path-ordering operator
\#2 $\quad A_{j}$ takes values in $s l(2, \mathbb{R})$ module \mathcal{R}_{j}, fin-dim or inf-dim.
\#3 a gauge transformation: $A \rightarrow g A g^{-1}+g d g^{-1}, \quad W_{j}[L] \rightarrow g\left(x_{2}\right) W_{j}[L] g^{-1}\left(x_{1}\right)$
\#4 a path transitivity: $W_{j}\left[L_{1}+L_{2}\right]=W_{j}\left[L_{2}\right] W_{j}\left[L_{1}\right]$
\#5 The main property:

$$
W_{j}[L]=W_{j}\left[x_{1}, x_{2}\right]
$$

i.e. for a flat connection it depends on $x_{1,2}$ only! In our case:

$$
W_{j}\left[x_{1}, x_{2}\right]=e^{-\rho_{2} J_{0}} e^{z_{12} J_{1}} e^{\rho_{1} J_{0}}, \quad \text { where } x_{i}=\left(z_{i}, \rho_{i}\right)
$$

Gravitational Wilson networks, I

Let us now compose Wilson lines into a network:
(a)

There are:

1. n endpoints (green dots, coordinates x_{i})
2. n external legs (Wilson lines)
3. $n-3$ internal legs (Wilson lines)
4. $n-3$ three-valent vertices (red dots, coordinates y_{i})
5. Each Wilson line carries its own \mathcal{R}_{j}

Motivation, finally

Why conformal blocks and networks?

- Ryu-Takayanagi entanglement entropy formula (2006): $S_{A}=\min _{\gamma_{A}} \frac{\operatorname{area}\left(\gamma_{A}\right)}{4 G_{N}}$

- Replica trick for the entanglement entropy:

$$
\text { Renyi entropies } S_{A}^{(n)}=\frac{1}{1-n} \log \operatorname{Tr} \rho_{A}^{n} \quad \text { and } \quad S_{A}=\lim _{n \rightarrow 1} S_{A}^{(n)}
$$

When A consists of N disjoint intervals, the Renyi entropy can be realized as a 2 N -point conformal correlation function of the twist operators (Calabrese, Cardy 2009):

$$
\operatorname{Tr} \rho_{A}^{n} \sim\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{2 N}\right\rangle, \quad \Delta\left(\mathcal{O}_{i}\right) \sim c
$$

The S_{A} in CFT_{2} is calculated in the large-c regime by the Zamolodchikov conformal block (Hartman 2013)

$$
\sim \exp \left(c F_{c l}\right)
$$

Why conformal blocks and networks?

The Brown-Henneaux relation $c \sim 1 / G_{N}$

- Geodesic networks vs large-c conformal blocks (Fitzpatrick et al 2013, Hijano et al 2015, K.A., Belavin 2015, Datta et al 2016)

$$
\operatorname{area}\left(\gamma_{A}\right) \sim F_{c l}
$$

- Metric vs frame formulation of gravity theory and Wilson lines/loops vs geodesics (Amon et al 2016, Castro et al 2018)

AdS, back again

3 -valent intertwiner

- The 3 -valent intertwiner:

$$
\operatorname{Inv}\left(\mathcal{R}_{j_{1}} \otimes \mathcal{R}_{j_{2}} \otimes \mathcal{R}_{j_{3}}\right) \ni \iota_{j_{1} j_{2} j_{3}}: \quad \mathcal{R}_{j_{2}} \otimes \mathcal{R}_{j_{3}} \rightarrow \mathcal{R}_{j_{1}}
$$

- The invariance property:

$$
I_{j_{1} j_{2} j_{3}} U_{j_{2}} U_{j_{3}}=U_{j_{1}} I_{j_{1} j_{2} j_{3}}
$$

where U_{j} are $S L(2, \mathbb{R})$ operators of the corresponding representations.

- The basic idea is an invariant contraction: $I_{a \alpha A} X^{a} Y^{\alpha} Z^{A}$
- To have a non-trivial intertwiner the weights of three representations must be constrained. The Clebsch-Gordon series

$$
\mathcal{R}_{j_{2}} \otimes \mathcal{R}_{j_{3}}=\bigoplus_{j_{1}} \mathcal{R}_{j_{1}}
$$

If $\mathcal{D}_{j_{1}}$ does arise in the CG series then the intertwiner is just a projector, otherwise it is zero. In components, the CG coefficient takes the form

$$
\left|j_{2}, m\right\rangle \otimes\left|j_{3}, n\right\rangle=\sum_{k}\left(\left\langle j_{1}, k\right| I_{j_{1} j_{2} j_{3}}\left|j_{2}, m\right\rangle \otimes\left|j_{3}, n\right\rangle\right)\left|j_{1}, k\right\rangle
$$

where the summation domain depends on the type of modules $\mathcal{R}_{j_{i}}$.

3j symbol

The intertwiner as 3 j symbol:

$$
\left\langle j_{1}, k\right| I_{j_{1} j_{2} j_{3}}\left|j_{2}, m\right\rangle \otimes\left|j_{3}, n\right\rangle \equiv\left[I_{j_{1} j_{2} j_{3}}\right]^{k}{ }_{m n}=(-1)^{j_{1}-k}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
-k & m & n
\end{array}\right)
$$

The explicit form of the 3 j symbol (e.g. in Varshalovich et all 1987)

$$
\begin{aligned}
& \left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\delta_{m_{1}+m_{2}+m_{3}, 0} \frac{\sqrt{\left(j_{3}-j_{1}+j_{2}\right)!} \sqrt{\left(-j_{3}+j_{1}+j_{2}\right)!} \sqrt{\left(j_{3}+j_{1}+j_{2}+1\right)!}}{\left(j_{3}+j_{1}+j_{2}+1\right)!\sqrt{\left(j_{3}+j_{1}-j_{2}\right)!}} \\
& \times \frac{\sqrt{\left(j_{3}-m_{3}\right)!} \sqrt{\left(j_{1}-m_{1}\right)!}}{\sqrt{\left(j_{3}+m_{3}\right)!} \sqrt{\left(j_{1}+m_{1}\right)!} \sqrt{\left(j_{2}-m_{2}\right)!} \sqrt{\left(j_{2}+m_{2}\right)!}} \frac{(-)_{1}+m_{2}-m_{3}\left(2 j_{3}\right)!\left(j_{3}+j_{2}+m_{1}\right)!}{\left(j_{3}-j_{1}+j_{2}\right)!\left(j_{3}-m_{3}\right)!} \\
& \times{ }_{3} F_{2}\left(-j_{3}+m_{3},-j_{3}-j_{1}-j_{2}-1,-j_{3}+j_{1}-j_{2} ;-2 j_{3},-j_{3}-j_{2}-m_{1} ; 1\right)
\end{aligned}
$$

- Note that weights j_{1}, j_{2}, j_{3} satisfy the selection rules (triangle inequalities).
- We assume that $j!=\Gamma(j+1)$ for $j \in \mathbb{R}$ (Holman et all 1966).

Gravitational Wilson networks: AdS vertex functions

(a)

(b)

- The Wilson line network operator:

$$
\begin{aligned}
\widehat{W}_{\tilde{j}_{1} \ldots \tilde{j}_{n-3}}^{j_{1} \ldots j_{n}}(\mathbf{x}, \mathbf{y}):= & \left(W_{j_{1}}\left[y_{1}, x_{1}\right] l_{j_{1} j_{2} \tilde{j}_{1}} W_{\tilde{j}_{1}}\left[y_{2}, y_{1}\right] I_{\tilde{j}_{1} j_{3} \tilde{j}_{2}} \ldots W_{\tilde{j}_{n-3}}\left[y_{n-2}, y_{n-3}\right] I_{\tilde{j}_{n-3} j_{n-1} j_{n}}\right) \\
& \times\left(W_{j_{2}}\left[x_{2}, y_{1}\right] \ldots W_{j_{n-1}}\left[x_{n-1}, y_{n-2}\right] W_{j_{n}}\left[x_{n}, y_{n-3}\right]\right)
\end{aligned}
$$

where the sets of endpoints and vertices are $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n-3}\right)$.

- Let us now associate to each endpoint a particular cap state $\left|a_{i}\right\rangle \in \mathcal{R}_{j_{i}}$. Then, one introduces the AdS vertex function

$$
\mathcal{V}_{j j}(\mathbf{x}, \mathbf{y}) \equiv\left\langle a_{1}\right| \widehat{W}_{\tilde{j}_{1} \ldots \tilde{j}_{n-3}}^{j_{1} \ldots j_{n}}(\mathbf{x}, \mathbf{y})\left|a_{2}\right\rangle \otimes\left|a_{3}\right\rangle \otimes \cdots \otimes\left|a_{n}\right\rangle
$$

- Using the intertwiner invariance property and the path transitivity one can set $\mathbf{y}=0$ (see Fig. 2 and Fig. 3)

$$
\mathcal{V}_{j \tilde{j}}(\mathbf{x}, \mathbf{y}) \rightarrow \mathcal{V}_{j j}(\mathbf{z}, \rho)
$$

where $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$ are the boundary points and ρ labels the line which will be finally pulled at (conformal) infinity, $\rho \rightarrow \infty$.

- By using the identity resolutions

$$
\mathbb{I}_{j}=\sum_{m}|j, m\rangle\langle j, m|
$$

the AdS vertex function can be represented as a matrix product

$$
\begin{aligned}
& \mathcal{V}_{j j}(\mathbf{z}, \rho)=\sum_{\mathbf{m}, \mathbf{p}}\left\langle j_{1}, m_{1}\right| I_{j_{1} j_{2} \tilde{j}_{1}}\left|j_{2}, m_{2}\right\rangle \otimes\left|\tilde{j}_{1}, p_{1}\right\rangle\left\langle\tilde{j}_{1}, p_{1}\right| l_{j_{1} j_{3} \tilde{j}_{2}}\left|j_{3}, m_{3}\right\rangle \otimes\left|\tilde{j}_{2}, p_{2}\right\rangle \cdots \\
& \cdots\left\langle\tilde{j}_{n-3}, p_{n-3}\right| l_{\tilde{j}_{n-3}} j_{n-1} j_{n}\left|j_{n-1}, m_{n-1}\right\rangle \otimes\left|j_{n}, m_{n}\right\rangle\left(\left\langle\tilde{a}_{1} \mid j_{1}, m_{1}\right\rangle\left\langle j_{2}, m_{2} \mid \tilde{a}_{2}\right\rangle \cdots\left\langle j_{n}, m_{n} \mid \tilde{a}_{n}\right\rangle\right)
\end{aligned}
$$

where

- x-dependent cap states

$$
\left\langle\tilde{a}_{1}\right|=\left\langle a_{1}\right| W_{j_{1}}\left[0, x_{1}\right] \quad \text { and } \quad\left|\tilde{a}_{i}\right\rangle=W_{j_{i}}\left[x_{i}, 0\right]\left|a_{i}\right\rangle, \quad i=2, \ldots, n
$$

- (magnetic) indices $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n-3}\right)$
- there are $3 n-3$ independent (infinite) summations
- The AdS vertex function can be cast into the equivalent form:

$$
\mathcal{V}_{j j}(\mathbf{z}, \rho)=\left\langle\tilde{a}_{1}\right| I_{j_{1} \ldots j_{n} \mid \tilde{j}_{1} \ldots \tilde{j}_{n-3}}\left|\tilde{a}_{2}\right\rangle \otimes \cdots \otimes\left|\tilde{a}_{n}\right\rangle
$$

where the n-valent intertwiner is given by

$$
I_{j_{1} \ldots j_{n} \mid \tilde{j}_{1} \ldots \tilde{j}_{n-3}}=I_{j_{1} j_{2} \tilde{j}_{1}} I_{\tilde{j}_{1} j_{3} \tilde{j}_{2}} \cdots I_{\tilde{j}_{n-3} j_{n-1} j_{n}}: \quad(n-2) 3 j \text { symbols in the comb channel }
$$

with the generalized intertwiner invariance property

$$
I_{j_{1} \ldots j_{n} \mid \tilde{j}_{1} \ldots \tilde{j}_{n-3}}=U_{j_{1}}^{-1} I_{j_{1} \ldots j_{n} \mid \tilde{j}_{1} \ldots \tilde{j}_{n-3}} U_{j_{2}} \cdots U_{j_{n}}
$$

AdS/CFT

AdS/CFT correspondence: extrapolate dictionary

- The standard AdS/CFT: $Z_{\text {AdS }}=Z_{C F T}$ for two dual theories.
- For AdS_{2} scalar quantum fields $\hat{\Phi}_{i}\left(\rho_{i}, z_{i}\right)$ with masses m_{i} the extrapolate dictionary gives

$$
\lim _{\rho \rightarrow \infty} e^{\rho \sum \Delta_{i}}\left\langle\hat{\Phi}_{1}\left(\rho, z_{1}\right) \cdots \hat{\Phi}_{n}\left(\rho, z_{n}\right)\right\rangle_{A d S}=\left\langle\hat{\mathcal{O}}_{1}\left(z_{1}\right) \cdots \hat{\mathcal{O}}_{n}\left(z_{n}\right)\right\rangle_{C F T}
$$

where

1. conformal dimensions Δ_{i} are related to masses as $m_{i}^{2}=\Delta_{i}\left(\Delta_{i}-1\right)$
2. all AdS fields are placed on the hypersurface $\rho=$ const \longrightarrow conformal boundary

- Extrapolate dictionary \leftrightarrow HKLL reconstruction (Hamilton, Kabat, Lifschytz, Lowe 2006) as for three types of Witten diagrams
- In our context the AdS vertex functions are assumed to reproduce CFT correlation functions in the way which is essentially the same as the extrapolate dictionary relation.
\#1 The AdS vertex functions are not literally AdS scalar correlation functions
\#2 the AdS vertex functions must be subject to particular spacetime symmetry criteria that mimic those satisfied by AdS scalar correlation functions

Spacetime invariance and cap states

- We require the AdS vertex functions to be invariant with respect to AdS_{2} spacetime isometry transformations:

$$
\mathcal{V}_{j \tilde{j}}\left(\mathbf{x}^{\prime}\right)=\mathcal{V}_{j \tilde{j}}(\mathbf{x}), \quad \mathbf{x}^{\prime}=\mathbf{x}^{\prime}(\mathbf{x}) \in S L(2, \mathbb{R})
$$

The infinitesimal form of the symmetry condition is given by three global Ward identities

$$
\sum_{i=1}^{n} \mathcal{J}_{m}^{(i)} \mathcal{V}_{j \tilde{j}}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=0 \quad m=0, \pm 1
$$

where $\mathcal{J}_{m}=\xi_{m}^{\mu} \partial_{\mu}$ are the Lie derivatives along the Killing vector fields $\xi_{m}(x)$ of the AdS_{2} spacetime

$$
\mathcal{J}_{-1}=\partial_{z}, \quad \mathcal{J}_{0}=z \partial_{z}-\partial_{\rho}, \quad \mathcal{J}_{1}=z^{2} \partial_{z}-2 z \partial_{\rho}-e^{-2 \rho} \partial_{z}
$$

The superscript i indicates that the derivative is taken with respect to the i-th coordinate.

- For general values of the radial coordinates $\rho_{i}, i=1, \ldots, n$, the system of PDEs has $2 n-3$ first integrals. The hypersurface the AdS vertex functions are parameterized as

$$
\left.\mathcal{V}_{j \tilde{j}}(\mathbf{x})\right|_{\rho_{1}=\ldots=\rho_{n}=\rho}=\mathcal{V}_{j \tilde{j}}(\mathbf{z}, \rho)=\mathcal{V}_{j \tilde{j}}\left(q_{12}, \ldots, q_{n-1, n}\right)
$$

where

$$
q_{i, i+1}=\left(z_{i+1}-z_{i}\right) e^{\rho}, \quad i=1, \ldots, n-1
$$

Spacetime invariance and cap states

The Ward identities uniquely fix the form of the cap states $|a\rangle$:

$$
\text { Ishibashi state : } \quad\left(J_{1}+J_{-1}\right)|a\rangle=0
$$

- At $j \neq \mathbb{N}_{0}$ there is a unique (up to a normalization) vector $\left.|a\rangle \equiv|j\rangle\right\rangle \in \mathcal{D}_{j}^{-}$:

$$
|j\rangle\rangle=\sum_{n=0}^{\infty} \prod_{k=1}^{n} \frac{(-)^{n}}{-4 k j+4 k^{2}-2 k}\left(J_{1}\right)^{2 n}|j, j\rangle
$$

- At $j \in \mathbb{N}_{0}$ the module \mathcal{D}_{j}^{-}has a singular vector which additionally generates a new solution: the kernel of $J_{1}+J_{-1}$ becomes two-dimensional and the two basis cap states read

$$
\begin{aligned}
& |j\rangle\rangle_{1}=\sum_{n=0}^{j} \prod_{k=1}^{n} \frac{(-)^{n}}{-4 k j+4 k^{2}-2 k}\left(J_{1}\right)^{2 n}|j, j\rangle \\
& |j\rangle\rangle_{2}=\sum_{n=0}^{\infty} \prod_{k=1}^{n} \frac{(-)^{n}}{4 k j+4 k^{2}+2 k}\left(J_{1}\right)^{2 n}|j,-j-1\rangle
\end{aligned}
$$

- The case of finite-dimensional modules \mathcal{D}_{j} with $\left.\left.j \in \mathbb{N}_{0}:|j\rangle\right\rangle=|j\rangle\right\rangle_{1}$

Wilsonian extrapolate relation

- The extrapolate dictionary:

$$
\lim _{\rho \rightarrow \infty} e^{-\rho \sum_{i=1}^{n} j_{i}} \mathcal{V}_{j \tilde{j}}(\rho, \mathbf{z})=C_{j \tilde{j}} \mathcal{F}_{h \tilde{h}}(\mathbf{z})
$$

where weights and conformal dimensions are identified as $h_{i}=-j_{i}$ and $\tilde{h}_{k}=-\tilde{j}_{k}$.

- The normalization coefficients $C_{j \tilde{j}} \equiv C_{j_{1} \ldots j_{n} \tilde{j}_{1} \ldots \tilde{j}_{n-3}}$:

$$
\begin{aligned}
& n=2: \quad C_{j_{1} j_{2}}=\frac{\delta_{j_{1} j_{2}}}{\left(2 j_{1}+1\right)^{\frac{1}{2}}} ; \quad n=3: \quad C_{j_{1} j_{2} j_{3}}=\left[\frac{\left(2 j_{1}\right)!\left(2 j_{2}\right)!\left(2 j_{3}\right)!}{\Delta\left(j_{1}, j_{2}, j_{3}\right)}\right]^{\frac{1}{2}} \\
& n>3: \quad C_{j \tilde{j}}=C_{j_{1} j_{2} \tilde{j}_{1}}\left[\prod_{i=1}^{n-4} C_{\tilde{j}_{j} j_{i+2} \tilde{j}_{i+1}}\right] C_{\tilde{j}_{n-3} j_{n-1} j_{n}} \quad \text { the comb channel }
\end{aligned}
$$

where $\Delta(a, b, c)=(a+b+c+1)!(a+b-c)!(a+c-b)!(b+c-a)!$ is the modified triangle coefficient.

- AdS vertex functions are defined up to multiplicative constants. Non-vanishing and real $C_{j_{1} j_{2} j_{3}}$ yield triangle inequalities:

1) $j_{1}, j_{2} \in \mathbb{N}_{0} / 2, j_{3} \in \mathbb{Z}: \quad\left|j_{1}-j_{2}\right| \leq\left|j_{3}\right| \leq j_{1}+j_{2}$
2) in other cases: $\quad j_{3} \leq j_{1}+j_{2}$

Wilson line matrix elements and their asymptotics

- We recall that

$$
\left.\mathcal{V}_{j \tilde{j}} \tilde{z}, \rho\right)=\sum_{m_{1}, \ldots, m_{n}}\left\langle j_{1}, m_{1}\right| \iota_{j_{1} \ldots j_{n} \mid \tilde{j}_{1} \ldots \tilde{j}_{n-3}}\left|j_{2}, m_{2}\right\rangle \otimes\left|j_{n}, m_{n}\right\rangle\left(\left\langle\tilde{a}_{1} \mid j_{1}, m_{1}\right\rangle\left\langle j_{2}, m_{2} \mid \tilde{a}_{2}\right\rangle \cdots\left\langle j_{n}, m_{n} \mid \tilde{a}_{n}\right\rangle\right)
$$

The x-dependence is in the blue terms only: $\langle\tilde{a} \mid j, m\rangle=\langle a| W_{j}[0, x]|j, m\rangle$ and $\langle j, m \mid \tilde{a}\rangle=\langle j, m| W_{j}[x, 0]|a\rangle$

- Denote $q=-z e^{\rho}$. The left and right Wilson matrix elements are given by:

$$
\begin{aligned}
& \langle j, m \mid \tilde{a}\rangle \sim e^{+\rho m}(q+i)^{j-m}{ }_{2} F_{1}\left(-j, m-j ; m+1 \left\lvert\, \frac{q-i}{q+i}\right.\right) \\
& \langle\tilde{a} \mid j, m\rangle \sim e^{-\rho m}(q+i)^{j}(q-i)^{m}{ }_{2} F_{1}\left(-j, m-j ; m+1 \left\lvert\, \frac{q-i}{q+i}\right.\right)
\end{aligned}
$$

- The radius of convergence of $\langle\tilde{a} \mid j, m\rangle$ equals one, i.e. $|q|<1$. In terms of ρ-coordinate one has $\rho<-\log |z|$, which means that for arbitrary z the radius of convergence in ρ goes to zero. Nonetheless, the function can be analytically continued past $|q|=1$ thereby making the large- ρ expansion possible.
- The asymptotic ($\rho \rightarrow \infty$ i.e. $q \rightarrow \infty$) Wilson matrix elements:

$$
\langle\tilde{a} \mid j, m\rangle \approx e^{-\rho m} q^{j+m} \sim e^{\rho j} z^{j+m} \quad\langle j, m \mid \tilde{a}\rangle \approx e^{\rho m} q^{j-m} \sim e^{\rho j} z^{j-m}
$$

- There are singular vector subleading contributions.

Asymptotic conformal invariance

- Near the boundary the Ward identities for AdS vertex functions go to the Ward identities for CFT correlation functions. One directly finds how the AdS_{2} Killing generators are restricted on the boundary:

$$
\begin{aligned}
& \mathcal{J}_{n}\langle j, m \mid \tilde{a}\rangle=\mathcal{L}_{n}\langle j, m \mid \tilde{a}\rangle+O\left(e^{\rho(j-1)}\right) \\
& \mathcal{J}_{n}\langle\tilde{a} \mid j, m\rangle=\mathcal{L}_{n}\langle\tilde{a} \mid j, m\rangle+O\left(e^{\rho(j-1)}\right)
\end{aligned}
$$

where

$$
\mathcal{L}_{n}=z^{n+1} \partial_{z}-j(n+1) z^{n}, \quad n=0, \pm 1
$$

which is the standard realization of $s l(2, \mathbb{R})$ on CFT primary fields of conformal dimension $h=-j$.

- Substituting these relations into the AdS Ward identities:

$$
\left.\sum_{i=1}^{n} \mathcal{L}_{m}^{(i)} \mathcal{V}_{j \tilde{j}}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)\right|_{\rho_{1}=\ldots=\rho_{n}=\rho}=0+O\left(e^{\rho\left(\sum_{i=1}^{n} j_{i}-1\right)}\right)
$$

Taking the limit $\rho \rightarrow \infty$ and using the extrapolate dictionary identification one finds out that the above relation goes into the $s l(2, \mathbb{R})$ conformal Ward identities.

- Finite version. Using $S L(2, \mathbb{R}): z \rightarrow w(z)$ yields

$$
\left.\mathcal{V}_{j j}(\rho, \mathbf{z})=\left.\left.\left(\frac{\partial z}{\partial w}\right)^{j_{1}}\right|_{w=w_{1}} \cdots\left(\frac{\partial z}{\partial w}\right)^{j_{n}}\right|_{w=w_{n}} \mathcal{V}_{j \tilde{j}}(\rho, \mathbf{w})+O\left(e^{\rho\left(\sum_{i=1}^{n} j_{i}-1\right.}\right)\right)
$$

Asymptotic cap states

Requiring conformal symmetry of the AdS vertex function only at large- ρ one finds asymptotic equations

$$
\begin{aligned}
& W_{j}[x, 0]\left(J_{0}-j\right)|a\rangle=0+O\left(e^{\rho(j-1)}\right) \\
& \left\langle a^{\prime}\right|\left(J_{0}+j\right) W_{j}[0, x]=0+\mathcal{O}\left(e^{\rho(j-1)}\right)
\end{aligned}
$$

These are called quasi-Ishibashi cap states. Note that $|a\rangle$ and $\left\langle a^{\prime}\right|$ are generally two different vectors, $\left\langle a^{\prime}\right| \neq|a\rangle^{\dagger}$.

- For infinite-dimensional modules \mathcal{D}_{j}^{-}:

$$
|a\rangle=|j, j\rangle+\left(J_{0}-j\right)^{-1} \hat{R}|j, j\rangle \quad \text { and } \quad\left\langle a^{\prime}\right|=\langle j, j| \check{R}\left(J_{0}+j\right)^{-1}
$$

where $\hat{R}, \check{R} \in \mathcal{U}(s /(2, \mathbb{R}))$ are some constant elements.

- For finite-dimensional modules \mathcal{D}_{j} the operator $\left(J_{0}+j\right)$ has a kernel described by LW vectors (recall that $\left.\left(\mathcal{D}_{j}\right)^{*} \approx \mathcal{D}_{j}\right)$ so that in this case the general solution can be represented as

$$
|a\rangle=|j, j\rangle+\left(J_{0}-j\right)^{-1} \hat{L}|j, j\rangle \quad \text { and } \quad\left\langle a^{\prime}\right|=\langle j,-j|+\langle j,-j| \check{L}\left(J_{0}+j\right)^{-1}
$$

with some new constant $\hat{L}, \check{L} \in \mathcal{U}(s /(2, \mathbb{R}))$.

- It immediately follows that the LW/HW vectors from (Besken et al 2016) solve the asymptotic equations

$$
|j\rangle\rangle=|j, j\rangle \in \mathcal{D}_{j}, \quad j \in \mathbb{N}_{0} / 2
$$

2-point functions

- 2-point AdS vertex function

$$
\mathcal{V}_{j_{1} j_{2}}(\rho, \mathbf{z})=\left\langle\tilde{a}_{1}\right| I_{j_{1} j_{2}}\left|\tilde{a}_{2}\right\rangle=\sum_{m_{1}, m_{2}}\left[I_{j_{1} j_{2}}\right]^{m_{1}}{ }_{m_{2}}\left\langle\tilde{a}_{1} \mid j_{1}, m_{1}\right\rangle\left\langle j_{2}, m_{2} \mid \tilde{a}_{2}\right\rangle
$$

where the the 2 -valent intertwiner $\left(j_{3}=0\right)$ is given by $\left[I_{j_{1} j_{2}}\right]^{m_{1}} m_{2} \sim \delta_{j_{1} j_{2}} \delta^{m} m_{2}$. The final expression (see also Castro et all 2018):

$$
\left.\mathcal{V}_{j_{1} j_{2}}(\rho, \mathbf{z}) \sim q_{12}^{2 j_{1}}{ }_{2} F_{1}\left(-j_{1},-j_{1} ;-2 j_{1} \left\lvert\,-\frac{4}{q_{12}^{2}}\right.\right)\right|_{q_{12}=z_{12} e^{\rho} \rightarrow \infty} \longrightarrow q_{12}^{2 j_{1}} \sim e^{2 \rho j_{1}} z_{12}^{2 j_{1}} \equiv e^{2 \rho j_{1}} \frac{1}{z_{12}^{2 h_{1}}}
$$

- Up to the constant, the 2-point AdS vertex function is the bulk-to-bulk propagator in AdS_{2} (Fronsdal 1974) on the $\rho=$ const hyperplane

$$
G_{h}\left(x_{1}, x_{2}\right)=e^{-h \sigma\left(x_{1}, x_{2}\right)}{ }_{2} F_{1}\left(h, \frac{1}{2} ; \left.h+\frac{1}{2} \right\rvert\, e^{-2 \sigma\left(x_{1}, x_{2}\right)}\right), \quad e^{\sigma\left(x_{1}, x_{2}\right)}=\frac{\left|q_{12}\right| \sqrt{4+q_{12}^{2}}+2+q_{12}^{2}}{2}
$$

where $j_{1}=j_{2}=-h$ and $\sigma\left(x_{1}, x_{2}\right)$ is the geodesic length between points x_{1} and x_{2}.

Known results and perspectives

- 2-point AdS vertex and CFT functions (Castro et all 2018, Bhatta et all 2016, Besken et all 2016)
- 3-point and 4-point CFT functions (Bhatta et all 2016, Besken et all 2016)
- 5-point CFT functions (Bhatta et all 2016 for K.A., Belavin 2015)

No exact expressions for higher-point AdS vertex functions (no results) and their near-the-boundary asymptotics (CFT conformal blocks (Rosenhaus 2018))

Recursion for asymptotic AdS vertex functions

Near-the-boundary analysis, $\rho \rightarrow \infty$:

The recursion relation:

$$
\mathcal{V}_{j_{1} \cdots j_{n} \tilde{j}_{1} \cdots \tilde{j}_{n-3}}^{(n)} \approx \sum_{k_{n}} \gamma_{n, k_{n}, j_{n}} \mathcal{V}_{j_{1} \cdots j_{n-2}\left(\tilde{j}_{n-3}-k_{n}\right) \tilde{j}_{1} \cdots \tilde{j}_{n-4}}, \quad n=5,6, \ldots
$$

- E.g. Appell F_{2} vs Gauss ${ }_{2} F_{1}$ (splitting identity)
- OPEs ordering in CFT
- Coordinates z_{i} must organize into cross-ratios χ_{j}

Wilsonian networks with loops

Toroidal Wilson networks in the thermal AdS

- Let us build torus blocks from the Wilson networks described in the plane topology case by gluing together any two extra edges modulo $2 \pi \tau$ and then identifying the corresponding irreps:

- Consider a toroidal 1-point Wilson network:
(1) The toroidal gravitational connection $A=e^{-\rho J_{0}}\left[J_{1}+\frac{1}{4} J_{-1}\right] d z e^{\rho J_{0}}+J_{0} d \rho$.
(2) Identify any two endpoints: $z_{1}=-2 \pi \tau$ and $z_{2}=0$ lie on the thermal cycle.
(3) Identify $\mathcal{R}_{a} \cong \mathcal{R}_{b}$, choose $|a\rangle=|b\rangle=\left|j_{a}, m\right\rangle$ and sum up over all basis states in \mathcal{R}_{a}.

$$
\begin{aligned}
\stackrel{\circ}{V} \mid c(\tau, \mathbf{z})= & \sum_{m}\left(\left\langle j_{a}, m\right| W_{a}[2 \pi \tau, 0] I_{a, a, c}\left|j_{a}, m\right\rangle\right) W_{c}[0, z]|c\rangle \\
& \equiv \operatorname{Tr}_{a}\left(W_{a}[2 \pi \tau] I_{a ; a, c}\right) W_{c}[0, z]|c\rangle
\end{aligned}
$$

(a) If $\mathcal{D}_{c}=1$ (i.e. $j_{c}=0$), then $W_{c}=1_{c}$ and $I_{a ; a, 0}=1_{a}$ so that we find the Wilson loop operator,

$$
{\stackrel{\circ}{V_{a} \mid 0}}(\tau)=\operatorname{Tr}_{a}\left(W_{a}[2 \pi \tau]\right)
$$

It is known to be a character of the representation \mathcal{D}_{a} (Witten 1988).
(b) For non-trivial \mathcal{D}_{c} this yields 1-point global torus block (Kraus et al 2017, K.A., Belavin 2020).

The irreps labelled by a, b, c, d are associated with endpoints ordered as $z_{1}, z_{2}, z_{3}, z_{4}$.

Wilson network in the t-channel (OPE)
(1) Identify irreps $\mathcal{D}_{d} \cong \mathcal{D}_{c}$ and respective endpoints $z_{4}=-2 \pi \tau$ and $z_{3}=0$.
(2) Choose $|d\rangle=|c\rangle=\left|j_{c}, m\right\rangle$ and sum up over all m to produce a trace over \mathcal{D}_{c}.

$$
\left.\stackrel{\circ}{\mathrm{Y}} \mathrm{t}) c, e\left|a, b(\tau, \mathbf{z})=\operatorname{Tr}_{c}\left(W_{c}[0,2 \pi \tau] I_{c ; c, e}\right) \iota_{e ; a, b} W_{a}\left[0, z_{1}\right] W_{b}\left[0, z_{2}\right]\right| a\right\rangle \otimes|b\rangle
$$

Wilson network in the s-channel (necklace)
(1) Fix endpoints as $z_{4}=-2 \pi \tau$ and $z_{2}=0$.
(2) Identify irreps $\mathcal{D}_{d} \cong \mathcal{D}_{b}$ and then sum up over states $|d\rangle=|b\rangle=\left|j_{b}, m\right\rangle$.

$$
\stackrel{\circ}{(s) b, e \mid a, c}(\tau, z)=\operatorname{Tr}_{b}\left(W_{b}[0,2 \pi \tau] I_{b ; c, e} I_{e ; a, b}\right) W_{a}\left[0, z_{1}\right] W_{c}\left[0, z_{3}\right]|a\rangle \otimes|c\rangle
$$

These two AdS vertex functions calculate 2-point global torus blocks in respectively t-channel and s-channel (K.A., Belavin 2020, K.A., Mandrygin 2023, K.A., Khiteev, in progress).

Perspectives:

- HKLL reconstruction for n-point Wilsonian networks (K.A., Khiteev, Kanoda, in progress)
- Wilsonian networks on spaces with defects (2-point Wilson line around BTZ Castro et al 2018 and in BF JT gravity Blommaert, Mertens, Verschelde 2018)
- Large-c CFT on Riemann surfaces of genus g (torus $g=1$ CFT: K.A., Belavin 2016, 2020, Kraus et al 2017, K.A., Mandrygin 2023, K.A., Khiteev, in progress)
- $1 /$ c corrections: general Virasoro conformal blocks via Wilson networks (Besken, Hegde, Kraus, D'Hoker 2017-2019 for quasi-Ishibashi cap states of fin-dim $s l(2, \mathbb{R})$ modules)
- Extended CFT $-W_{N}$ conformal algebras: adding higher spin fields in lower dimensions (Ammon et al 2013, de Boer et al 2015, Hegde et al 2015, Belavin et all 2022)
- HS gravity in higher dimensions within the unfolded formulation

