Superintegrability of β-deformed monomial matrix models and Uglov polynomials

Victor Mishnyakov, Ivan Myakutin

Generalities

Superintegrability of matrix models

Matrix models:

$$
\langle f(X)\rangle=\int D X e^{v(X)} f(X)
$$

Superintegrability of matrix models

Matrix models:

$$
\left\langle f\left(\operatorname{Tr} X^{k}\right)\right\rangle=\int D X e^{\operatorname{Tr} V(X)} f\left(\operatorname{Tr} X^{k}\right)
$$

Superintegrability of matrix models

Matrix models:

$$
\left\langle f\left(\operatorname{Tr} X^{k}\right)\right\rangle=\int D X e^{\operatorname{Tr} v(X)} f\left(\operatorname{Tr} X^{k}\right)
$$

As an eigenvalue integral (for the Hermitian case)

$$
\begin{gathered}
\langle f(x)\rangle=\int \prod_{i=1}^{N} d x_{i} \Delta^{2}(x) \exp \left(\sum_{i=1}^{N} V\left(x_{i}\right)\right) f(x) \\
\Delta(x)=\prod_{i<j=1}^{N}\left(x_{i}-x_{j}\right)
\end{gathered}
$$

Superintegrability of matrix models

Sometimes expectation values can be computed exactly [A.Mironov, A.Morozov (2022)]:

$$
\langle\text { Character }\rangle \sim \text { Character }
$$

Superintegrability of matrix models

Sometimes expectation values can be computed exactly [A.Mironov, A.Morozov (2022)]:

$$
\langle f(x)\rangle \sim f(*)
$$

Superintegrability monomial potentials

Among many - monomial matrix models are exactly solvable:

$$
\int D X \exp \left(-\operatorname{Tr} \frac{X^{s}}{s}\right) \cdots
$$

Superintegrability monomial potentials

Simplest case - Gaussian matrix model, $\operatorname{Tr} V(X)=-\frac{1}{2} \operatorname{Tr} X^{2}$:

$$
\langle\underbrace{S_{R}\left(\operatorname{Tr} X^{k}\right)}_{\text {Schur functions }}\rangle=\left(\prod_{(i, j) \in R}(N+j-i)\right) S_{R}\left\{p_{k}=\delta_{k, 2}\right\}=
$$

$$
=\underbrace{\frac{S_{R}\left\{p_{k}=N\right\}}{S_{R}\left\{p_{k}=\delta_{k, 1}\right\}} S_{R}\left\{p_{k}=\delta_{k, 2}\right\}}_{\text {Schur functions }}
$$

Superintegrability of monomial potentials

Non-Gaussian models:

$$
\int_{?} D X \exp \left(-\operatorname{Tr} \frac{X^{s}}{s}\right) \ldots
$$

Superintegrability of monomial potentials

Non-Gaussian models:

$$
\begin{gathered}
\int_{C_{s, a}^{\otimes N}} \prod_{i=1}^{N} d x_{i} \Delta^{2}(x) \exp \left(-\sum_{i=1}^{N} \frac{x_{i}^{s}}{s}\right) \cdots \\
C_{s, a}=\sum_{b=0}^{s-1} e^{\frac{2 \pi i a b}{s}} \times\left(0, e^{\frac{2 \pi i b}{s}} \infty\right)
\end{gathered}
$$

Superintegrability of monomial potentials

Non-Gaussian models:

Contours in the cubic model

Superintegrability of monomial potentials

Non-Gaussian models:

$$
\begin{gathered}
\int_{C_{s, a}^{\otimes, N}} \prod_{i=1}^{N} d x_{i} \Delta^{2}(x) \exp \left(-\sum_{i=1}^{N} \frac{x_{i}^{s}}{s}\right) \ldots \\
\left\langle S_{R}(x)\right\rangle_{s, a}=\left(\prod_{(i, j) \in R}[[N+j-i]]_{s, a}[[N+j-i]]_{s, 0}\right) S_{R}\left\{p_{k}=\delta_{k, s}\right\}
\end{gathered}
$$

where $[[n]]_{s, a}=n$ if $n \bmod s=a$ and 1 otherwise. Also, $N=0, a$ $\bmod s$ (for concreteness choose 0)
[C.Cordova, B. Heidenreich, A. Popolitov, S. Shakirov (2018)]

Superintegrability of monomial potentials

Non-Gaussian models:

$$
\begin{gathered}
{\left[[N+j-i]_{3,0}: \square N^{3}(N+3)(N-3)^{2}\right.} \\
{\left[[N+j-i]_{3,1}:+\square=\square\right.}
\end{gathered}
$$

β-deformation

The Gaussian model is known to survive a deformation of the measure:

$$
\Delta^{2}(x) \rightarrow \Delta^{2 \beta}(x)
$$

This corresponds to:

$$
S_{R} \rightarrow J_{R} \text { - Jack polynomials }
$$

and

$$
\left\langle J_{R}(x)\right\rangle=\underbrace{\frac{\left.J_{R}\{N\}+j-\beta i\right)}{J_{R}\left\{\delta_{k, 1}\right\}}}_{\substack{i, j \in \in R}} J_{R}\left\{\delta_{k, 2}\right\}
$$

β-deformation

β-deformation is consistent among many subjects :

- "Temperature" in statistical physics, interpolation between $\beta=1 / 2,1,2$
- Central charge in CFT $c=1-6\left(\sqrt{\beta}-\frac{1}{\sqrt{\beta}}\right)^{2}$
- AGT-related equiviariant parameters in Nekrasov functions: $\beta=-\frac{\epsilon_{1}}{\epsilon_{2}}$
- Non trivial coupling $g=\beta(\beta-1)$ in Calogero model. Jack polynomials - eigenfunctions.
- more ...

β-deformation

Is there a β-deformation of Non-Gaussian superintegrability?

β-deformation

Is there a β-deformation of Non-Gaussian superintegrability?

$$
\left\langle S_{R}(x)\right\rangle_{s, a}=\left(\prod_{(i, j) \in R}[[N+j-i]]_{s, a}[[N+j-i]]_{s, 0}\right) S_{R}\left\{p_{k}=\delta_{k, s}\right\}
$$

β-deformation

Naive Guess does not work!

$$
\begin{gathered}
\Delta^{2} \rightarrow \Delta^{2 \beta} \\
\left\langle J_{R}(x)\right\rangle_{s, a}=\text { complete mess }
\end{gathered}
$$

β-deformation

The problem is we are doing an uneducated guess but need to do an educated guess

We need some symmetry argument. The symmetry appears to be not the internal for the matrix model, but the symmetry of it's moduli space

β-deformation

We need to cook up a " deformed" partition function

β-deformation

We need to cook up a " deformed" partition function

In QFT terms:

$$
Z\left(T_{O_{i}}\right)=\int D \Phi \exp \left(-S[\Phi]+\sum_{i} \int T_{O_{i}} O_{i}[\Phi(x)]\right)
$$

β-deformation

We need to cook up a " deformed" partition function

In matrix models:

$$
\begin{aligned}
Z\left(p_{k}\right) & =\int D X \exp \left(\operatorname{Tr} V(X)+\sum_{k=1}^{\infty} \frac{p_{k}}{k} \operatorname{Tr} X^{k}\right)= \\
& =\sum_{R}\left\langle S_{R}\left(\operatorname{Tr} X^{k}\right)\right\rangle S_{R}(p)
\end{aligned}
$$

β-deformation

Symmetry acts on the p_{k} parameters. It's main realization is the W-representation:

$$
Z\left(p_{k}\right)=e^{w\left[p_{k}, \frac{\partial}{\partial p_{k}}\right]} \cdot 1
$$

β-deformation

It is intimately connected to superintegrability

$$
\begin{gathered}
W_{n}[g] \cdot S_{R}(p)=\sum_{\substack{Q: \\
|Q|=|R|+n}} \prod_{(i, j) \in Q / R} g(j-i)\left\langle p_{n} S_{R} \mid S_{Q}\right\rangle S_{Q}(p) \\
\left\langle S_{R}(x)\right\rangle=\left(\prod_{(i, j) \in R} g(j-i)\right) S_{R}\left\{p_{k}=\delta_{k, n}\right\}
\end{gathered}
$$

β-deformation

It is intimately connected to superintegrability

$$
W_{n}[g] \cdot S_{R}(p)=\sum_{\substack{Q: \\|Q|=|R|+n}} \prod_{(i, j) \in Q / R} g(j-i)\left\langle p_{n} S_{R} \mid S_{Q}\right\rangle S_{Q}(p)
$$

These operators are nicely β deformed :

$$
W_{n}[g] \cdot J_{R}(p)=\sum_{\substack{Q \\|Q|=|R|+n}} \prod_{\substack{i, j) \in Q / R}} g(j-\beta i)\left\langle p_{n} J_{R} \mid J_{Q}\right\rangle J_{Q}(p)
$$

β-deformation

In the Gaussian model:

$$
\begin{aligned}
& W_{2} S_{R}= \sum_{R+[2]}\left(N+j \square-i_{\square}\right)\left(N+j \square+1-i_{\square}\right) S_{R+[2]}- \\
&-\sum_{R+[1,1]}\left(N+j \square-i_{\square}\right)\left(N+j_{\square}-i_{\square}-1\right) S_{R+[1,1]} \\
& \square \square \square \square \square \square
\end{aligned}
$$

β-deformation

β-deformation of W-operators can be deduced from algebra.
For the Gaussian model it corresponds to the deformation:

$$
\mathcal{W}_{1+\infty} \quad \longrightarrow \quad Y\left(\hat{g} I_{1}\right)
$$

β-deformation

Generically it is known, at least for Schur functions, how to reverse engineer operator from function:

$$
\{g(j-i), n\} \quad \longrightarrow \quad W_{n}[g] \in \mathcal{W}_{1+\infty}
$$

We can try to do this for non-Gaussian model. What we find is quite complicated, but the important part is that it corresponds to quantum toroidal DIM algebra, with (q, t) parameters at:

$$
(q, t)=\left(\omega_{s}, \omega_{s}\right), \quad \omega_{s}=e^{\frac{2 \pi i}{s}}
$$

β-deformation

$$
\begin{gathered}
V(q)=\oint d z: \frac{e^{\varphi(q z)-\varphi(z)}}{q-1}: \quad \text { at } q=\omega_{s} \\
\varphi(z)=\sum_{k=1}^{\infty} z^{-k} p_{k}+\sum_{k=1}^{\infty} z^{k} \frac{1}{k} \frac{\partial}{\partial p_{k}} \\
V(q) S_{R}=\left(\sum_{(i, j) \in R} q^{j-i}\right) S_{R}
\end{gathered}
$$

β-deformation

For the DIM algebra the relevant polynomials are Macdonald polynomials.

At $q=t$ Macdonald polynomials always reduce to Schur! They are insensitive to the value of $q=t$.

But the operators and the deformation are!
Hence we should deform from this special point

β-deformation

Finally, the clue! One should take a deformation near the root of unity point in the (q, t) plane.

$$
q=\omega_{r} u, t=\omega_{r} u^{\beta}, \quad u \rightarrow 1
$$

β-deformation

This hints us both at the measure and the symmetric functions.

Measure

$$
\Delta_{(q, t)}(x) \rightarrow \Delta_{\text {Uglov }}^{(r)}(x)=\prod_{i<j}^{N}\left(x_{i}^{r}-x_{j}^{r}\right)^{\frac{2(\beta-1)}{r}}\left(x_{i}-x_{j}\right)^{2}
$$

Reduce to ordinary β-deformation and Jack polynomials at $r=1$

β-deformation

This hints us both at the measure and the symmetric functions.

Uglov polynomials:

$$
\lim _{\omega_{r}} M_{R}\left(p_{k}\right)=U_{R}^{r}\left(p_{k}\right)
$$

For example:

$$
U_{[2]}^{(2)}\left(p_{k}\right)=\frac{\beta p_{1}^{2}+p_{2}}{\beta+1} \quad U_{[2]}^{(1)}\left(p_{k}\right)=\frac{p_{1}^{2}+\beta p_{2}}{\beta+1}
$$

Reduce to ordinary β-deformation and Jack polynomials at $r=1$

β-deformation

Just as Jack polynomials, Uglov polynomials are nice objects:

- Eigenfunctions for $\mathfrak{g l}_{r}$ spin-Calogero system [D.Uglov (1998)]
- Label highest weight vectors in superVirasoro algebra (at $r=2$) [M.Bershtein, A.Vargulevich (2022)]
- SCFT [V.Belavin, A.Zhakenov (2020)]
- Vectors in representation of $Y\left(\hat{g}_{r}\right)$ [N.Tselousov, D.Galakhov, A.Morozov (2024)]
- Uglov limit itself is related to ADHM on $\mathbb{C}^{2} / \mathbb{Z}_{r}$ [T. Kimura (2012)].

β-deformation of the monomial matrix model

Finally. Combine everything and put $r=s$:

$$
\begin{aligned}
& \left\langle U_{R}^{(s)}(x)\right\rangle_{s, a}^{\beta}=\int_{C_{s, a}^{\otimes N}} \prod_{i=1}^{N} d x_{i} \Delta_{\text {Uglov }}^{(s)}(x) \exp \left(-\sum_{i=1}^{N} \frac{x_{i}^{s}}{s}\right) U_{R}^{(s)}(x)= \\
& =\left(\prod_{(i, j) \in R}[[\beta N+j-\beta i]]_{s, a}[[\beta N+(j-1)-\beta(i-1)]]_{s, 0}\right) U_{R}^{(s)}\left\{\delta_{k, s}\right\}
\end{aligned}
$$

Discussion and questions?

- Looking at peculiar symmetries of matrix models we are able to deduce the correct basis for a non-trivial extension of superintegrability
- The type of special functions are tied not only to the measure, but also to the potential
- Can this result be deduced from superintegrability in some (q, t)-model?
- For the Gaussian model we have $r=2$ and $r=1$, why is that?
- Somehow we still land at some very special functions
- Limit is related to instanton counting on $\mathbb{C}^{2} / \mathbb{Z}_{r}$ orbifold. Is there a well-defined limit and special functions related to the $\mathbb{C}^{2} / \Gamma_{r, v}$ -orbifold ?

Extra slides

The Gaussian model

For $V(X)=\frac{X^{2}}{2}$ we actually have two options $r=s=2$ and $r=1$. Both are superintegrable.

Example of superintegrability

$$
\left\langle\operatorname{Schur}_{R}\left(\operatorname{Tr} X^{k}\right)\right\rangle=\frac{\operatorname{Schur}_{R}\{N\}}{\operatorname{Schur}_{R}\left\{\delta_{k, 1}\right\}} \operatorname{Schur}_{R}\left\{\delta_{k, 2}\right\}
$$

Where Schur $_{R}$ are Schur functions, for example

$$
\operatorname{Schur}_{[2]}(p)=\frac{p_{2}}{2}+\frac{p_{1}^{2}}{2}, p_{k}=\operatorname{Tr} X^{k}
$$

The r.h.s are Schur functions evaluated at special points

$$
\frac{\operatorname{Schur}_{R}\left\{p_{k}=N\right\}}{\operatorname{Schur}_{R}\left\{p_{k}=\delta_{k, 1}\right\}}=\prod_{(i, j) \in R}(N+j-i)
$$

Schur polynomials

- Generating function:

$$
\exp \left(\sum_{k=1}^{\infty} \frac{z^{k} p_{k}}{k}\right)=\sum_{k=1}^{\infty} s_{k}(p) z^{k}
$$

- Determinant form

$$
S_{R}(p)=\operatorname{det}_{i, j} s_{\lambda_{i}-i+j}(p)
$$

- As symmetric functions:

$$
p_{k}=\sum_{i=1}^{N} x_{i}^{k}
$$

- As characters fo $G L(N)$:

$$
S_{R}\left(p_{k}=\operatorname{Tr} X^{k}\right)=\operatorname{Tr} \rho_{R}(X)
$$

Jack polynomials

$$
\begin{aligned}
& J_{[2]}=\frac{\beta p_{1}^{2}+p_{2}}{\beta+1} \\
& J_{[1,1]}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right) \\
& J_{[3]}=\frac{\beta^{2} p_{1}^{3}+3 \beta p_{2} p_{1}+2 p_{3}}{(\beta+1)(\beta+2)} \\
& J_{[2,1]} \frac{\beta p_{1}^{3}-\beta p_{2} p_{1}+p_{2} p_{1}-p_{3}}{2 \beta+1}
\end{aligned}
$$

