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Spectral problem

Spectral problem for the Schrddinger operator.
Let x € R,

P . 0
H= H(x,—lha—x)

H(x,p) : R?" — R—

smooth function. Problem: asymptotics of the spectrum as
h— 0.
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1D example

Letn=1,
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A VX

(
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Cauchy problems

A — curve on the phase plane.

]
ép2 + V(x)=E.
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Let E be solution of the Bohr — Sommerfeld equation

2m/pdx+—meZ

Then there exists an eigenvalue \ of H:

A= E+o(h).

.
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Maslov theory for smooth Hamiltonians

Maslov theory for smooth Hamiltonians.

H = H(x — ih2).

Let A be compact Lagrangian manifold, invariant with respect to
the classical Hamiltonian system in R2” with the Hamilton
function H(x, p).
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Theorem (V.P. Maslov)
Let A\ satisfy quantization condition

S [0+ 21l € H' (A, 2)

and let H be self-adjoint. Then there exists a point X of the
spectrum, such that

A= H|p + O(H).

0 =>_; pjdx;.
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Cauchy problems

[1] — Maslov class.

Gauss map P € A — TpA, G: A — L(n), L(n) — Lagrangian
Grassmanian, L(n) = U(n)/O(n).
det® : L(n) — U(1).

(1] = G*(det®) [52%]
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1 1
27Th/79+4u('y)—mEZ.

© — Maslov index. 7 : R%Q’p) — R — natural projection, ¥ —

cycle of singularities of .

w(y) =vo kX
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Cauchy problems

Example: integrable Hamiltonian system.
N — Liouville tori, | — action variables. Quantization conditions
1

1

A = H(I(m)) + O(h?).
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Cauchy problem for h-pseudodifferential evolutionary equation

Ih% H(x, —ihﬁ

n
T 6x)u’ xeR", h— 40,

H(x,p) : R?" — R is smooth.

0 So(x) 00 0 00
U—o = (x)e"n , Spe C¥ ¢ € Cy.
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Figure: Wave packet
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Solutions, corresponding to Lagrangian manifolds.

Solutions, corresponding to Lagrangian manifolds.

Rapidly oscillating wave packet - Sy is real. Consider initial
Lagrangian surface Ag C R?)’ZP) p= %SO and shift it by the flow
g: of the classical Hamiltonian system

oH . oH

X = o’ p= T ox’ At = gtho.

Volume form oo = dx on Ag, o = g;y dx on A;
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o

Figure: Lagrangian surface
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(V.P. Maslov, ~ 1965). Under certain technical conditions the
solution u(x, t, h) can be represented as asymptotic series

un~ K/\t,Ut(Z hkgpk)a
k=0

K : C°(At) = C=(RY) is the Maslov canonical operator, ¢y are
smooth functions on Ay, vo(a) = ©°(g-ta).
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Cauchy problems

Figure: Squeezed state
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Solutions, corresponding to complex vector bundles

Solutions, corresponding to complex vector bundles

Localized ("squeezed”) initial state Sp(x) is complex, ISy > 0,
38y = 0 on the smooth k-dimensional surface W,

a?3Sy| e, > 0. Consider k-dimensional isotropic surface

N CR2™: x € Wy, p= %S)’(O and n-dimensional complex vector
bundle pg over Ay (Maslov complex germ): fiber p(x, p) is the
plane in CT, pR2", ¢, = £ 922¢,. Shifted bundle A; = giAo,

pt = dgipo-
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Theorem (V.P. Maslov)

Under certain technical conditions the solution u(x, t, h) can be
represented as asymptotic series

U~ Knp (O Hooy),
k=0

K- C5°(At) = C=(RY) is the Maslov canonical operator on the
complex germ, oy are smooth functions on N,

po(@) = ¢°(g-1a).
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Cauchy problems

Simplest case:

So = (PO,X—XO)JF%(X—XO, Qo(x—x0))), Po €R",Q'=Q,3Q > 0.

W is the point xo, po : {p = Qoéx-

u(x, t,h) ~ €5 S (M k(X 1)
k=0

S=q(t) + (P(t),x — X(1)) + %(X = X(1), Q(t)(x = X(1))),

. OH OH
X=2" p=_="
op’ ox’
Q can be expressed explicitly in terms of solutions of the
linearized system.
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Cauchy problems

Problem

What happens if coefficients of initial equation contain
singularities?
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9 Equations with singularities
@ Spectral problems for Schrodinger operator with
o-potential
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Equations with singularities

1D example
Letn=1,
A h? a?
H = —?W + V(X) + Oéd(X — Xo).
Formal definition:
N h? d?
Hy = —?ﬁ + V(X)7 X € R\XO.

Boundary conditions
Y(X +0) = ¢(xo — 0),

V(00 +0) — /(10— 0) = 22 (o).
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Equations with singularities

A VX

(
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

E.

3PP+ V(x)
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Let E be solution of the equation

cos(%(& + S)) =

- o
hp(xo)
Then there exists an eigenvalue \ of H:

(sm( (St +S2)) — cos(5; (sfsz)))

A= E+o(h).
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. X . » Cauchy problem for Schrodinger equation with delta-potential
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Strictly hyperbolic systems with discontinuous coefficients

Limit cases
% —0,
S +S 1
2mh * 2 me z,
G — 00,

Si 1 S, 3
5F, Z_m1€Z’ ﬁJrz_mgeZ.
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Equations with singularities

M — Riemannian manifold, dimM < 3,

2

H = —%A+aap

Definition of the operator with delta-potential §p (Berezin,
Faddeev). 2 properties

e His self-adjoint;

o If (P) = 0, then Hy = —£ A4,
Formal definition. Flo = — % Al,c e i(P)=o-
H is a self-adjoint extension of Hyp.
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Equations with singularities

Explicit desgription of the domain.
For ¢» € D(H) we have a decomposition

v =aF(x)+ b+ o(1),

1 . 1 .
F = —W, dlmM = 3, F = g |0g d(X, P), dlmM = 2
Boundary condition
_ 2ab
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Equations with singularities
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Symmetric manifold

Let M be 2D surface of revolution or 3D spherically symmetric
manifold, M = S? or M = S3,

MCR3 y=(f(z)cosp, f(z)sinpf(2),2)

or

M c R* y=(f(z)cosfcosp, f(z) cosOsin o, f(2)sin b, 2)

z € [zy,2),
f=./(z— z1)(z2 — z)w(z), w — analytic. Let 5-potential be
localized in a pole.
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Result: Lagrangian manifold

No:pe TpM, |p| =2E, N=J; gtNo, gt — geodesic flow.

A=T? dmM=2, A=S?*xS!' dimM=3.
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Trajectories
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Lagrangian manifold
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Equations with singularities

Result: eigenvalues

Theorem (Asilya Suleimanova, Tudor Ratiu, A.S.)

Cauchy problem for Schrodinger equation with delta-potential
Strictly hyperbolic systems with discontinuous coefficients

Let E be solution of the equation

V2E wh?

ton(gp §(p.66)) = ~(og(57) + 7+,

c is Euler constant,

y
tan(=—= @ (p, dx)) , n=3.
hfp V2Ea
g

n=2,
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Equations with singularities

Theorem (Asilya Suleimanova, Tudor Ratiu, A.S.)

Here ~ is closed geodesic. A
There exists an eigenvalue \ of H, such that

A= E+o(h).
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Critical values of a.

Jump of the Maslov index
2D-case. Let

alog1/h

12 —0

aloﬁg/héoo

Then E up to small terms satisfies

1 1

Critical value

Q. ~

h2

log(1/h)’
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Critical values of a.

3D case.
Let a/h® — 0. Then E satisfies

1 1
2Wh/v(p,dx)Jrz—meZ.
Let a/h® — co. Then E satisfies

1
27Th/v(p,dx):meZ.

Critical value o ~ h®.
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Jump of the Maslov index

In 3D case the analog of the Maslov index jumps as a passes
through the critical value. Ag : p € T5M, |p| = 2E,
F:No— Mo, F(p)=-p

General formula for big «

s [ (P0)+ () + (degF — 1)) =me Z.

4
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Equations with singularities

Surface of revolution with conic point.

ds?® = dz? + UP(2)d?, z€[0,L/2]

1. u(z) >0ifze (0,L/2), u(0) = u(L/2) = 0.

2. z = 0 is a conic point with total angle 273 (5 > 0). Near the
point z = 0 u(z) = Bzuy(z), near the point z = L/2

u(z) = (5 — z)ui(5 — 2), up, uy — analytic functions, u;(0) = 1.
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Equations with singularities
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Equations with singularities

Spectral problem
h2
2
Domain of the Laplacian.

Aty =

Fa':1, Fy =logz,
Ikl
g

=Y (fFf+a Fo)+ v, vo=0(2).
k

| )
Fr = (X124 ke ke 7.0 < K| < 8.

i(l+ U)a” + (I - U)a™ =0.
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Lagrangian manifold.

No:pe Ty M, |p|=2E, x; — antipodal of the conic point.
N = UU; 9tNo, gt — geodesic flow.

A T2,

~ is closed geodesic.
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Equations with singularities
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Equations with singularities

Large harmonics. Fix integer /, [ > .

Theorem (A.S.)

Let E be solution of the equation
I+ ,B I+ B8(1+1) o1
27rh/ +m, meZ, m_O(E),

0 = (p, dx).

Then there exist an eigenvalue \ = E + o(h).

.
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Small harmonics. U does not depend on h.

Theorem (A.S.)

Let E be solution of the equation

k| + B(1k| + 1)
27rh/

25 +mk€Z, |kl<p k#0,

or

1 1
27Th/0+2 mo € Z;

Then there exist an eigenvalue A = E + o(h).
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Equations with singularities

@ If 3 < 1 we have standard Bohr-Sommerfeld equation on A.
@ Explicit formulae

A2 h? |k| + B(lk| +1) o
472 2 1
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9 Equations with singularities

@ Cauchy problem for Schrodinger equation with
delta-potential
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2
ih% = —%Au + V(U +q(x)omu, xR,

%

Ult=0 = 8009 h

M is a smooth oriented hypersurface, Sy is real. Boundary
conditions on M:

Uty =il 2L = h%Y = qu
— M = Uy|pm, om M 8m+M—q M
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

2n+2

Expanded phase space R(X’,’gpo

89Sy

) Isotropic surface Ag:

t=0,p= %2, H=0,H=po— |p|> - V(x), Lagrangian
manifold A™ = [ Jg gsMo-

Hypersurface M c R2™2 x ¢ M. N* = A(\ M. For x € M let
p- denote the projection of p to TxM, p, — normal component.
Map Q: M — M, Q(x, t, p-, Pn, Po) = (X, t, Pr, —Pn, Po),

N~ = Q(NT). Reflected Lagrangian manifold A~ = |J,gsN ™.
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Volume form. On Ag we have o¢ = dx, construct invariant form
on At: o (a, s) = gioo A ds. On NT consider j,,0™, map it to
N~ and construct invariant form o .
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Consider formal series

u= KO o)+ K- Hey)
k=0 k=0

on the negative side of M,

u= K/\+(Z hkﬁ)
k=0

on the positive side.

2ipn

" +
2’pn+ q QDO |NJr

Voln+ = g Ine  egIn- =

=9
q + 2ipn
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Theorem (Olga Shchegortsova, A.S.)

This series is asymptotic for the solution of the Cauchy problem
fort € [0, T].

2ipn

= n 5 r=———
" 2ip,1q q + 2ipy
are the analogs of the coefficients of transmission and
reflection.
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Equations with singularities
a 9 Strictly hyperbolic systems with discontinuous coefficients

Complex Lagrangian planes correspond to quadratic forms —
matrices Q*: p : p = Qx. Rules of reflection:

Q |1, = Q|1 +2p;b,

<p,Q p >=<p",Qp" > +2p)om(V),

<p,Q ri>=<p",Q"r >,

b is the second fundamental form of M.
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9 Equations with singularities

@ Strictly hyperbolic systems with discontinuous coefficients
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Hyperbolic systems

0 .0,
(8t) u= A(t,X,Ia,— OX

xeR" ueC, At x,po,p)—IxI matrix.

We assume that A is discontinuous on an orientable
hypersurface M"~! ¢ R? and smooth outside M,

A = A%(t, x, po, p) at the positive (negative) side of M.
Hyperbolicity in Petrovsky sense: equation

det(pg' — Ap) =0

has ml real roots pg = HE(t, x, p) and |H; — Hi| > C|p|.
Initial conditions

iSp(x)
Ult—o = ¢O(x)e

0 .
3 (8t)ju‘t0—07 j:17m_1
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Equations with singularities

Example: wave equation (m=2,/=1)

5%u

Hi = £clp|
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Equations

Figure: Scattering
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Equations with singularities

New effects
1. Many reflected and transmitted waves.

2. Total reflection. Transmitted wave can dissapear.




Equations with singularities

Strictly hyperbolic systems with discontinuous coefficients

Monwxoe oTpakeHue

Figure: Total reflection
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Lagrangian surfaces, corresponding to incident waves
N C R2M2 p = %—i", t=0, po = H (t,x,p),
Hamiltonian systems

_OHg . OH

OH,
X = 9 9
op ox

i‘:‘Ia pOZ_W7

Ne = Usgi/\2
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Equations with singularities

Surface M c R2™2: x ¢ M, t, po, p — arbitrary (the liting of M

~

to the phase space), N°> = Ay (M.

We assume that on the surface N2, for some 6 > 0, % > 0.
(pn — normal to M component of the vector p).
@ Reflecting roots
_ _ OH_
Hk (t7X7p07pT7%):H‘| (t7X7p07pT7pn)) k <o
opn
or
© Transmitting roots
OH;F
H;_(taxvp07pT7%):H‘r(tvxap07p7'apn)7 8pk >0
n
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Equations with singularities

(A.l. Allilueva, A.S.) There exists at least one either reflecting or
transmitting root

Consider also complex roots; in the first case we choose
S < 0, in the second — s > 0.

(A.l. Allilueva, A.S.) # (complex reflecting roots)+# (complex
transmitting roots)=mi.
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Equations with singularities

Proof is based on the study of intersections of a certain line in
RP" with the Petrovsky surface

[ det(pf’ — AL) =0

(.G. Petrovskii, 1945) T = J7"/2T;, if mi is even,

r=U2r;Uro, if mi s odd.
I'j%’ Sn_1, Mo ~RPT,
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Equations with singularities

(&

Figure: Petrovsky surface
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Equations with singularities

Reflected and transmitted Lagrangian surfaces
Mappings QF : M — M:

Q(t, X, P, Br- D) = (£, X, o, Pr (1, %, B))

NE = Oi(NQ) We shift Ni along the trajectories of the
Hamiltonian systems with Hamlltonlans HjE

/\i - UseR gs kNi
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Equations with singularities

(A.l. Allilueva, A.S.) During certain time interval
u~ Y KO M)+ K (O e,
k j=0 k j=0
on the negative part of M,

un~ Z K/\;(Z HSOF:/()
j=0

k

on the positive part of M.
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Reflection of vector bundles

Reflection of vector bundles
Rules of reflection

The fibers are positive complex Lagrangian planes — quadratic
forms on TpR". On TpM it is shifted by p,b, where b is the
second fundamental form of M, on the pair (m, {) — by the
value pid¢(c*), on the pair (m, m) — by (pi)29m(c*).
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Equations with singularities

THANK YOU
FOR YOUR ATTENTION!
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