Semi-classicsl quantization for equations with singularities.

Andrei Shafarevich

Joint work with Asilya Suleimanova, Tudor Ratiu, Olga Shchegortsova and Anna Allilueva

February 22, 2024

Outline

(1) Geometric asymptotics for equations with smooth coefficients (Maslov theory)

- Spectral problems
- Cauchy problems
(2) Equations with singularities
- Spectral problems for Schrödinger operator with δ-potential
- Operator with δ-potential on the surface of revolution
- Surface of revolution with conic point
- Cauchy problem for Schrödinger equation with delta-potential
- Reflection of Lagrangian manifolds
- Reflection of vector bundles
- Strictly hyperbolic systems with discontinuous coefficients

Outline

(1) Geometric asymptotics for equations with smooth coefficients (Maslov theory)

- Spectral problems
- Cauchy problemsEquations with singularities
- Spectral problems for Schrödinger operator with
δ-potential
- Operator with δ-potential on the surface of revolution
- Surface of revolution with conic point
- Cauchy problem for Schrödinger equation with delta-potential
- Reflection of Lagrangian manifolds
- Reftection of vector bundles
- Strictly hyperbolic systems with discontinuous coefficients

Spectral problem

Spectral problem for the Schrödinger operator.
Let $x \in \mathbb{R}^{n}$,

$$
\begin{gathered}
\hat{H}=H\left(x,-i h \frac{\partial}{\partial x}\right) \\
H(x, p): \mathbb{R}^{2 n} \rightarrow \mathbb{R}-
\end{gathered}
$$

smooth function. Problem: asymptotics of the spectrum as $h \rightarrow 0$.

1D example

Let $n=1$,

$$
\hat{H}=-\frac{h^{2}}{2} \frac{d^{2}}{d x^{2}}+V(x)
$$

$V(x) \rightarrow+\infty, \quad|x| \rightarrow \infty$.

\wedge - curve on the phase plane.

$$
\frac{1}{2} p^{2}+V(x)=E .
$$

Theorem

Let E be solution of the Bohr - Sommerfeld equation

$$
\frac{1}{2 \pi h} \int_{\Lambda} p d x+\frac{1}{2}=m \in \mathbb{Z}
$$

Then there exists an eigenvalue λ of \hat{H} :

$$
\lambda=E+o(h)
$$

Maslov theory for smooth Hamiltonians

Maslov theory for smooth Hamiltonians.
$\hat{H}=H\left(x-i h \frac{\partial}{\partial x}\right)$.
Let Λ be compact Lagrangian manifold, invariant with respect to the classical Hamiltonian system in $\mathbb{R}^{2 n}$ with the Hamilton function $H(x, p)$.

Theorem (V.P. Maslov)

Let \wedge satisfy quantization condition

$$
\frac{1}{2 \pi h}[\theta]+\frac{1}{4}[\mu] \in H^{1}(\Lambda, \mathbb{Z})
$$

and let \hat{H} be self-adjoint. Then there exists a point λ of the spectrum, such that

$$
\lambda=\left.H\right|_{\Lambda}+O\left(h^{2}\right)
$$

$\theta=\sum_{j} p_{j} d x_{j}$.
[μ] — Maslov class.
Gauss map $P \in \Lambda \rightarrow T_{P} \Lambda, G: \Lambda \rightarrow L(n), L(n)$ - Lagrangian Grassmanian, $L(n)=U(n) / O(n)$. $\operatorname{det}^{2}: L(n) \rightarrow U(1)$.
$[\mu]=G^{*}\left(\operatorname{det}^{2}\right)^{*}\left[\frac{d z}{2 \pi i z}\right]$

$$
\frac{1}{2 \pi h} \int_{\gamma} \theta+\frac{1}{4} \mu(\gamma)=m \in \mathbb{Z}
$$

μ — Maslov index. $\pi: \mathbb{R}_{(x, p)}^{2 n} \rightarrow \mathbb{R}_{x}^{n}$ — natural projection, Σ — cycle of singularities of π.

$$
\mu(\gamma)=\gamma \circ \Sigma
$$

Example: integrable Hamiltonian system. Λ - Liouville tori, I - action variables. Quantization conditions

$$
\begin{aligned}
& \frac{1}{h} I_{j}+\frac{1}{4} \mu_{j}=m_{j} \in \mathbb{Z} \\
& \lambda=H(I(m))+O\left(h^{2}\right)
\end{aligned}
$$

Outline

(1) Geometric asymptotics for equations with smooth coefficients (Maslov theory)

- Spectral problems
- Cauchy problems

Equations with singularities

- Spectral problems for Schrödinger operator with
δ-potential
- Operator with δ-potential on the surface of revolution
- Surface of revolution with conic point
- Cauchy problem for Schrödinger equation with delta-potential
- Reflection of Lagrangian manifolds
- Reflection of vector bundles
- Strictly hyperbolic systems with discontinuous coefficients

Cauchy problem for h-pseudodifferential evolutionary equation

$$
i h \frac{\partial u}{\partial t}=H\left(x,-i h \frac{\partial}{\partial x}\right) u, \quad x \in \mathbb{R}^{n}, h \rightarrow+0
$$

$H(x, p): \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ is smooth.

$$
\left.u\right|_{t=0}=\varphi^{0}(x) e^{\frac{i S_{0}(x)}{h}}, \quad S_{0} \in C^{\infty}, \varphi^{0} \in C_{0}^{\infty}
$$

Figure: Wave packet

Solutions, corresponding to Lagrangian manifolds.

Solutions, corresponding to Lagrangian manifolds.
Rapidly oscillating wave packet $-S_{0}$ is real. Consider initial Lagrangian surface $\Lambda_{0} \subset \mathbb{R}_{(x, p)}^{2 n}, p=\frac{\partial S_{0}}{\partial x}$ and shift it by the flow g_{t} of the classical Hamiltonian system

$$
\dot{x}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial x}, \quad \Lambda_{t}=g_{t} \Lambda_{0}
$$

Volume form $\sigma_{0}=d x$ on $\Lambda_{0}, \sigma_{t}=g_{t}^{*} d x$ on Λ_{t}

Figure: Lagrangian surface

Theorem

(V.P. Maslov, ~ 1965). Under certain technical conditions the solution $u(x, t, h)$ can be represented as asymptotic series

$$
u \sim K_{\Lambda_{t}, \sigma_{t}}\left(\sum_{k=0}^{\infty} h^{k} \varphi_{k}\right)
$$

$K: C_{0}^{\infty}\left(\Lambda_{t}\right) \rightarrow C^{\infty}\left(\mathbb{R}_{x}^{n}\right)$ is the Maslov canonical operator, φ_{k} are smooth functions on $\Lambda_{t}, \varphi_{0}(\alpha)=\varphi^{0}\left(g_{-t} \alpha\right)$.

Figure: Squeezed state

Solutions, corresponding to complex vector bundles

Solutions, corresponding to complex vector bundles
Localized ("squeezed") initial state $S_{0}(x)$ is complex, $\Im S_{0} \geq 0$, $\Im S_{0}=0$ on the smooth k-dimensional surface W_{0}, $\left.d^{2} \Im S_{0}\right|_{N L_{0}}>0$. Consider k-dimensional isotropic surface $\Lambda_{0} \subset \mathbb{R}^{2 n}: x \in W_{0}, p=\frac{\partial S_{0}}{\partial x}$ and n-dimensional complex vector bundle ρ_{0} over Λ_{0} (Maslov complex germ): fiber $\rho(x, p)$ is the plane in ${ }^{\mathbb{C}} T_{x, p} \mathbb{R}^{2 n}, \xi_{p}=\frac{\partial^{2} S_{0}}{\partial x^{2}} \xi_{x}$. Shifted bundle $\Lambda_{t}=g_{t} \Lambda_{0}$, $\rho_{t}=d g_{t} \rho_{0}$.

Theorem (V.P. Maslov)

Under certain technical conditions the solution $u(x, t, h)$ can be represented as asymptotic series

$$
u \sim \hat{K}_{\Lambda_{t}, \rho_{t}}\left(\sum_{k=0} h^{k} \varphi_{k}\right)
$$

$\hat{K}: C_{0}^{\infty}\left(\Lambda_{t}\right) \rightarrow C^{\infty}\left(\mathbb{R}_{x}^{n}\right)$ is the Maslov canonical operator on the complex germ, φ_{k} are smooth functions on Λ_{t}, $\varphi_{0}(\alpha)=\varphi^{0}\left(g_{-t} \alpha\right)$.

Simplest case:

$$
\left.S_{0}=\left(p_{0}, x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}, Q_{0}\left(x-x_{0}\right)\right)\right), \quad p_{0} \in \mathbb{R}^{n}, Q^{t}=Q, \Im Q>0
$$

W_{0} is the point $x_{0}, \rho_{0}: \xi_{p}=Q_{0} \xi_{x}$.

$$
\begin{gathered}
u(x, t, h) \sim e^{\frac{i S(x, t)}{h}} \sum_{k=0}^{\infty}\left(h^{k} \varphi_{k}(x, t)\right) \\
S=q(t)+(P(t), x-X(t))+\frac{1}{2}(x-X(t), Q(t)(x-X(t))) \\
\dot{X}=\frac{\partial H}{\partial p}, \quad \dot{P}=-\frac{\partial H}{\partial x}
\end{gathered}
$$

Q can be expressed explicitly in terms of solutions of the linearized system.

Problem

What happens if coefficients of initial equation contain singularities?

Outline

Geometric asymptotics for equations with smooth

coefficients (Maslov theory)

- Spectral problems
- Cauchy problems
(2) Equations with singularities
- Spectral problems for Schrödinger operator with δ-potential
- Operator with δ-potential on the surface of revolution
- Surface of revolution with conic point
- Cauchy problem for Schrödinger equation with delta-potential
- Reflection of Lagrangian manifolds
- Reflection of vector bundles
- Strictly hyperbolic systems with discontinuous coefficients

1D example

Let $n=1$,

$$
\hat{H}=-\frac{h^{2}}{2} \frac{d^{2}}{d x^{2}}+V(x)+\alpha \delta\left(x-x_{0}\right)
$$

Formal definition:

$$
\hat{H}_{0}=-\frac{h^{2}}{2} \frac{d^{2}}{d x^{2}}+V(x), \quad x \in \mathbb{R} \backslash x_{0}
$$

Boundary conditions

$$
\begin{gathered}
\psi\left(x_{0}+0\right)=\psi\left(x_{0}-0\right) \\
\psi^{\prime}\left(x_{0}+0\right)-\psi^{\prime}\left(x_{0}-0\right)=\frac{2 \alpha}{h^{2}} \psi\left(x_{0}\right) .
\end{gathered}
$$

$$
\frac{1}{2} p^{2}+V(x)=E .
$$

Theorem

Let E be solution of the equation

$$
\begin{gathered}
\cos \left(\frac{1}{2 h}\left(S_{1}+S_{2}\right)\right)= \\
=\frac{\alpha}{h p\left(x_{0}\right)}\left(\sin \left(\frac{1}{2 h}\left(S_{1}+S_{2}\right)\right)-\cos \left(\frac{1}{2 h}\left(S_{1}-S_{2}\right)\right)\right) .
\end{gathered}
$$

Then there exists an eigenvalue λ of \hat{H} :

$$
\lambda=E+o(h) .
$$

Limit cases

$\frac{\alpha}{h} \rightarrow 0$,

$$
\frac{S_{1}+S_{2}}{2 \pi h}+\frac{1}{2}=m \in \mathbb{Z}
$$

$\stackrel{\alpha}{h} \rightarrow \infty$,

$$
\frac{S_{1}}{2 \pi h}+\frac{1}{4}=m_{1} \in \mathbb{Z}, \quad \frac{S_{2}}{2 \pi h}+\frac{3}{4}=m_{2} \in \mathbb{Z}
$$

M - Riemannian manifold, $\operatorname{dim} M \leq 3$,

$$
\hat{H}=-\frac{h^{2}}{2} \Delta+\alpha \delta_{P}
$$

Definition of the operator with delta-potential δ_{P} (Berezin, Faddeev). 2 properties

- \hat{H} is self-adjoint;
- If $\psi(P)=0$, then $\hat{H} \psi=-\frac{h^{2}}{2} \Delta \psi$.

Formal definition. $\hat{H}_{0}=-\left.\frac{h^{2}}{2} \Delta\right|_{\psi \in H^{2}(M), \psi(P)=0}$.
\hat{H} is a self-adjoint extension of \hat{H}_{0}.

Explicit description of the domain.
For $\psi \in D(\hat{H})$ we have a decomposition

$$
\psi=a F(x)+b+o(1)
$$

$F=-\frac{1}{4 \pi d(x, P)}, \quad \operatorname{dim} M=3, \quad F=\frac{1}{2 \pi} \log d(x, P), \quad \operatorname{dim} M=2$.
Boundary condition

$$
a=\frac{2 \alpha}{h^{2}} b
$$

Symmetric manifold

Let M be 2D surface of revolution or 3D spherically symmetric manifold, $M \cong S^{2}$ or $M \cong S^{3}$.

$$
M \subset \mathbb{R}^{3}, \quad y=(f(z) \cos \varphi, f(z) \sin \varphi f(z), z)
$$

or

$$
M \subset \mathbb{R}^{4}, \quad y=(f(z) \cos \theta \cos \varphi, f(z) \cos \theta \sin \varphi, f(z) \sin \theta, z)
$$

$z \in\left[z_{1}, z_{2}\right]$,
$f=\sqrt{\left(z-z_{1}\right)\left(z_{2}-z\right)} w(z), w-$ analytic. Let δ-potential be localized in a pole.

Result: Lagrangian manifold

$\Lambda_{0}: p \in T_{P}^{*} M, \quad|p|=2 E, \Lambda=\bigcup_{t} g_{t} \Lambda_{0}, g_{t}$ - geodesic flow.
$\Lambda \cong T^{2}, \quad \operatorname{dim} M=2, \quad \Lambda \cong S^{2} \times S^{1}, \quad \operatorname{dim} M=3$.

Trajectories

Lagrangian manifold

Result: eigenvalues

Theorem (Asilya Suleimanova, Tudor Ratiu, A.S.)

Let E be solution of the equation

$$
\tan \left(\frac{1}{2 h} \oint_{\gamma}(p, d x)\right)=\frac{2}{\pi}\left(\log \left(\frac{\sqrt{2 E}}{h}\right)+\frac{\pi h^{2}}{\alpha}+c\right), \quad n=2,
$$

c is Euler constant,

$$
\tan \left(\frac{1}{2 h} \oint_{\gamma}(p, d x)\right)=\frac{2 h^{3}}{\sqrt{2 E} \alpha}, \quad n=3 .
$$

Theorem (Asilya Suleimanova, Tudor Ratiu, A.S.)

Here γ is closed geodesic. There exists an eigenvalue λ of \hat{H}, such that

$$
\lambda=E+o(h)
$$

Critical values of α.

Jump of the Maslov index
2D-case. Let

$$
\frac{\alpha \log 1 / h}{h^{2}} \rightarrow 0 \quad \text { or } \quad \frac{\alpha \log 1 / h}{h^{2}} \rightarrow \infty
$$

Then E up to small terms satisfies

$$
\frac{1}{2 \pi h} \int_{\gamma}(p, d x)+\frac{1}{2}=m \in \mathbb{Z} .
$$

Critical value

$$
\alpha \sim \frac{h^{2}}{\log (1 / h)} .
$$

Critical values of α.

3D case.
Let $\alpha / h^{3} \rightarrow 0$. Then E satisfies

$$
\frac{1}{2 \pi h} \int_{\gamma}(p, d x)+\frac{1}{2}=m \in \mathbb{Z} .
$$

Let $\alpha / h^{3} \rightarrow \infty$. Then E satisfies

$$
\frac{1}{2 \pi h} \int_{\gamma}(p, d x)=m \in \mathbb{Z}
$$

Critical value $\alpha \sim h^{3}$.

Jump of the Maslov index

In 3D case the analog of the Maslov index jumps as α passes through the critical value. $\Lambda_{0}: p \in T_{P}^{*} M,|p|=2 E$,
$F: \Lambda_{0} \rightarrow \Lambda_{0}, \quad F(p)=-p$
General formula for big α

$$
\frac{1}{2 \pi h} \int_{\gamma}(p, d x)+\frac{1}{4}(\mu(\gamma)+(\operatorname{deg} F-1))=m \in \mathbb{Z}
$$

Surface of revolution with conic point.

$$
d s^{2}=d z^{2}+u^{2}(z) d \varphi^{2}, \quad z \in[0, L / 2]
$$

1. $u(z)>0$ if $z \in(0, L / 2), u(0)=u(L / 2)=0$.
2. $z=0$ is a conic point with total angle $2 \pi \beta(\beta>0)$. Near the point $z=0 u(z)=\beta z u_{0}(z)$, near the point $z=L / 2$ $u(z)=\left(\frac{L}{2}-z\right) u_{1}\left(\frac{L}{2}-z\right), u_{0}, u_{1}-$ analytic functions, $u_{j}(0)=1$.

Spectral problem

$$
-\frac{h^{2}}{2} \Delta \psi=\lambda \psi
$$

Domain of the Laplacian.

$$
\begin{aligned}
F_{0}^{+} & =1, \quad F_{0}^{-}=\log z \\
F_{k}^{ \pm} & =\left(\frac{|k|}{\beta}\right)^{-1 / 2} z^{ \pm\left(\frac{|k|}{\beta}\right)} \mathrm{e}^{i k \varphi}, \quad k \in \mathbb{Z}, 0<|k|<\beta \\
\psi & =\sum_{k}\left(\alpha_{k}^{+} F_{k}^{+}+\alpha_{k}^{-} F_{k}^{-}\right)+\psi_{0}, \quad \psi_{0}=O(z) \\
& \quad i(I+U) \alpha^{-}+(I-U) \alpha^{+}=0
\end{aligned}
$$

Lagrangian manifold.

$\Lambda_{0}: p \in T_{x_{1}}^{*} M, \quad|p|=2 E, x_{1}$ - antipodal of the conic point.
$\Lambda=\bigcup_{t} g_{t} \Lambda_{0}, g_{t}$ - geodesic flow.
$\Lambda \cong T^{2}$.
γ is closed geodesic.

Large harmonics. Fix integer $I, I \geq \beta$.

Theorem (A.S.)

Let E be solution of the equation

$$
\begin{gathered}
\frac{1}{2 \pi h} \int_{\gamma} \theta=\frac{I+\beta(I+1)}{2 \beta}+m, \quad m \in \mathbb{Z}, \quad m=O\left(\frac{1}{h}\right), \\
\theta=(p, d x) .
\end{gathered}
$$

Then there exist an eigenvalue $\lambda=E+o(h)$.

Small harmonics. U does not depend on h.

Theorem (A.S.)

Let E be solution of the equation

$$
\frac{1}{2 \pi h} \int_{\gamma} \theta=\frac{|k|+\beta(|k|+1)}{2 \beta}+m_{k} \in \mathbb{Z}, \quad|k| \leq \beta ; \quad k \neq 0
$$

or

$$
\frac{1}{2 \pi h} \int_{\gamma} \theta+\frac{1}{2}=m_{0} \in \mathbb{Z}
$$

Then there exist an eigenvalue $\lambda=E+o(h)$.

- If $\beta<1$ we have standard Bohr-Sommerfeld equation on Λ.
- Explicit formulae

$$
\begin{gathered}
E_{k}=\frac{4 \pi^{2} h^{2}}{L^{2}}\left(m_{k}-\frac{|k|+\beta(|k|+1)}{2 \beta}\right)^{2}, \quad k \neq 0 \\
E^{(0)}=\frac{4 \pi^{2} h^{2}}{L^{2}}\left(m_{0}-\frac{1}{2}\right)^{2}
\end{gathered}
$$

Outline

Geometric asymptotics for equations with smooth

coefficients (Maslov theory)

- Spectral problems
- Cauchy problems
(2) Equations with singularities
- Spectral problems for Schrödinger operator with δ-potential
- Operator with δ-potential on the surface of revolution
- Surface of revolution with conic point
- Cauchy problem for Schrödinger equation with delta-potential
- Reflection of Lagrangian manifolds
- Reflection of vector bundles
- Strictly hyperbolic systems with discontinuous coefficients

$$
\begin{gathered}
i h \frac{\partial u}{\partial t}=-\frac{h^{2}}{2} \Delta u+V(x) u+q(x) \delta_{M} u, \quad x \in \mathbb{R}^{n}, \\
\left.u\right|_{t=0}=\varphi^{0} e^{\frac{i s_{0}}{h}}
\end{gathered}
$$

M is a smooth oriented hypersurface, S_{0} is real. Boundary conditions on M :

$$
\left.u_{-}\right|_{M}=\left.u_{+}\right|_{M}, \quad h \frac{\partial u}{\partial m_{-}}\left|M-h \frac{\partial u}{\partial m_{+}}\right|_{M}=\left.q u\right|_{M}
$$

Expanded phase space $\mathbb{R}_{\left(x, t, p, p_{0}\right)}^{2 n+2}$. Isotropic surface Λ_{0} : $t=0, p=\frac{\partial S_{0}}{\partial x}, H=0, H=p_{0}-\frac{1}{2}|p|^{2}-V(x)$, Lagrangian manifold $\Lambda^{+}=\bigcup_{s} g_{s} \Lambda_{0}$.
Hypersurface $\hat{M} \subset \mathbb{R}^{2 n+2}, x \in M . N^{+}=\Lambda \bigcap \hat{M}$. For $x \in M$ let p_{τ} denote the projection of p to $T_{x} M, p_{n}$ - normal component. $\operatorname{Map} Q: \hat{M} \rightarrow \hat{M}, Q\left(x, t, p_{\tau}, p_{n}, p_{0}\right)=\left(x, t, p_{\tau},-p_{n}, p_{0}\right)$, $N^{-}=Q\left(N^{+}\right)$. Reflected Lagrangian manifold $\Lambda^{-}=\bigcup_{s} g_{s} N^{-}$.

Volume form. On Λ_{0} we have $\sigma_{0}=d x$, construct invariant form on $\Lambda^{+}: \sigma^{+}(\alpha, s)=g_{s}^{*} \sigma_{0} \wedge d s$. On Λ^{+}consider $i_{p_{n}} \sigma^{+}$, map it to N^{-}and construct invariant form σ^{-}.

Consider formal series

$$
u=K_{\Lambda^{+}}\left(\sum_{k=0}^{\infty} h^{k} \varphi_{k}^{+}\right)+K_{\Lambda-}\left(\sum_{k=0}^{\infty} h^{k} \varphi_{k}^{-}\right)
$$

on the negative side of M,

$$
u=K_{\Lambda+}\left(\sum_{k=0}^{\infty} h^{k} \varphi_{k}^{*}\right)
$$

on the positive side.

$$
\left.\varphi_{0}^{*}\right|_{N^{+}}=\left.\frac{2 i p_{n}}{2 i p_{n}+q} \varphi_{0}^{+}\right|_{N^{+}},\left.\quad \varphi_{0}^{-}\right|_{N^{-}}=\left.\frac{-q}{q+2 i p_{n}} \varphi_{0}^{+}\right|_{N^{+}}
$$

Theorem (Olga Shchegortsova, A.S.)

This series is asymptotic for the solution of the Cauchy problem for $t \in[0, T]$.

Remark

$$
\tau=\frac{2 i p_{n}}{2 i p_{n}+q}, \quad r=\frac{-q}{q+2 i p_{n}}
$$

are the analogs of the coefficients of transmission and reflection.

Complex Lagrangian planes correspond to quadratic forms matrices $Q^{ \pm}: \rho: p=Q x$. Rules of reflection:

$$
\begin{gathered}
\left.Q^{-}\right|_{T_{M}}=\left.Q^{+}\right|_{T_{M}}+2 p_{n}^{+} b, \\
<p^{-}, Q^{-} p^{-}>=<p^{+}, Q^{+} p^{+}>+2 p_{n}^{+} \partial_{m}(V), \\
<p^{-}, Q^{-} r_{i}>=<p^{+}, Q^{+} r_{i}>,
\end{gathered}
$$

b is the second fundamental form of M.

Outline

Geometric asymptotics for equations with smooth

coefficients (Maslov theory)

- Spectral problems
- Cauchy problems
(2) Equations with singularities
- Spectral problems for Schrödinger operator with
δ-potential
- Operator with δ-potential on the surface of revolution
- Surface of revolution with conic point
- Cauchy problem for Schrödinger equation with delta-potential
- Reflection of Lagrangian manifolds
- Reflection of vector bundles
- Strictly hyperbolic systems with discontinuous coefficients

Hyperbolic systems

$$
\begin{aligned}
& \left(i \frac{\partial}{\partial t}\right)^{m} u=A\left(t, x, i \frac{\partial}{\partial t},-i \frac{\partial}{\partial x}\right) u \\
& x \in \mathbb{R}^{n}, \quad u \in \mathbb{C}^{\prime}, \quad A\left(t, x, p_{0}, p\right)-I \times I \quad \text { matrix. }
\end{aligned}
$$

We assume that A is discontinuous on an orientable hypersurface $M^{n-1} \subset \mathbb{R}_{x}^{n}$ and smooth outside M, $A=A^{ \pm}\left(t, x, p_{0}, p\right)$ at the positive (negative) side of M. Hyperbolicity in Petrovsky sense: equation

$$
\operatorname{det}\left(p_{0}^{m}-A_{m}^{ \pm}\right)=0
$$

has $m l$ real roots $p_{0}=H_{k}^{ \pm}(t, x, p)$ and $\left|H_{j}-H_{k}\right| \geq C|p|$. Initial conditions

$$
\left.u\right|_{t=0}=\varphi^{0}(x) e^{\frac{i S_{0}(x)}{h}},\left.\quad\left(\frac{\partial}{\partial t}\right)^{j} u\right|_{t=0}=0, \quad j=1, \ldots m-1
$$

Example: wave equation ($m=2, I=1$)

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}(x, t) \Delta u
$$

$H_{k}= \pm c|p|$

Figure: Scattering

New effects

1. Many reflected and transmitted waves.
2. Total reflection. Transmitted wave can dissapear.

Полное отражение

Figure: Total reflection

Lagrangian surfaces, corresponding to incident waves
$\Lambda_{k}^{0} \subset \mathbb{R}^{2 n+2}, p=\frac{\partial S_{0}}{\partial x}, t=0, p_{0}=H_{k}^{-}(t, x, p)$,
Hamiltonian systems

$$
\dot{x}=\frac{\partial H_{k}^{-}}{\partial p}, \quad \dot{p}=-\frac{\partial H_{k}^{-}}{\partial x}, \quad \dot{t}=1, \quad \dot{p}_{0}=-\frac{\partial H_{k}^{-}}{\partial t}
$$

$\Lambda_{k}=\cup_{s} g_{ \pm}^{s} \Lambda_{k}^{0}$

Surface $\hat{M} \subset \mathbb{R}^{2 n+2}: x \in M, t, p_{0}, p$ - arbitrary (the lifting of M to the phase space), $N^{2}=\Lambda_{1} \bigcap \hat{M}$.
We assume that on the surface N^{2}, for some $\delta>0, \frac{\partial H_{1}^{-}}{\partial p_{n}} \geq \delta$.
(p_{n} - normal to M component of the vector p).
(1) Reflecting roots

$$
H_{k}^{-}\left(t, x, p_{0}, p_{\tau}, \varkappa\right)=H_{1}^{-}\left(t, x, p_{0}, p_{\tau}, p_{n}\right), \quad \frac{\partial H_{k}^{-}}{\partial p_{n}}<0
$$

or
(2) Transmitting roots

$$
H_{k}^{+}\left(t, x, p_{0}, p_{\tau}, \varkappa\right)=H_{1}^{-}\left(t, x, p_{0}, p_{\tau}, p_{n}\right), \quad \frac{\partial H_{k}^{+}}{\partial p_{n}}>0
$$

Lemma

(A.I. Allilueva, A.S.) There exists at least one either reflecting or transmitting root

Consider also complex roots; in the first case we choose $\Im \varkappa<0$, in the second $-\Im \varkappa>0$.

Lemma

(A.I. Allilueva, A.S.) \# (complex reflecting roots)+\# (complex transmitting roots $)=m l$.

Proof is based on the study of intersections of a certain line in $\mathbb{R} P^{n}$ with the Petrovsky surface

$$
\Gamma: \operatorname{det}\left(p_{0}^{m}-A_{m}^{ \pm}\right)=0
$$

Theorem

(I.G. Petrovskii, 1945) $\Gamma=\bigcup_{1}^{m / 2} \Gamma_{j}$, if ml is even,
$\Gamma=\bigcup_{1}^{[m / / 2]} \Gamma_{j} \cup \Gamma_{0}$, if $m l$ is odd.
$\Gamma_{j} \cong S^{n-1}, \quad \Gamma_{0} \cong \mathbb{R} P^{n-1}$.

Figure: Petrovsky surface

Reflected and transmitted Lagrangian surfaces Mappings $Q_{k}^{ \pm}: \hat{M} \rightarrow \hat{M}$:
$Q^{ \pm}\left(t, x, p_{0}, p_{\tau}, p_{n}\right)=\left(t, x, p_{0}, p_{\tau}, \varkappa(t, x, p)\right)$,
$N_{k}^{ \pm}=Q_{k}^{ \pm}\left(N^{2}\right)$. We shift $N_{k}^{ \pm}$along the trajectories of the Hamiltonian systems with Hamiltonians $H_{k}^{ \pm}$.
$\Lambda_{k}^{ \pm}=\bigcup_{s \in \mathbb{R}} g_{s, k}^{ \pm} N^{ \pm}$.

Theorem

(A.I. Allilueva, A.S.) During certain time interval

$$
u \sim \sum_{k} K_{\Lambda_{k}}\left(\sum_{j=0}^{\infty} h^{j} \varphi_{j, k}\right)+\sum_{k} K_{\Lambda_{k}^{-}}\left(\sum_{j=0}^{\infty} h^{j} \varphi_{j, k}^{-}\right)
$$

on the negative part of M,

$$
u \sim \sum_{k} K_{\Lambda_{k}^{+}}\left(\sum_{j=0}^{\infty} h^{j} \varphi_{j, k}^{+}\right)
$$

on the positive part of M.

Reflection of vector bundles

Reflection of vector bundles
Rules of reflection
The fibers are positive complex Lagrangian planes - quadratic forms on $T_{P} \mathbb{R}^{n}$. On $T_{P} M$ it is shifted by $p_{n} b$, where b is the second fundamental form of M, on the pair (m, ξ) - by the value $p_{n}^{ \pm} \partial_{\xi}\left(c^{ \pm}\right)$, on the pair $(m, m)-$ by $\left(p_{n}^{ \pm}\right)^{2} \partial_{m}\left(c^{ \pm}\right)$.

THANK YOU FOR YOUR ATTENTION!

