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Spectral problem

Spectral problem for the Schrödinger operator.
Let x ∈ Rn,

Ĥ = H(x ,−ih
∂

∂x
)

H(x ,p) : R2n → R−

smooth function. Problem: asymptotics of the spectrum as
h → 0.
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1D example

Let n = 1,

Ĥ = −h2

2
d2

dx2 + V (x),

V (x) → +∞, |x | → ∞.
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Λ — curve on the phase plane.

1
2

p2 + V (x) = E .
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Theorem
Let E be solution of the Bohr — Sommerfeld equation

1
2πh

∫
Λ

pdx +
1
2
= m ∈ Z.

Then there exists an eigenvalue λ of Ĥ:

λ = E + o(h).
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Maslov theory for smooth Hamiltonians

Maslov theory for smooth Hamiltonians.
Ĥ = H(x − ih ∂

∂x ).
Let Λ be compact Lagrangian manifold, invariant with respect to
the classical Hamiltonian system in R2n with the Hamilton
function H(x ,p).
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Theorem (V.P. Maslov)
Let Λ satisfy quantization condition

1
2πh

[θ] +
1
4
[µ] ∈ H1(Λ,Z)

and let Ĥ be self-adjoint. Then there exists a point λ of the
spectrum, such that

λ = H|Λ + O(h2).

θ =
∑

j pjdxj .
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[µ] — Maslov class.

Gauss map P ∈ Λ → TPΛ, G : Λ → L(n), L(n) — Lagrangian
Grassmanian, L(n) = U(n)/O(n).
det2 : L(n) → U(1).

[µ] = G∗(det2)∗[ dz
2πiz ]
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1
2πh

∫
γ
θ +

1
4
µ(γ) = m ∈ Z.

µ — Maslov index. π : R2n
(x ,p) → Rn

x — natural projection, Σ —
cycle of singularities of π.

µ(γ) = γ ◦ Σ.
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Example: integrable Hamiltonian system.
Λ — Liouville tori, I — action variables. Quantization conditions

1
h

Ij +
1
4
µj = mj ∈ Z.

λ = H(I(m)) + O(h2).
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Cauchy problem for h-pseudodifferential evolutionary equation

ih
∂u
∂t

= H(x ,−ih
∂

∂x
)u, x ∈ Rn,h → +0,

H(x ,p) : R2n → R is smooth.

u|t=0 = φ0(x)e
iS0(x)

h , S0 ∈ C∞, φ0 ∈ C∞
0 .
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Solutions, corresponding to Lagrangian manifolds.

Solutions, corresponding to Lagrangian manifolds.
Rapidly oscillating wave packet - S0 is real. Consider initial
Lagrangian surface Λ0 ⊂ R2n

(x ,p), p = ∂S0
∂x and shift it by the flow

gt of the classical Hamiltonian system

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, Λt = gtΛ0.

Volume form σ0 = dx on Λ0, σt = g∗
t dx on Λt



Geometric asymptotics for equations with smooth coefficients (Maslov theory)
Equations with singularities

Spectral problems
Cauchy problems

Figure: Lagrangian surface



Geometric asymptotics for equations with smooth coefficients (Maslov theory)
Equations with singularities

Spectral problems
Cauchy problems

Theorem
(V.P. Maslov, ∼ 1965). Under certain technical conditions the
solution u(x , t ,h) can be represented as asymptotic series

u ∼ KΛt ,σt (
∞∑

k=0

hkφk ),

K : C∞
0 (Λt) → C∞(Rn

x) is the Maslov canonical operator, φk are
smooth functions on Λt , φ0(α) = φ0(g−tα).
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Solutions, corresponding to complex vector bundles

Solutions, corresponding to complex vector bundles
Localized (”squeezed”) initial state S0(x) is complex, ℑS0 ≥ 0,
ℑS0 = 0 on the smooth k -dimensional surface W0,
d2ℑS0|NL0 > 0. Consider k -dimensional isotropic surface
Λ0 ⊂ R2n: x ∈ W0,p = ∂S0

∂x and n-dimensional complex vector
bundle ρ0 over Λ0 (Maslov complex germ): fiber ρ(x ,p) is the
plane in CTx ,pR2n, ξp = ∂2S0

∂x2 ξx . Shifted bundle Λt = gtΛ0,
ρt = dgtρ0.
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Theorem (V.P. Maslov)

Under certain technical conditions the solution u(x , t ,h) can be
represented as asymptotic series

u ∼ K̂Λt ,ρt (
∑
k=0

hkφk ),

K̂ : C∞
0 (Λt) → C∞(Rn

x) is the Maslov canonical operator on the
complex germ, φk are smooth functions on Λt ,
φ0(α) = φ0(g−tα).
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Simplest case:

S0 = (p0, x−x0)+
1
2
(x−x0,Q0(x−x0))), p0 ∈ Rn,Qt = Q,ℑQ > 0.

W0 is the point x0, ρ0 : ξp = Q0ξx .

u(x , t ,h) ∼ e
iS(x,t)

h

∞∑
k=0

(hkφk (x , t)).

S = q(t) + (P(t), x − X (t)) +
1
2
(x − X (t),Q(t)(x − X (t))),

Ẋ =
∂H
∂p

, Ṗ = −∂H
∂x

,

Q can be expressed explicitly in terms of solutions of the
linearized system.
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Problem
What happens if coefficients of initial equation contain
singularities?
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1D example

Let n = 1,

Ĥ = −h2

2
d2

dx2 + V (x) + αδ(x − x0).

Formal definition:

Ĥ0 = −h2

2
d2

dx2 + V (x), x ∈ R\x0.

Boundary conditions

ψ(x0 + 0) = ψ(x0 − 0),

ψ′(x0 + 0)− ψ′(x0 − 0) =
2α
h2 ψ(x0).
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1
2p2 + V (x) = E .
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Theorem
Let E be solution of the equation

cos(
1

2h
(S1 + S2)) =

=
α

hp(x0)

(
sin(

1
2h

(S1 + S2))− cos(
1

2h
(S1 − S2))

)
.

Then there exists an eigenvalue λ of Ĥ:

λ = E + o(h).
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Limit cases
α
h → 0,

S1 + S2

2πh
+

1
2
= m ∈ Z,

α
h → ∞,

S1

2πh
+

1
4
= m1 ∈ Z,

S2

2πh
+

3
4
= m2 ∈ Z.
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M — Riemannian manifold, dimM ≤ 3,

Ĥ = −h2

2
∆+ αδP

Definition of the operator with delta-potential δP (Berezin,
Faddeev). 2 properties

Ĥ is self-adjoint;

If ψ(P) = 0, then Ĥψ = −h2

2 ∆ψ.

Formal definition. Ĥ0 = −h2

2 ∆|ψ∈H2(M),ψ(P)=0.

Ĥ is a self-adjoint extension of Ĥ0.
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Explicit description of the domain.
For ψ ∈ D(Ĥ) we have a decomposition

ψ = aF (x) + b + o(1),

F = − 1
4πd(x ,P)

, dimM = 3, F =
1

2π
log d(x ,P), dimM = 2.

Boundary condition

a =
2α
h2 b.
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Symmetric manifold

Let M be 2D surface of revolution or 3D spherically symmetric
manifold, M ∼= S2 or M ∼= S3.

M ⊂ R3, y = (f (z) cosφ, f (z) sinφf (z), z)

or

M ⊂ R4, y = (f (z) cos θ cosφ, f (z) cos θ sinφ, f (z) sin θ, z)

z ∈ [z1, z2],
f =

√
(z − z1)(z2 − z)w(z), w — analytic. Let δ-potential be

localized in a pole.
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Result: Lagrangian manifold

Λ0 : p ∈ T ∗
PM, |p| = 2E , Λ =

⋃
t gtΛ0, gt — geodesic flow.

Λ ∼= T 2, dimM = 2, Λ ∼= S2 × S1, dimM = 3.
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Trajectories
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Lagrangian manifold
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Result: eigenvalues

Theorem (Asilya Suleimanova, Tudor Ratiu, A.S.)
Let E be solution of the equation

tan(
1

2h

∮
γ
(p,dx)) =

2
π
(log(

√
2E
h

) +
πh2

α
+ c), n = 2,

c is Euler constant,

tan(
1

2h

∮
γ

(p,dx)) =
2h3

√
2Eα

, n = 3.
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Theorem (Asilya Suleimanova, Tudor Ratiu, A.S.)
Here γ is closed geodesic.
There exists an eigenvalue λ of Ĥ, such that

λ = E + o(h).
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Critical values of α.

Jump of the Maslov index
2D-case. Let

α log 1/h
h2 → 0 or

α log 1/h
h2 → ∞.

Then E up to small terms satisfies

1
2πh

∫
γ
(p,dx) +

1
2
= m ∈ Z.

Critical value

α ∼ h2

log(1/h)
.
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Critical values of α.

3D case.
Let α/h3 → 0. Then E satisfies

1
2πh

∫
γ
(p,dx) +

1
2
= m ∈ Z.

Let α/h3 → ∞. Then E satisfies

1
2πh

∫
γ
(p,dx) = m ∈ Z.

Critical value α ∼ h3.



Geometric asymptotics for equations with smooth coefficients (Maslov theory)
Equations with singularities

Spectral problems for Schrödinger operator with δ-potential
Cauchy problem for Schrödinger equation with delta-potential
Strictly hyperbolic systems with discontinuous coefficients

Jump of the Maslov index

In 3D case the analog of the Maslov index jumps as α passes
through the critical value. Λ0 : p ∈ T ∗

PM, |p| = 2E ,
F : Λ0 → Λ0, F (p) = −p
General formula for big α

1
2πh

∫
γ
(p,dx) +

1
4
(µ(γ) + (degF − 1)) = m ∈ Z.
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Surface of revolution with conic point.

ds2 = dz2 + u2(z)dφ2, z ∈ [0,L/2]

1. u(z) > 0 if z ∈ (0,L/2), u(0) = u(L/2) = 0.
2. z = 0 is a conic point with total angle 2πβ (β > 0). Near the
point z = 0 u(z) = βzu0(z), near the point z = L/2
u(z) = (L

2 − z)u1(
L
2 − z), u0, u1 — analytic functions, uj(0) = 1.
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Spectral problem

−h2

2
∆ψ = λψ

Domain of the Laplacian.

F+
0 = 1, F−

0 = log z,

F±
k = (

|k |
β
)−1/2z±( |k|

β
)eikφ, k ∈ Z,0 < |k | < β.

ψ =
∑

k

(α+
k F+

k + α−
k F−

k ) + ψ0, ψ0 = O(z).

i(I + U)α− + (I − U)α+ = 0.
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Lagrangian manifold.
Λ0 : p ∈ T ∗

x1
M, |p| = 2E , x1 — antipodal of the conic point.

Λ =
⋃

t gtΛ0, gt — geodesic flow.
Λ ∼= T 2.
γ is closed geodesic.
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Large harmonics. Fix integer l , l ≥ β.

Theorem (A.S.)
Let E be solution of the equation

1
2πh

∫
γ
θ =

l + β(l + 1)
2β

+ m, m ∈ Z, m = O(
1
h
),

θ = (p,dx).

Then there exist an eigenvalue λ = E + o(h).
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Small harmonics. U does not depend on h.

Theorem (A.S.)
Let E be solution of the equation

1
2πh

∫
γ
θ =

|k |+ β(|k |+ 1)
2β

+ mk ∈ Z, |k | ≤ β; k ̸= 0,

or
1

2πh

∫
γ
θ +

1
2
= m0 ∈ Z;

Then there exist an eigenvalue λ = E + o(h).
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If β < 1 we have standard Bohr-Sommerfeld equation on Λ.
Explicit formulae

Ek =
4π2h2

L2 (mk − |k |+ β(|k |+ 1)
2β

)2, k ̸= 0,

E (0) =
4π2h2

L2 (m0 −
1
2
)2.
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ih
∂u
∂t

= −h2

2
∆u + V (x)u + q(x)δMu, x ∈ Rn,

u|t=0 = φ0e
iS0
h

M is a smooth oriented hypersurface, S0 is real. Boundary
conditions on M:

u−|M = u+|M , h
∂u
∂m−

|M − h
∂u
∂m+

|M = qu|M
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Expanded phase space R2n+2
(x ,t ,p,p0)

. Isotropic surface Λ0:

t = 0,p = ∂S0
∂x ,H = 0, H = p0 − 1

2 |p|
2 − V (x), Lagrangian

manifold Λ+ =
⋃

s gsΛ0.
Hypersurface M̂ ⊂ R2n+2, x ∈ M. N+ = Λ

⋂
M̂. For x ∈ M let

pτ denote the projection of p to TxM, pn – normal component.
Map Q : M̂ → M̂, Q(x , t ,pτ ,pn,p0) = (x , t ,pτ ,−pn,p0),
N− = Q(N+). Reflected Lagrangian manifold Λ− =

⋃
s gsN−.
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Volume form. On Λ0 we have σ0 = dx , construct invariant form
on Λ+: σ+(α, s) = g∗

sσ0 ∧ ds. On N+ consider ipnσ
+, map it to

N− and construct invariant form σ−.
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Consider formal series

u = KΛ+(
∞∑

k=0

hkφ+
k ) + KΛ−(

∞∑
k=0

hkφ−
k )

on the negative side of M,

u = KΛ+(
∞∑

k=0

hkφ∗
k )

on the positive side.

φ∗
0|N+ =

2ipn

2ipn + q
φ+

0 |N+ , φ−
0 |N− =

−q
q + 2ipn

φ+
0 |N+
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Theorem (Olga Shchegortsova, A.S.)

This series is asymptotic for the solution of the Cauchy problem
for t ∈ [0,T ].

Remark

τ =
2ipn

2ipn + q
, r =

−q
q + 2ipn

are the analogs of the coefficients of transmission and
reflection.
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Complex Lagrangian planes correspond to quadratic forms —
matrices Q±: ρ : p = Qx . Rules of reflection:

Q−|TM = Q+|TM + 2p+
n b,

< p−,Q−p− >=< p+,Q+p+ > +2p+
n ∂m(V ),

< p−,Q−ri >=< p+,Q+ri >,

b is the second fundamental form of M.
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Hyperbolic systems

(i
∂

∂t
)mu = A(t , x , i

∂

∂t
,−i

∂

∂x
)u,

x ∈ Rn, u ∈ Cl , A(t , x ,p0,p)− l × l matrix .

We assume that A is discontinuous on an orientable
hypersurface Mn−1 ⊂ Rn

x and smooth outside M,
A = A±(t , x ,p0,p) at the positive (negative) side of M.
Hyperbolicity in Petrovsky sense: equation

det(pm
0 − A±

m) = 0

has ml real roots p0 = H±
k (t , x ,p) and |Hj − Hk | ≥ C|p|.

Initial conditions

u|t=0 = φ0(x)e
iS0(x)

h , (
∂

∂t
)ju|t=0 = 0, j = 1, . . .m − 1
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Example: wave equation (m = 2, l = 1)

∂2u
∂t2 = c2(x , t)∆u

Hk = ±c|p|
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Figure: Scattering
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New effects
1. Many reflected and transmitted waves.

2. Total reflection. Transmitted wave can dissapear.
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Figure: Total reflection
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Lagrangian surfaces, corresponding to incident waves
Λ0

k ⊂ R2n+2, p = ∂S0
∂x , t = 0, p0 = H−

k (t , x ,p),
Hamiltonian systems

ẋ =
∂H−

k
∂p

, ṗ = −
∂H−

k
∂x

, ṫ = 1, ṗ0 = −
∂H−

k
∂t

,

Λk = ∪sgs
±Λ

0
k
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Surface M̂ ⊂ R2n+2: x ∈ M, t ,p0,p — arbitrary (the lifting of M
to the phase space), N2 = Λ1

⋂
M̂.

We assume that on the surface N2, for some δ > 0, ∂H−
1

∂pn
≥ δ.

(pn — normal to M component of the vector p).
1 Reflecting roots

H−
k (t , x ,p0,pτ ,κ) = H−

1 (t , x ,p0,pτ ,pn),
∂H−

k
∂pn

< 0

or
2 Transmitting roots

H+
k (t , x ,p0,pτ ,κ) = H−

1 (t , x ,p0,pτ ,pn),
∂H+

k
∂pn

> 0



Geometric asymptotics for equations with smooth coefficients (Maslov theory)
Equations with singularities

Spectral problems for Schrödinger operator with δ-potential
Cauchy problem for Schrödinger equation with delta-potential
Strictly hyperbolic systems with discontinuous coefficients

Lemma
(A.I. Allilueva, A.S.) There exists at least one either reflecting or
transmitting root

Consider also complex roots; in the first case we choose
ℑκ < 0, in the second — ℑκ > 0.

Lemma
(A.I. Allilueva, A.S.) # (complex reflecting roots)+# (complex
transmitting roots)=ml.
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Proof is based on the study of intersections of a certain line in
RPn with the Petrovsky surface

Γ : det(pm
0 − A±

m) = 0

Theorem

(I.G. Petrovskii, 1945) Γ =
⋃ml/2

1 Γj , if ml is even,
Γ =

⋃[ml/2]
1 Γj

⋃
Γ0, if ml is odd.

Γj
∼= Sn−1, Γ0 ∼= RPn−1.
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Figure: Petrovsky surface
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Reflected and transmitted Lagrangian surfaces
Mappings Q±

k : M̂ → M̂:
Q±(t , x ,p0,pτ ,pn) = (t , x ,p0,pτ ,κ(t , x ,p)),
N±

k = Q±
k (N2). We shift N±

k along the trajectories of the
Hamiltonian systems with Hamiltonians H±

k .
Λ±

k =
⋃

s∈R g±
s,kN±.
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Theorem
(A.I. Allilueva, A.S.) During certain time interval

u ∼
∑

k

KΛk (
∞∑

j=0

hjφj,k ) +
∑

k

KΛ−
k
(
∞∑

j=0

hjφ−
j,k ),

on the negative part of M,

u ∼
∑

k

KΛ+
k
(
∞∑

j=0

hjφ+
j,k )

on the positive part of M.
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Reflection of vector bundles

Reflection of vector bundles
Rules of reflection

The fibers are positive complex Lagrangian planes – quadratic
forms on TPRn. On TPM it is shifted by pnb, where b is the
second fundamental form of M, on the pair (m, ξ) — by the
value p±

n ∂ξ(c±), on the pair (m,m) – by (p±
n )2∂m(c±).
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THANK YOU
FOR YOUR ATTENTION!
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