

JOINT INSTITUTE FOR NUCLEAR RESEARCH

International Intergovernmental Organization

Шинжлэх у

Main themes and projects of the Seven-Year Plan for the Development of JINR For 2024–2030

Sergey Nedelko

58th meeting of the PAC for Nuclear Physics January 29, 2024

SEVEN-YEAR PLAN FOR THE DEVELOPMENT OF JINR FOR 2024-2030

TOPICAL PLAN FOR JINR RESEARCH AND INTERNATIONAL COOPERATION 2024

JINR's position among international intergovernmental scientific organizations (IISO)

2 in terms of the number of personnel among all IISO

5 in terms of budget size among IISO in the field of natural sciences

8 in terms of budget size among all IISO

Publications (Scopus)	JINR	CERN
2003-2022	26066	31988
2022	1335	1424
2021	1449	1392
2020	1595	1577
2019	1616	1689

No.	International intergovernmental scientific organization	Annual budget 2022, kUS\$	Personnel 2022
1	European Space Agency	7 534 670	2 200
2/1	CERN	1 472 685	12 200
3	UNESCO	750 000	2 290
4	Joint Research Centre	603 617	2 750
5	European Molecular Biology Laboratory	336 162	1 980
6	European Southern Observatory	270 089	700
7	COMSTECH	225 865	
8/2	JINR	221 600	5100
9	Square Kilometer Array	184 350	
10	European Spallation Source	153 379	522
11	European Synchrotron Radiation Facility	149 296	717
12	Institut Laue-Langevin	129 537	563

7-YEAR JINR DEVELOPMENT PLAN FOR 2024-2030

DEVELOPMENT OF LARGE RESEARCH INFRASTRUCTURE:

- NICA collider and experiments MPD, SPD, ARIADNA
- DRIBs-III (Factory STE, U-400R, DC-140, RHL-1 class)
- IBR-2M, New neutron source
- Telescope BAIKAL-GVD

WORK OF INTERNATIONAL COLLABORATIONS, NEW COUNTRIES

Completion of the creation of a large research infrastructure: megascience "NICA" (collaborations BM@N, MPD, SPD), neutrino observatory "Baikal-GVD", new experimental complex U-400R, applied nuclear physics installations.

Large-scale international interdisciplinary research at existing large installations: SHE factory, IBR-2 reactor with a complex of spectrometers, a computing complex with a Govorun supercomputer, Laboratory of Radiation Biology - biomedicine and radiobiology, innovative research.

The Topical Plan for JINR Research and International Cooperation

To be proved by the JINR SC and CP annually

Draft expenses of the Seven-Year Plan for 2024-2030 by types of expenses

Draft expenses of the Seven-Year Plan for 2024-2030

by fields of research (including overheads)

LRI IN THE 7-YEAR PLAN FOR THE DEVELOPMENT OF JINR (2024-2030)

Relativistic Heavy Ion & Spin Physics NICA complex

Low Energy Nuclear Physics SHEF& DRIBS-III project

Condensed matter research and Neutron physics (IBR-2)

Neutrino & Astroparticle physics Baikal-GVD

IT and High Power Computing MIC complex

Life Sciences RadioBiology, AstroBio, BioMed

In **Relativistic Heavy Ion Physics**, a promising experimental program at JINR is associated with the NICA megaproject, the task of which is to study hot and dense strongly interacting QCD matter, searching for a mixed phase and a critical point in the QCD phase diagram in order to shed light on a poorly studied region of the phase diagram and test the predictions of non-perturbative QCD and other theoretical models describing strongly interacting matter.

After the commissioning of the basic configuration of the NICA collider complex at the BM@N and MPD experimental installations, the implementation of a physical program to study hot and dense baryonic matter and phase transformations in it will begin. The energy region of the NICA collider is of particular interest because it corresponds to the maximum possible density of baryons at the moment of their "freezing out." In this energy range, the system occupies the maximum volume of space-time in the state of a mixed phase of quark-gluon matter (coexistence of hadrons with quarks and gluons).

In **perturbative and non-perturbative QCD**, the main tasks is to study properties of strong interactions by measuring the proton and deuteron spin structures at NICA-SPD project, as well as within the framework of JINR's participation in the most important international collaborations (e.g., COMPASS/AMBER, BESIII).

NICA

BM@N & MPD

MPD covers this interesting region providing powerful combination of **large luminosity**, **collision energy and system size scan** (including isobars), large and consistent **acceptance**, full **centrality** range.

NICA is complementary to existing and planned world facilities (FAIR, SPS), and will be a natural and necessary continuation and significant expansion of studies at RHIC BES.

SPD

The SPD experiment is aimed at studying the properties of strong interactions in the nonperturbative region, at measuring the proton and deuteron spin structures, and at the development of a three-dimensional model of the nucleon. It is unique in its methodology, breadth of coverage and variety of tasks.

International collaborations have been formed and necessary conditions for their effective functioning at JINR have been created

MPD: 11 countries, 35 institutes, >500 participants

Year 2023

12	Jan 15 - April 15th
13	April 20 - May 20th
14	May 25 - June 15th
15	April 20 June 15th
16	June 15 – September 15
17	October – December
	Year 2024
18	January February 15
19	March - May 15
20	June 1 - June 10
21	June 20 – August 30th
22	Sept 1 – September 20t
23	Sept 15 - Nov 20
24	Sept 18 - Nov 20
25	Oct 20 - Nov 25
26	Nov 30 - Dec 10th

Preparation for Vacuum test of Solenoid with Cryostat
Vacuum tests
Solenoid cooling down to Liquid Nitrogen temperature (-80K)
Electronic Platform construction
Activities in the MPD Hall will be stopped
Cooling down to the He temperature
Supplying the current to the solenoid and Correction coils
Magnetic Field measurements
Support Frame installation
Installation ECal sectors, Insertion devices mounting
Installation TOF modules, FHCal into poles
TPC installation
Cabling
Installation of beam pipe
Move the MPD on Collider beam line. Commissioning

116 conference papers**65** publications

SPD: 14 countries, 32 institutes, ~300 participants

- SPD CDR was approved in Jan'2022;
- detectors prototyping/tests are ongoing;
- new version of TDR Jan'2024;
- start of operation (Stage-I) 2028;
- **50** papers and **70** conference reports.

BM@N: 5 countries, 13 institutes, >200 participants

Magnet SP-41 (0)

CSC 2x1.5 m⁻ (17)
Beam Profilometer (18)

FOH (19)

FHCal (20)
 HGN (21)

Vacuum Beam Pipe (1) BC1, VC, BC2 (2-4)

SiProf (5, 6)

Triggers: BD + SiMD (7)

First observation of the Short-Range Correlations in inverse kinematics:

- ${}^{12}C + p \rightarrow 2p + {}^{10}B / {}^{10}Be + (n / p)$
- 26 ¹⁰B events
- 3 ¹⁰Be events $\rightarrow np$ pair dominance

Paper was published in Nature Physics, 17 (2021)

4th NICA run (2022-2023):

- 550M events Xe+CsI at 3.0A, 3.8A GeV;
- analysis is ongoing;
- so far: 80 publications and 80 reports, including "Quark Matter",
 "Stream and so in Quark Matter", etc.

"Strangeness in Quark Matter", etc.

Relativistic Heavy Ion Physics and Study of nucleon structure. Near and Long-Term Future

- The timely completion of the NICA project, its commissioning and steady and efficient operation.
- Completion of the detectors: BM@N, MPD and SPD at NICA and successful data taking over the decades to come. JINR will make significant contribution to the basic configuration of the SPD detector.
- After several years of running of MPD, an Upgrade is foreseen, responding to an increase in luminosity of NICA. Adding detectors in the forward region as planned.
- Studies of possible future extension of NICA for acceleration of electrons, opening new physics potential via e-p and e-A collisions.

	2022		22		2023 20		2024	2025		2026		j 202		2	2028		29
NICA Collider commissioning				C		nis rur	sioning 1s										
MPD extended config. construction and opration							System pro		sign tion	d	D	eteo			nded tion	mode	
Consruction of NICA collider extended config.																	
Prep. and start of polarized beam operation				SC	-sole		oids pro nd tests		tion		Spi	n tr	ansp opei		ncy mo on	ode	
SPD construction and commissioning	R 8	& D,	pr	oto	otypi	ng	, te sting			ems asse			tion	SF	PD op	eratio	on
Nuclotron modernization	R & D, prototyping, testing					ing,	M	agne rin	pro sser			η,		w Nuo opera		'n	

Flerov Laboratory of Nuclear Reactions Program for the next decade:

Searching for the boundaries of the existence of nuclear matter by focusing on the boundaries of the island of stability of superheavy elements (SHE) – an area of the nuclide map where long-lived isotopes can be detected, studying their properties using nuclear spectroscopy methods (α -, β -, γ -spectroscopy), as well as their chemical properties, the study of the mechanisms of various nuclear reactions leading to the formation of new unknown nuclei. A significant increase (20 times) in the efficiency of experiments is necessary for the synthesis of even heavier elements 119 and 120.

Study of multinucleon transfer reactions during collisions of actinides with energy near the barrier, which are promising for the synthesis of new neutron-rich isotopes of heavy and superheavy elements up to the beta stability line. The modernized U-400R accelerator complex will create the necessary conditions for an in-depth study of these and other low-energy nuclear reactions with heavy ions.

Continuation of experimental research in the field of **light exotic nuclei located on the boundaries of nuclear stability, including the study of the nuclear halo, neutron coat, cluster states, exotic multineutron decays** (two-nucleon virtual states, 2n- and 4n-radioactivity), twoproton radioactivity, **search for new magic numbers, spectroscopy of exotic nuclei and reactions with halonuclei.**

Synthesis of new elements @ SHE Factory

TARGETS:

- Rosatom and ORNL (USA): Isotopically enriched heavy actinide materials;
- Radiochemical Lab of class 1

BEAMS:

- Production of high-intensity beams of ⁵⁰Ti, ⁵⁴Cr and others
- New ECR-28 GHz (2024)

Radioactive Ion-Beam research Basic facility: U-400M

Ambitions: E up to 80AMeV, I x 2

Operation from end of 2023

- Nucleon halo, neutron skin;
- Exotic decays: b-delayed, 2p,2n radioactivity;
- Soft excitation mode;
- New magic numbers;
- Spectroscopy of exotic nuclei;
- Cluster states;
- Reactions with RIBs;
- Astrophysical applications.

Nuclear reaction studies @ U-400R

Ambitions: up to 2.6 mA (U-beam) 10¹⁰⁻¹¹, smooth energy variation

Upgrade in 2023-25. Operation from 2026

- Multinucleon transfer reactions: Production of new isotopes of heavy,SH nuclei; Study of properties of new nuclei.
- Decay spectroscopy of heavy nuclei: actinides and light transactinides
- Study of fusion-fission and quasifission reactions leading to heaviest nuclei
- Low-energy and spontaneous fission of heaviest nuclei
- Study of nuclei at high excitation energies (several hundred of MeV)

The main directions in **Particle Physics** for JINR for the medium and long term are related to:

- precision study of strongly interacting states, including structure, phase QCD states, new hadronic states, including exotic multiquark states;
- study of the physics of electroweak interaction and flavor physics;
- further progress in understanding the evolution of the Universe in collider experiments, including the search for dark matter;
- astrophysical and cosmological observations and gravitational wave studies, multi-channel astronomy and the dark sector in non-accelerator experiments;
- experimental and theoretical definition of a model that goes beyond the Standard Model;

The JINR research program in the field of **neutrino physics and astrophysics** is aimed at fundamental problems: identification of astrophysical sources of ultra-high energy neutrinos, mechanisms of formation and evolution of galaxies, determination of the neutrino mass hierarchy, origin of neutrino mass, restrictions on the CP violation phase, direct search dark matter, precision study of coherent elastic scattering of neutrinos on nuclei, etc.

Currently, it is believed that phenomena occurring in the Universe should be studied by simultaneously observing different signals. The **Baikal-GVD project** is one of the cornerstones of this approach. The TAIGA installation, a set of gamma-ray and muon telescopes located in Siberia, in the Tunka Valley, south of Lake Baikal, can be considered as an additional instrument from the point of view of multichannel astronomy.

NEUTRINO AND ASTROPARTICLE PHYSICS

Baikal-GVD: Identification of astrophysical sources of ultra-high energy (exceeding tens of TeV) neutrinos. Actuality: their sources are still unknown. The identification of sources will help to elucidate mechanisms of galaxies creation and evolution.

Main advantage of Baikal-GVD: pure and t-stable water. Angular resolution of muon tracks 0.3-0.5 grad (IceCube: 0.5-1), angular resolution of shower direction 2-3 grad (IceCube: 15),

The second phase of the Baikal-GVD neutrino telescope will begin at the turn of 2025 and is scheduled for completion in 2030, when the facility will have more than 20 clusters (approximately 6000-7000 optical modules) with an effective volume of about or above 1 km3.

Baikal-GVD: flagship experiment of JINR with a leading role in the collaboration. Gain new experience in the detector design, construction, deployment, maintenance, simulation and data analysis. Expected breakthrough discoveries. SAC: light sensors, data transmission, radio-antennas + optics => New Quality and Efficiency

Year	Number of clusters	Number of OMs
2016	1	288
2017	2	576
2018	3	864
2019	5	1440
2020	7	2016
2021	8	2304
2022	10	2880
2023	12	3456
2024	14	4032
2025	16	4600

Selected Results from CERN and BNL in 2017-2023

VH, H \rightarrow bb (µ=1.17)

Data

Diboson B-only uncertainty

100 120 140 160 180 200

m_{bb} [GeV]

ALICE:

- Comprehensive study of the femtoscopic correlations;
- Kaon emission time (τ) is obtained in 3D femtoscopic analysis of K[±]K[±] pair roduction (EPS-HEP 2023, Hamburg).
- 29 publications;
- 28 conference reports.

ATLAS:

B-subtracted

Events / 10 GeV (Weighted,

25

20

15

10F

40 60

ATLAS

s = 13 TeV, 139 fb

0+1+2 lentons

2+3 iets, 2 b-tags

- First observation of the Higgs boson decay into a pair of b-quarks;
- Limits on chiral W*/Z* bosons in Drell-Yan and two-jet processes;
- Study of B_c state properties, Penta/Tetraquark states;

80

- Measurements of BEC parameters.
- 50 publications;
- **36** conference reports.

CMS:

- Searches for the Physics BSM including extra Higgs bosons, new gauge bosons, extra dimensions, etc. with dilepton/bbar + missing transverse energy signatures;
- Search for Dark Matter;
- SM tests with Drell-Yan processes and jets.
- >100 publications;
- 140 talks at conferences and workshops;

Both, ATLAS and CMS teams made significant contribution to their detector's Upgrade in Phase-I, now moving to Phase-2 Upgrade

Selected Results from CERN and BNL in 2017-2023

NA64:

- Detector has been built;
- 10¹² eot collected by 2022;
- the most stringent limits are established for light DM.
- 22 publications, 25 reports;
- JINR award in 2020.

NA62:

- the most precise measurement of rare decay BR(K⁺ $\rightarrow \pi^+ \nu \nu$) = (10.6^{+4.0}_{-3.4} ± 0.9syst) ×10⁻¹¹ 20 candidates were found (7 expected in SM), now aiming at 10% accuracy;
- limits improved in searches for dark heavy photon in π° decays.
- 30 publications;
- 38 conference reports.

STAR:

- Beam Energy Scan at RHIC;
- gluon spin contribution to the proton spin is positive;
- asymmetry of sea-quarks.
- **17** publications;
- 27 conference reports.

Non-accelerator neutrino physics and astrophysics

Scientific directions :

- Double beta decay, neutrino nature (Majorana or Dirac), Nuclear matrix elements
- Fundamental neutrino properties (magnetic moment, mixture with a sterile state, etc)
- Monitoring of nuclear reactors with neutrino detectors
- Direct and indirect search for Dark Matter
- Investigation of galactic and extragalactic neutrino sources
- Atomic processes accompanying radioactive decay
- Applied directions of research

The major aims:

- BAIKAL-GVD: Observation of ultra-high energy astrophysical neutrinos; identification of their sources and nature
- DANSS: precision measurement of the spectrum of reactor antineutrinos
- RICOCHET: New physics with precision measurements at reactors.
- $-\nu$ GeN: search for magnetic moment of neutrino
- LEGEND: neutrinoless double-beta decay at 10²⁸ years
- Radiochemistry plus spectroscopy for astrophysics and nuclear medicine

collaboration

Neutron Nuclear Physics and Condensed Matter Research @ JINR

- UCN physics;
 - Neutron lifetime;
 - Weak equivalence principle check. EDM?
 - Neutron quantum states in gravitational field;
- Neutron scattering for condensed matter studies @ IBR-2;
 - Diffraction at high pressure;
 - Soft matter;
 - Nanostructurized magnetic materials;
 - Energy selective neutron radiography and tomography;
- Nuclear physics with neutrons @ IREN, IBR-2 & external sources;
 - Nuclear data for engineering and astrophysics;
 - Fundamental symmetries violation in neutron-nucleus interaction;
 - Applied research;

Frank Laboratory of Neutron Physics

THE IBR-2 FACILITY

The service life of the core IBR-2 reactor is expected to end in 2032-35. **The possibility to extend the operation of the IBR-2 until 2040 is being studied.** To extend the reactor core campaign new fuel (manufacture of FA with FR) around 2026.

Considering the present-day tendency, **after 2030 only five sources will be available in Europe**: ISIS (Didcot, UK), SINQ (PSI, Villige), FRM II (TU Munich), and two new sources: ESS (Lund, Sweden) and reactor PIK (NRC KI, Gatchina, Russia), both under construction with the start of operations planned for 2023-2024. Oak Ridge (STS SNS) – **is planned in 2037**.

JINR provides Feasibility Studies for new neutron source **IBR-3** ("**NEPTUNE**" as one of scenarios-using Np fuel). The goal is to have the **best** pulsed neutron source in the world by end of 2030-s: with brightness of 7*10^15 (for TN), and 9*10^14 (for CN)

ET'N P

Condensed Matter Physics, Neutron Physics. Priority research in 2024-2030

SPECTROMETER COMPLEX

- Development of the basic configuration elements of the inverse geometry inelastic n-scattering spectrometer BJN.
- Completion of basic configuration of the small angle n-scattering and imaging spectrometer.

- Modernization and reconstruction of spectrometers HRFD, YuMO, RTD, DN-6, DN-12, FSD, NERA, REMUR, REFLEX, SKAT, EPSILON, FSS, NRT, focused on improvement of technical parameters and extension of research capabilities.
- Development of laboratory equipment for samples characterization and physical properties measurements.
- Support and modernization of the complex of cryogenic moderators. New operating reliable Ultra Cold Neutrons (UCN) channel.

Research in - structure and dynamics of functional materials - nanomaterials for energy storage - materials by neutron scattering, neutron activation analysis, neutron radiography and complementary methods

X-RAYS

DIFFRACTOMETER

Analysis of phase composition and type of crystal structure and microstructural parameters of polycrystalline materials (films, nanomaterials and solid objects).

RAMAN SPECTROSCOPY

Analysis of nature of chemical bonds in organic molecules and polymer materials, as well as in inorganic crystal lattices and clusters.

SAXS/WAXS/USAXS

Analysis of particle size distribution, crystallization rates and lamellar structure of semi crystalline polymers. Size and shape analysis of surfactants or proteins in solutions. In situ studies of nanostructure transitions and others.

Strategy for Information Technology and Scientific Computing at JINR

The coordinated development of interconnected IT technologies and computational methods

Steady implementation/upgrades of

- Networking (Tb/s range)
- Computing infrastructure within the Multifunctional Information & Computing Complex (MICC) and
- "Govorun" Supercomputer,
- NICA Tier0-Tier1-number of Tier2;
- Baykal, NOvA, JUNO all types of resources
- LHC@HL-LHC: Tier1 for CMS, Tier 2 for ATLAC, ALICE
- Data center infrastructure,
- Data Lake & long-term storage for all experiments.

The development of new data processing and analysis algorithms based on

- ML/DL,
- artificial intelligence,
- Big Data
- Quantum technologies.

A variety of means will be used for IT specialists upskilling.

MICC – Grid Infrastructure and DIRAC

In 2023, the JINR Tier1 site for CMS is ranked second (24%) among Tier1 world centres for CMS. JINR Tier1 is also used for the MPD, BM@N and SPD experiments.

Distribution by CPU Work (HS23 hours) among CMS Tier1 worldwide Distribution by the number of jobs completed on Tier1 by CMS, BM@N, MPD and SPD

The JINR Tier2 output is the highest (89.3%) in the Russian Data Intensive Grid.

Distribution by the normalized CPU time among the MICC components: Tier1, Tier2, Cloud and Govorun for jobs sent via DIRAC in 2023 Distribution by the normalized CPU time among MPD, BM@N, SPD and Baikal-GVD for jobs sent via DIRAC in 2023

In 2023, DIRAC is the only system that includes all key MICC components. DIRAC serves as an intermediate layer between users and various computing resources, ensuring their efficient, transparent and reliable use, providing a common interface to heterogeneous resources.

At the moment, DIRAC is used to support the collaborations of the NICA experiments: MPD, BM@N and SPD, as well as the Baikal-GVD neutrino telescope.

RADIATION RESEARCH IN LIFE SCIENCES

MAIN RESEARCH FIELDS:

Molecular Radiobiology

Radiation Cytogenetics

Radiation Physiology

Mathematical Modeling

Radiation Research

Astrobiology

Radiation Genetics

Clinical Radiobiology

Radiation Neuroscience

JINR's radiation sources for radiobiological studies

Phasotron: protons 170 MeV

cyclotron MSC230 (since 2024): protons up to 230 MeV

U-400M cyclotron: heavy ions 50 MeV/u (Li-Ne)

IBR-2, IREN: neutrons

Nuclotron: heavy ions 0.3-1 GeV/u (H – Kr)

SARRP: X-ray

Linac200: electrons 20-200 MeV

BEAM PHYSICS AND ACCELERATOR TECHNOLOGIES

Researchers of JINR are active participants of the of state-of-the-art international accelerator projects: LHC, XFEL, FAIR, RHIC, GANIL, INFN, IMP CAS, HIAF, EIC, ILC, CLIC, FCC, etc. **We will focus on R&D in the following areas:**

- highly charged intense ion sources for generating heavy-ion beams (Z > 40+);
- superconducting magnetic technologies: high-field magnets with fields up to 14–20 T, fast-cycling high-field magnets (B > 4 T, ramp 4-10 T/s), high-current cables and windings (I_cr > 30 kA);
- studies in the field of high-temperature superconductivity, R&D of "Dubna SC" cable technologies;
- efficient fast cooling systems for intense hadron beams (~ 10 100 ms);
- superconducting RF structures (RFQ and DTL) and cryomodules for intense p- and i- beams;
- research in the field of colliding beam accelerators. Problems of future colliders (FCC, ILC, CpeC, etc.);
- R&D on beam therapy (flash, pencil beam, light ions, neutrons);
- development of modeling methods (including using AI methods) of beam dynamics with the real electromagnetic fields in accelerator structures and in-flight beam parameters, deep machine learning for operation.

Progress for the implementation depends on the coordination of priorities/resources, which must be carried out in close Interlaboratory JINR cooperation and involving centers from Member States. It is feasible within the framework of the dedicated All-Institute theme for the period 2024–2030.

INNOVATIONS: INTERNATIONAL CENTRE FOR NUCLEAR TECHNOLOGIES

- Radiation Biology @ LRB, OMICS, neuro-RB studies, radiation neuroscience. Approaches to increase radiosensitivity: pharmaceuticals, transgene systems, targeted delivery and radionuclide;
- ARIADNA. Applied beams@NICA: radiobiological studies (400-800 MeV/n); irradiation of electronics and material science (3; 150-350 MeV/n); nuclear physics (1-4.5 GeV/n);
- **DC140 cyclotron:** Space electronics testing, radiation material science, new generation of track membranes;
- MSC230 cyclotron: research and beam therapy: treatment planning; radiomodificators for g- and ptherapy, flash-therapy, pencil beam (10 μA, >5 Gr/l @ 50 ms pulse).
- Radiochemical Laboratory Class-I for production of radioisotopes (Ac²²⁵, ^{99m}Tc), nuclear medicine R&D in photonuclear reactions @ 40MeV e-accelerator.

DC-140 (construction phase)

MSC-230 (general view)

LRIs as a base of International Training Programmes

project topics in the main areas of JINR research are offered to students

students participate in international introductory practices annually Students from 23 countries come to JINR for internships and practices

participants in long-term student programmes and internships annually

Students from 8 countries have been on excursions to JINR over the past 5 years

Programmes for students and young scientists

- Bachelor's, Master's and PhD theses;
- INTEREST INTErnational REmote Student Training at JINR; Student Online Practice; interest.jinr.ru
- International student practices; uc.jinr.ru/ru/isp

- Summer Student Programme; students.jinr.ru
- Conferences and schools for young scientists and specialists.
 ayss.jinr.ru

Contents

List of projects and subprojects
Large JINR Research Infrastructure
02-1-1065-2007/2026
NICA Complex: Design and Construction of the Complex of Accelerators, Collider and Physics Experimental
Facilities at Extracted and Colliding Ion Beams Aimed at Studying Dense Baryonic Matter and the Spin Structure
of Nucleons and Light Ions, and at Carrying out Applied and Innovation Projects
V.D. Kekelidze, A.S. Sorin, G.V. Trubnikov
02-2-1148-2010/2028
Baikal Deep Underwater Gigaton Volume Neutrino Telescope (Baikal-GVD)
I.A. Belolaptikov
06-6-1118-2014/2030
Multifunctional Information and Computing Complex (MICC)
V.V. Korenkov, S.V. Shmatov
03-5-1129-2017/2028
Development of the FLNR Accelerator Complex and Experimental Setups (DRIBs-III)
I.V. Kalagin, S.I. Sidorchuk
04-4-1149-2024/2028
Pulsed Neutron Source and the Complex of Spectrometers
E.V. Lychagin
Theoretical Physics (01)
01-3-1135-2019
Fundamental Interactions of Fields and Particles
D.I. Kazakov, O.V. Teryaev
01-3-1136-2019
Theory of Nuclear Systems
N.V. Antonenko, A.A. Dzhioev, S.N. Ershov
01-3-1137-2019
Theory of Complex Systems and Advanced Materials
V.A. Osipov, A.M. Povolotskii
01-3-1138-2019
Modern Mathematical Physics: Integrability, Gravity and Supersymmetry
A.P. Isaev, S.O. Krivonos

Elementary Particle Physics and High-Energy Heavy-Ion Physics (02)	
Participation in international experiments	
02-1-1066-2007	
Investigation of the Properties of Nuclear Matter and Particle Structure at the Collider of Relativistic N	uclei and
Polarized Protons	
R. Lednicky, Yu.A. Panebrattsev	
02-2-1081-2009	
ATLAS. Upgrade of the ATLAS Detector and Physics Research at the LHC	
V.A. Bednyakov	
02-1-1083-2009	
CMS. Compact Muon Solenoid at the LHC	
V.Yu. Karjavin	
02-2-1085-2009 Emacine antal Tests of the Eurodemontals of OCD	
Experimental Tests of the Fundamentals of QCD A.V. Guskov	00
02-1-1087-2009	
Research on Relativistic Heavy and Light Ion Physics. Experiments at the Accelerator Complex Nuclo	tron-M/NICA
at JINR and CERN SPS	
A.I. Malakhov, S.V. Afanasiev	101
02-1-1088-2009	
ALICE. Study of Interactions of Heavy Ion and Proton Beams at the LHC	
A.S. Vodopyanov	
02-1-1096-2010	
Study of Rare Charged Kaon Decays and Search for Dark Sector in Experiments at the CERN SPS	
V.D. Kekelidze	113
Experiments at the NICA accelerator complex	
Experiments at the NICA accelerator complex	
Strangeness in Hadronic Matter and Study of Inelastic Reactions Near Kinematical Borders	
E.A. Strokovsky, E.S. Kokoulina, D.O. Krivenkov	116
02-1-1097-2010	
Study of Polarization Phenomena and Spin Effects at the JINR Nuclotron-M/NICA Facility	
E.A. Strokovsky	120
E.A. Buokovsky	
Neutrino physics and astrophysics	
02-2-1099-2010	
Study of Neutrino Oscillations and Astrophysical Research	
D.V. Naumov, A.G. Olshevskiy	123
02-2-1144-2021	
Search for New Physics in the Lepton Sector	
Z. Tsamalaidze	

Nuclear Physics (03)	129
03-4-1146-2024 Neutron Nuclear Physics	
Yu.N. Kopatch, P.V. Sedyshev V.N. Shvetsov	120
03-5-1130-2017	150
Synthesis and Properties of Superheavy Elements, Structure of Nuclei at the Limits of Nucleon Stability	
Synthesis and Properties of Superneavy Elements, Subcture of Nuclei at the Emitts of Nucleon Stability S.I. Sidorchuk	130
03-2-1100-2010	157
Non-Accelerator Neutrino Physics and Astrophysics	
E.A. Yakushev, S. Rozov	143
Condensed Matter Physics (04)	149
04-4-1147-2024	
Optical Methods in Condensed Matter Studies	
G.M. Arzumanyan, N. Kučerka	150
Radiation Research in Life Sciences (05)	. 153
05-7-1077-2009	
Research on the Biological Effects of Ionizing Radiations with Different Physical Characteristics	
A.N. Bugay, E.A. Krasavin	154
05-2-1132-2017	
Study of Molecular Genetic Mechanisms of Adaptations of Extremophilic Organisms	
E.V. Kravchenko	160
Information Technology (06)	163
06-6-1119-2014	
Methods, Algorithms and Software for Modeling Physical Systems, Mathematical Processing and Analysis of	
Experimental Data	
S.V. Shmatov, O. Chuluunbaatar	164
Applied Innovation Activities (07)	173
07-1-1107-2011	
Applied Research at NICA in Radiation Materials Sciences, Life Sciences and New Methods of Energy Producti	
O.V. Belov, E.M. Syresin	
	07-5-1131-2017
	Radiation Ma
	S.N. Dmitrie
	Physics and Technology
	08-2-1126-2015
	Development

TOPICAL PLAN FOR JINR RESEARCH AND INTERNATIONAL COOPERATION 2024

Radiation Materials Science,	Nanotechnological and Biomedical Investigations with Heavy-Ion Beams
S.N. Dmitriev, P.Yu. Apel	

Physics and Technology of Charged Particle Accelerators (08) 181
08-2-1126-2015
Development of Scientific DLNP Infrastructure for Research Using Semiconductor Detectors, Laser Metrology,
Electrons, Positrons and Cryogenic Technology
V.V. Glagolev, G.A. Shelkov
08-2-1127-2016
Advanced Studies of Systems of New-Generation Accelerators and Colliders for Fundamental and Applied Research
G.V. Trubnikov, G.D. Shirkov, B.N. Gikal

RISKS and MITIGATION

Subject to the principle of reciprocity, the Institute will continue to fulfill all its obligations, will consistently pursue a policy of Open Access to its research infrastructure and scientific data, strictly follow internationally recognized standards of scientific expertise and legal support of intellectual property.

The main financial risk for the development of JINR for 2024-2030, associated with the geopolitical situation, is the incomplete and/or untimely fulfillment of the Member-country contributions, the reduction of member states and non-payment of contributions by states where membership was suspended for an indefinite period. Such factors, first of all, will affect the reduction of JINR's human capital, a decrease in the value of its assets and competitiveness, and a significant shift in the timing of achieving scientific results that directly affect the scientific visibility of the Institute's member countries.

Attracting new states with strong and dynamically developing economies to orbit of JINR is the most important area of work to prevent the development of negative scenarios for realization of financial risks.

The Sum of Contributions are to be increased by 5% annually to fully cover the \$1,944.6 million cost. In case of insignificant indexation of the amount of contributions, we have: underfunding of certain stages of work on large scientific projects (NICA-SPD in the first place, about \$45 million, DRIBs-III Radiochemical Laboratory - class 1 - about 8.5 M\$), Life Science and external cooperation up to 10 M\$, reduction of experimental time (10-20 M\$, as well as cancellation of the involvement of about 200 highly qualified scientists and specialists (36 M\$).Even after these cardinal cuts for the JINR Development Program, the budget will have a deficit of about 100 M\$.

Thank you!

