

The concept of the UCN source at a periodic pulsed reactor

A.A. Popov, A.I. Frank, G.V. Kulin, V.A. Kurylev, M.A. Zakharov

Sector for Research of Fundamental Properties of Neutrons Department of Nuclear Physics

Ultra Cold Neutron sources

UCNs are important tools for:

- Search for the neutron EDM
- Measurement of the neutron lifetime
- Quantization of neutron states in a gravitational field and search for new interactions
- Non-stationary quantum mechanics and neutron optics
- Measurement of angular correlation coefficients of neutron beta decay

for

 Search neutron-antineutron oscillations

Pulsed source and UCN accumulation in a trap

Pulsed source and UCN accumulation in a trap

T - pulse repetition time, t -flight time, δt - flight time dispersion at the trap entrance 4

Concept of the UCN source

T - pulse repetition time, t -flight time, δt - flight time dispersion at the trap entrance 5

Decelerator – gradient (adiabatic) spin flipper

V.I. Luschikov, Yu.V.Taran. NIM 228 (1984) 159

A.N. Bazhenov, V.M . Lobashev, A.N. Pirozhkov and V.N. Slusar. NIM A332 (1984) 534 S .V. Grigoriev, A.I. Okorokov, V.V. Runov. NIM A384 (1997) 451

Time lens

Neutron density in a spherical UCN trap (liquid H, converter)

G is the ratio of the flux in the trap to the average flux at the trap entrance

For more effective converter, like **solid D**₂, the neutron density can be increased by **30** times

Thank you for your attention!!!

