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• Aim: to introduce theory of scalar field and  study phenomena of vacuum 
stability and phase transitions carrying out analogy with phenomenological 
models of phase transitions.
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Theory of one-component scalar field

Action is scalar relatively Lorentz transformations 

Interval is Lorentz scalar 

Principles: Lorentz invariance,  locality of interaction → c=const, symmetry of 
vacuum (ground state), Occam razor principle, principle of least action:

For free particle
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Scalar particle interacting with a scalar external field

Scalar one-component field is determined by single real variable 
Examples: scalar σ meson field, pseudo-scalar pion field (responsible for attraction 
between baryons), Higgs field, still unknown cosmological fields, etc.  
Let ɸ interacts with a scalar charge density of external source ρs (xμ), μ=0,1,2,3. 

is coupling constant.  

Fields interact in one world point –locality principle.

Dimensionalities of new quantities  ρ, ɸ are not yet fixed.
Take
One often uses  units

Simplest scalar

Planck constant is introduced to get further relation to QFT. 

Interaction term Sint cannot be such as it was in non-rel. mechanics,  

3



Action & eq. of motion for scalar one-component self-interacting field 

Simplicity +locality +symmetry of vacuum

As in non-relativistic mechanics Lagrangian 

Covariant notations

½ for convenience—units of new quantity ɸ , 

, cannot depend on xμ explicitly.
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are constants,       can be interpreted as an interaction of the 
scalar field with a constant scalar density, and included in ρs.

(*)
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Energy density

reminds (non-linear) Klein-Gordon equation where μ has a sense of a mass.

Introduce operators

For ρs ,V=0 vacuum - minimum of energy state- is ɸ=0: =0.

(**)

From (*)
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For ρs =0, ρsc =0:

(*a)



Dimensionality of coupling constants and renormalizable theories

In convenient units action S is dimensionless, Lagrange density ~1/l4

Locality: to reach  r<<1/μ, particle  needs E>> μ. In perturbation series of V (ɸ ) 
parameter of expansion should be dimensionless.

enters as

since vacuum instability, e.g.  either for λ3>0  or λ3<0. 

λ4>0 for stability. In phenomenological theories one may use higher-order terms. 

Series should be cut at term λ4ɸ4--necessary condition of renormalizability.
Also expansion cannot be stopped on term
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Interaction of point-like baryon with classical scalar field
Let source of static external scalar charge is 

For small ɸ eq. (**) yields
 

Solution:

Scalar charges of one-sign attract, of opposite sign, repulse. 
Nucleons of one-sign baryon charge attract each other by exchange of scalar σ 
mesons at intermediate distances r~1/mσ , mσ is σ mass ~600 MeV and by exchange 
of π at r~1/mπ, mπ is π mass 140 MeV. Replacing qQ to mM one may describes

By exchange of Ω mesons, mω=783 MeV, baryon charges of one-sign repulse each 
other, similarly to exchange of electrons by photons in electrodynamics.  Classical scalar 
and vector fields as responses on sources of scalar and baryon charges can be treated 
as  condensates of virtual scalar and vector field quanta. Coulomb field can be treated as 
a condensate of virtual photons.

Newton gravity: charges of one-sign (masses) attract each other.

Potential of NN interaction
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Waves

Now quantity μ>0 can be interpreted as mass of scalar particle.

Let

Expand classical field ɸ in plane waves: 

(***)

are coefficients of expansion.  Solution  of eq. (***) :

Eq. of motion: 

and μ2>0. 

This equation coincides with Klein-Gordon equation in QFT for scalar particle 
(for one-component field spin 2s+1=1). 
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Solution with <0 can be associated with antiparticle with 

wave  can be associated with particles
with antiparticles,

in the sum

Generalization to QFT-operators in 2-d quantization obeying commutator relations.

and used that ɸ is real quantity

After integration of energy density  over volume:

can be interpreted as number of modes (particles) in each state, classical 
treatment  requires  condition                            Vacuum – Nk=0, ɸ=0.
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cf.  eqs. (*a), (*b).



Using canonical variables

Non-interacting scalar field is described by infinite sum of harmonic  oscillators, 
at mass coefficient  equal unity.  Recall that motion of oscillating particle in 
nonrelativistic mechanics is described by the plane wave.

unharmonic oscillators.

Generalization to QFT–commutator relation for operators in second quantization→ 
sum of quantum oscillators and zero vibration contribution to energy. 
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Model  

Symmetry ɸ→-ɸ 

Unharmonic oscillator Two humped potential well 
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Spontaneous ɸ→-ɸ vacuum symmetry breaking. Field in vacuum

If initially system  (e.g. Universe) was in state ɸ=0   in a fluctuation it may reach one

Ignoring  gravity, this divergence does not hurt (removed by renormalization).

It describes stable waves/ particles with mass  

, ɸ plays role of x.  
exponent enters infinite volume V3.

Kin. energy V3

of minima and lives there for ever. Probability of tunneling from one minimum to 
other  

(****)

Eq.(****) yields

Mass M=V3 , U =VV3 , |p|= (|2M(ε -U)|)1/2

this energy of scalar field is infinite for V3 →  ∞ .  

Consider case  μ2<0.
13

(*****)



Symmetric (dash) & asymmetric potentials (solid line)

Assume system (e.g. Multiverse) was initially in metastable phase   . Gain & loss:

is energy density of stable phase, of metastable phase, σ surface tension, 

similarly  to what occurs at I-order liquid-vapor phase transition (e.g., at boiling of 
water). 

dash-symmetric potential

Vseed is volume of seed, Sseed-surface. For R>Rcr seeds grow, energy is gained 
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Let now

Experimnt: Cf. Zenesini et al., False vacuum decay via bubble formation in ferromagnetic superfluids, Nature 22.01.2024.



We studied vacuum of one-component scalar  field. 
 Now study vacuum state for  two-component  field



Self-interacting complex scalar field. Action and equation of motion 
Consider two scalar fields

<0

In case of  symmetric potential (ρsc=0):

In such model we  shall deal with 2-order phase transition 

In Fig. 
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We recovered dependence on c.

Multiplying this eq. by and complex conjugated eq. by ɸ, 

recover conservation of flux/current

C=const,

Interpretation needs a care (enters not |ᴪ|2 as it is in nonrelativistic QM)

Energy density:
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Eq. (*) is 



Waves 

for μ2 >0.

In Klein-Gordon eq. 2 degrees of freedom: one for s=0 particle, other  antiparticle

Let
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Introducing C=-ie,  e is particle charge,
clear interpretation.



Generalization to QFT – commutator relation for operators in second quantization.

Energy: 19



Goldstone model (No interaction with electromagnetic field)

This static uniform solution corresponds to minimal energy.

Lagrangian is symmetric under U(1) transform. 

System spontaneously chooses one of α states, e.g. α=0,

Present two-component field as

In terms of new real fields
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Solutions are waves with dispersion laws: 

One massive and 1 massless (Goldstone) neutral excitations.

Goldstone theorem: at spontaneous U(1) symmetry breaking there appears 
a massless mode. In the given example it is  mode of  “scalar light”.

For nonrelativistic condensed matter, e.g. for He-II

ω=vq, v<c.

, 21

gappless excitations in neutral superfluids such as 4He !



Self-interacting pions

Electromagnetic interaction e2=1/137

In strong interactions SU(2) global symmetry 

Isospin operators isospin is conserved in strong interactions.

Interaction with electromagnetic field spoils isospin symmetry.
π± can be described by complex fields, e.g. π- field 

We have considered 1-component field and 2-component fields at μ2>0 and <0.
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Similarly we could introduce actions for photons, Ω mesons, ρ mesons, gluons…



We studied vacuum of two-component scalar  field. 
 Now come back to  one-component  scalar field but now in a potential well



One-component scalar field in external scalar field of another origin 
Consider field ɸ, e.g. of neutral pions with squared mass m2>0, placed in a scalar 
potential well U (analogy with s-wave interaction of pions and nucleons) 

Varying action:

Then  eq. of motion renders

Solution ɸ =

cf. eq. (****) slide 13,
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Effective squared mass term

Let λ4=0.

Let U is static. 



For slowly spatially varying field U(r) take

Upper and lower continuums 

ϵ (r )

For –U>m2 continuums are overlapped

Typical time of production of ɸ condensate classical field 

Lower continuum

Upper continuum
m

-m

--solid lines--boundaries of continuums.

24

r



Now consider ɸ field  in broad spherical square potential well    

For level l=0:
C is arbitrary constant.

, n-quantum number 

U( r)
r

recall similar eq. in nonrelativistic QM
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R

-U0

Spherical square potential well,  case λ4=0
 

Classical field QM one-particle problem 



ϵ0

U0

m

-m

Uc0Symmetry

At U0=Uc0≈m2+O(1/R2)

Behavior of ground state level:

For |U|<Uc0 energetically favorable is solution ɸ=0, i.e., 
if there were no particles inside the well, the level remains empty for |U|<Uc0
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0

If N particles/antiparticles  were put on ground level: energy is Nε0→0 for ε0→0
At N=0 instability of vacuum inside the overcritical potential well



Taking into account that for ε<<m (for dangerous level),  λR~mR>>1 we get 
thus

that corresponds to exponential growth of condensate field 
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Now let U0>Uc0 . Solve Eq. of motion for static field (minimizing energy): 

Case λ4≠0
For U0<Uc0 in absence of external particles being put inside potential well, the 
minimum of energy (E=0) corresponds to static classical solution ɸ =0.

Assume that 

length of change of field ɸ inside the well,

(*)
For r>R solution of eq. (*)  yields 

Deeply inside the system all processes
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length of change of field ɸ in exterior region for any λ4 is

we expect 

-Δɸ

should occur as in infinite matter. Thus



Solution of dimensionless eq. with dimensionless boundary conditions is changed 
on x~1  and we can drop

cf. condition used in phenomenological theories  (e.g. in hydrodynamics), whereas

(flat geometry for                )

(Landau condition of
small overcriticality)
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(**)
±



Solution

Stability of vacuum is determined only by self-interaction

We deal with 2-order phase transition according to Ehrenfest classification.
Note, classical  condensate field appeared in absence of real  particles!

is now finite and  has physical meaning even at ignorance of the gravity,

Sign + or – is not important since E enters ɸ2. 

, second derivative gets a jump.
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Cf. (*****) slide 13.



Excitations: If ground state is pertubed, excitations in presence of  condensate 
field can be described by variable shift

Inside system it describes now waves related to particles with positive mass 
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In quantum case, ɸꞌ describes  zero fluctuations over the ground state described 
by classical field ɸ= ɸc.

(*)



Neutral complex scalar field in a scalar potential well of other origin
Consider complex neutral scalar field not interacting with electromagnetic field.

Let for x<0, U=-U0<-m, μ2 =mef
2(x<0) =m0

2= m2 –U0, 
for x>0, U=0, mef

2(x>0) =m2 >0 .      

For x>0 we may put ɸ=0 provided lɸ>> 1/m, i.e., |m0|<< m, that we  assume to 
be the case   (Landau condition).
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the same real solution as for one-component field

U

x
-U0



We studied one-component scalar  field in a scalar potential well. 
 Now discuss thermal fluctuations of one-component scalar  field 



Thermal fluctuations: Now consider field ɸ  in equilibrium  state  at T≠ 0 (in a 
medium), then besides zero fluctuations there are thermal ones. The latter can 
be treated on classical level. Continue to study theory with

Eq. of motion

Take

Mass term for excitations

, ɸc is classical (condensate) field, ɸꞌ - describes excitations

Now ɸc = ɸc (T).

33Thermal fluctuations in model λɸ4 with symmetry breaking



Terms in 1-line depend only on ɸc. 2-line yields the free -energy density, Fꞌ, of 
noninteracting Bose gas with positive  squared mass

is fulfilled for λ<<1.

The value of the critical temperature

Averaging is now done over Gibbs state, within Grand canonical treatment.

, cf. e.g. LL5,

(**)

(***)
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For T≠0 setting  ɸ= ɸc + ɸꞌ  



Second-order phase transition:
restoration of symmetry for T>Tc occurs owing to long-range fluctuations of field ɸ.
The contribution to the free-energy density associated with fluctuations in (**)
also can be found by computing the closed boson line  tadpole diagram:

Within the Matsubara diagram technique we should perform  replacements

For T>>μ convergent T-dependent term: 

Setting it in (**) we again  recover (***). 

=

35near Tc:



We studied fluctuations of one-component scalar  field. 
Now study charged scalar field in electric potential well.



S[A,x]=Spart+SA
int+SA

Interaction of particles & scalar field with electromagnetic field

gauge invariance,
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0 for arbitrary f(x)→

For complex self-interacting scalar field interacting with gauge field Aμ :

Excitations:

Photons are massless, spin 1, 2s+1=3. 

Vector-potential Action

Einstein relation 

4-vector is added to 4-vector. Gauge invariance is kept.



Charged scalar field placed in external static electric field V=eФ

For λ4=0: 

Boundaries of upper and lower continuums in field V(r) now:

For V<Vc ≈ -2m single-particle level in broad potential well  R>>1/m 
crosses boundary ε=-m, π-s occupy dangerous level, π+-s with -ϵ tunnel to infinity. 

(*) 
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Let m2>0, e.g. π±.
Vɸ

Classical field QM one-particle problem 



After doing replacements 

get Schroedinger form of equation of motion 

Effective potential Uef (r) for V<-2m, (for 
|V|>|Vc |), E>0, is presented in Fig.
.

ef
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On this language tunneling from lower to upper continuum in electric field 
is equivalently described as  decay of empty quasistationary state

Notice relativistic attraction V2 term
in Uef even for repulsive V.



Is it possible to observe π+π- production for V<-2m?

Construct plain capacitor at 

→ 0 since

and we get V<-2mπ ! However probability of production of pion pairs per time 

Note in passing that condition  δV<-2m is required for applicability of Sauter-
Schwinger production of pairs in uniform electric field.
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Charged bosons in Coulomb field. Case λ4= 0. Falling to  centrum 

Puzzle (?) 

Let V=-Ze2/r. With the help of the replacement

What to do with half of Mendeleev table?
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In nonrel.mechanics falling to centrum for at
Semiclassical approximation
particle in ground state falls to center.



m

-m

ϵ0

V0

For broad square well

A peculiarity: ground-state level crosses boundary ε=-m only provided 
Otherwise there is bound state for

antiparticle (in repulsive potential !--relativistic effect) .

Ground-state level:
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taking into account of  λ4>0  or including electromagnetic coupling.

In crit. point sum of particle and antiparticles energies reaches 0 and level becomes
occupied.

However for V0>V0c≈2m single particle problem should be reconsidered with



Weak binding of antiparticle is destroyed by multi-particle 
interactions λ4≠ 0, π+ go off to infinity, π- form condensate, cf. slide 37 above. 

Thus we again deal with 2-order phase transition. 

(**)

For simplicity assume that there is positively charged substrate compensating the 
charge of π- condensate. Then, 

ε0c≈-m, V0c≈2m .

42
Case λ4≠ 0. 

cf. slide 32

For broad square well  similarly to the case of one-component field  solving eq. (*)
now for ε0c≈-m we have



Idea of supercharged superheavy nuclei-nuclearites-stars

Coulomb energy would exceed nucleus binding energy -16 A MeV 

Consider nucleus with 

to exist  large size systems should be electrically neutral!
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Simplifying put λ4=0.

Inside the large-size system 
For |V|=Ze2/R> mb , for Z>1/e3,π- level reaches ͼ =0,

π- Bose condensate is formed inside nucleus. No tunneling is required. 

(*)

Minimizing (*) get: 

First 2 terms follow from nuclear droplet model, 
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We studied charged scalar field in electric potential.
Now study essence of Higgs-Meissner effect,  and vortices at rotation.



Higgs effect (Interaction of scalar and electromagnetic field) 
Interaction of complex scalar field ɸ with own electromagnetic field Aμ :

Energy density of own (no source term) electromagnetic field 

Thus vacuum can be taken with Aμ=0 and for m2>0, ɸ=0.

Now let m2<0. Ground state: Aμ=0,  
After spontaneous symmetry breaking occurred we may put in vacuum state  α=0,

In quadratic approximation over new fields we have
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Do trick: introduce new gauge field 

In new variables

Goldstone mode is ``eaten’’ by gauge transformation.

Variation of action over new fields yields equation of motion:   
for neutral field ρ´ with mass                              and 
    describing massive photons, 

In absence of spontaneous symmetry breaking (for m2>0) we had 2 degrees of 
freedom for charged complex field and 2 polarizations for massless photon. In presence 
of spontaneous symmetry breaking (for m2<0) –also 4 modes, but one describes real 
massive scalar field and other 3, massive photon with 3 polarizations –Higgs effect 
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Recall presence of gapped excitations in superconductors !



Superfluidity and superconductivity of complex scalar field 
Lagrangian and equations of motion:

Aμ is electromagnetic potential,
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For a piece of charge-neutral nuclear matter would be ≠0



being for our convenience shifted  on constant value 

Appropriate thermodynamical potential is Gibbs energy:

--magnetic moment,

(*)
(**)
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Let external current produces uniform constant magnetic field H parallel z.
In Lorenz gauge 

Condensate energy is minimal for static field ɸ. 
=m0

2<0 in half space x<0,
Let us deal with static uniform magnetic field and static scalar potential well 
such as 



Response of charged complex scalar field on uniform magnetic field 
Meissner-Higgs effect:

and Larmor  radius
we may put

in Eq.  we may drop 

For
has sense of effective photon mass  in superconducting region x<0

Typical lengths:      of change of condensate field at x<0, -of change at x<0,
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From eq. (**) we get

Boundary condition for A:

For

Properties  in magnetic  field are determined by  relations between length scales.

)



Quantity is named Ginzburg-Landau parameter. 
In case of hadronic interactions λ~1 and  

In condensed matter physics 
is named coherence length,
London penetration depth.
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Superconductors of II-type for  
We deal with superconductor of II-type 

,|x|



Mixed Abrikosov state:

Mixed Abrikosov state: for in interval of fields
surface energy is decreased at formation of normal vortices, of transversal size 
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directed parallel .  Magnetic field decreases at a larger distance 

Gibbs free energy gain due to appearance of  single vortex is

Equate these quantities.          Gibbs free energy is gained for 



Triangular  lattice of vortices proves to be most energetically  favorable .

With  increasing H  distance between vortices, d, decreases, the condensate field ɸ  
weakens and  vanishes for H=Hcr2. For H slightly  below Hcr2  condensate field is 
weak and the equation of motion  (*) can be linearized and presented as:

We get Schroedinger equation for  nonrelativistic spinless particle in  uniform 
magnetic field, where maux is  an auxiliary mass coefficient.

vortices interact similarly to filamentary currents and form  lattice.

(***)
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E=

Nontrivial topology:
Then the current density is

but can be Ai ≠ 0, cf. Aharonov-Bohm effect.

Spectrum of Eq. (***)  is

In the theory of electro-weak interactions there appears  Abrikosov lattice of the 
fields of the W and Z bosons. Such a structure could occur in  early Universe. 
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with
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Discrete values of current associated with vortices.

Landau critical velocity:

p is momentum of Bose excitation in rest frame of fluid,  V is speed of system.

Landau necessary condition of superfluidity is fulfilled  for  pV< ω (p)

May hold for Goldstones and gapped modes, does not hold for ω (p)=p2/2m 



Response of neutral superfluid on rotation— again vortices:
System described by the complex scalar field with m0

2<0 behaves as a superfluid. 
Let vessel with superfluid rotates with constant angular velocity Ω || z and T=0.
For Ω< Ωc1 superfluid does not rotate. For Ω> Ωc1 there appear filament-vortices.
To find vortex solution seek

Field ɸ should not change at replacement 

are dimensionless variables, cf. slide 29.  Asymptotic solutions are:

At large distances the matter is in the equilibrium state
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In our case mqp= √2m0, in case He-II, it is mass of  He atom. 



Energy of the vortex is 

Angular momentum of vortex line at a slow rotation 

In rotating frame

yields

where we should put |k|=1, since it corresponds to minimum energy of  vortex.

We cut integration on transversaldz is the length in longitudinal z direction.
size R of rotating system in case of the single vortex line  and on the distance RL 
between vortices otherwise. Other terms in the energy density change on the 

56cf. slide 17,

At T≠0:



With  increasing rotation velocity vortices form triangular  lattice and  system 
begins rotate  as the rigid body with linear velocity v=ΩR provided number of 
vortices in lattice Nv=R2/RL

2 is given by 

. Minimal distance 
Condensate field disappears for 

For neutron stars, R=10 km,

For all millisecond pulsars Ω<104 Hz. 
For such large Ω causality relation, v=ΩR<c,  is spoiled.

However for Ω>104 Hz centrifugal force at r=R enlarges gravitational one and 
pulsars with such Ω cannot exist. 

Nucleons in nuclei and neutron stars form Cooper pairs at

For Vela pulsar, period P=0.083 sec.,  distance between vortices is 
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For all pulsars Ω>> Ωc1. Rigid body. 
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Cf. slide 20 Goldstone model.

Winding number k is conserved: vortices are produced together with antivortices.  
Antivortices can be absorbed on walls of rotating vessel. 
In absence of rotation vortex is not energetically favorable but if produced 
together with antivortex, it  ``lives’’ due to conservation of topological charge k. 

Vortices and antivortices  baryons & antibaryons (skyrmions). 



We studied essence of Higgs-Meissner effect,  and vortices at rotation.
Now study meson-baryon interaction and meson mean fields.



Models of meson-baryon interaction
The simplest choice for the NN interaction  could be the  local contribution

Perturbation theory parameter
Such a theory is not renormalizable, e.g., Fermi theory of weak interactions  

was replaced by  renormalizable Weinberg-Salam theory of electro-weak 
interactions where fermions interact via exchange by the massive W, Z bosons.

Meson responsible for NN attraction at large distances is  pseudoscalar iso-vector 
pion, mπ≈140 MeV, at intermediate distances, σ scalar meson, mσ≈600 MeV,

coupling is g dimensionless,

pseudoscalar NπN attraction 

Coupling is real & dimensionless.

τ –isospin Pauli matrices,
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with mΩ ≈783 MeV, real dimensionless coupling. 
Repulsion of the neutral vector meson Ω with the baryons (here nucleons):

For pseudovector field Bμ interacting with nucleons

A pseudovector can be constructed from pseudoscalar pion field using derivative 

Theory is not renormalizable, but  is used as a phenomenological theory.
Divergences are cut at (quark) distances ~ 0.2-0.3 fm. 
ρ±0 meson field acts as vector in  Lorentz sense and  vector in the isospin space:

Simplest coupling between vector field Aμ and spinor field is constructed as  scalar 
product of Aμ  and 4-flux density,                  . For electromagnetic field interacting 
with  protons, p, we get
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Relativistic mean-field (Walecka) model
Construct a simple mean-field model of nuclear eq. of state matter at ρ~ρ0 ≈0.16 
fm-3 employing σ, Ω interactions with nucleons. Pseudoscalar pions do not 
contribute in mean-field approximation.

Heaviside units,

σ,Ω0 condensates appear as responses on sources of  scalar and baryon charges.
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Eqs. of motion:

Solutions: perform averaging over the ground state



Consider media N=Z and Z=0 as applications to nuclei and neutron stars

Employing

Energy depends on two fitting parameters

Nucleon (baryon) density:
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Static mean-field contribution to energy density is 
Adding kinetic fermion term:



MeV.

Maximum neutron star mass

Attractive features of Walecka model: simple-- only 2 fitting parameters,
Lorentz invariant, describes qualitatively NN potential and behavior of equation 
of state of nuclear matter.  Deficiency:  K is too large, m* is too small.  

Generalization to finite T:

Massive bosons are less affected by T than fermions occu[ying Fermi sea 

Nucleon/antinucleon distributions
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meson fluctuation term is disregarded. 



- - isothermal spinodal (ITS) unstable 
region, isothermal compressibility  KT<0,
 - . - . - adiabatic spinodal (AS),  solid line - 
Maxwell construction

Gi

OL
AS,

region of instability
   in ideal hydro

ITSSV

Lines S = const

I-order liquid-vapor phase transition. Van der Waals-like EoS, 
nonequilibrium effects: spinodal and fluctuations

Liquid-vapor tr. in Walecka model, Schulz et al PhLB 1983

fl. region
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Liquid-nuclear clusters, vapor-nucleon gas 



1-order phase transitions in HIC: nuclear vapor-liquid  & feasibly HQ

Region with Cp <0

Pochodzalla et al (1995)

Borderie et al., EPJA, 56, 101 (2020)

Nuclear liquid-vapor  tr. at low HIC energies:
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We studied meson-baryon interaction and meson mean fields.
Now study nonrelativistic limit and phenomenology of 
superfluidity and superconductivity.



Transition to nonrelativistic limit. Condensation of nonrelativistic 
bosons in potential wells

Take

employing notations

Difference appears only as a relativistic effect!
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(*)



In  relativistic problem potential  had another dimensionality. In nonrelativistic 
problem  sum of  energies of  particle and antiparticle  is 2m +    .  Thus energy 
conservation  does not allow for  production of pairs in a shallow potential well. 
However, if there are external bosons obeying conservation law of their number, 
being put in the potential well, v<0, they may occupy ground state level forming  
Bose condensate. Value of condensate field is limited either by repulsive self-
interaction λ1>0, or, in case λ1 <<e2, by electromagnetic interaction of  particles.

Flux conservation:

density of particles at  time moment t. Consider spherical broad potential well: 
in our classical treatment is 

For
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put in potential well on ground state level.N is number of bosons 



Cold Bose gases: In approximation of weakly interacting particles wave function 
of system of bosons is approximately given by a product of single-particle functions

At a low temperature de Broglie wavelength is much larger  than range of boson–
boson interaction,  and one deals with  s-wave scattering and local interaction. 
Hamiltonian of  system can be written as

m is mass of  boson, V is  external potential, as is the boson–boson s-wave 
scattering length.  Employing  variational procedure we recover so called Gross-
Pitaevskii equation describing cold Bose gases:
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Cf. with (*). 



Second-order phase transitions in condensed matter
Macroscopic wave function as order parameter:
In superfluid He and superconducting materials for T<Tc , or for  
pressure P>Pc , there occurs second order phase transition to condensate  
state. In 4He neutral  Bose atoms form superfluid Bose condensate. In metallic 
superconductors electrons become bound in  Cooper pairs  forming  Bose 
condensate mean field, typical size of the Cooper pair ~10-4 cm >> aB -Bohr radius.
For 0<Tc –T<<Tc (Landau condition), the typical length scale for the change of the 
classical field proves to be much larger than distance between atoms.

In mentioned cases free energy density, F[ψ, T], can be expanded in Taylor series in 
a complex order parameter (the macroscopic wave function ψ). Parameters of 
expansion are further expanded in  series in Tc –T. Also in quasi-uniform 
approximation the free energy density is expanded in 

Free energy functional:
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4He and metallic superconductors we deal with the second-order phase transitions, 
and therefore equilibrium value of  order parameter  vanishes at T=Tc. 
Thereby we expand α(T) and put α(T)= α(Tc)(T- Tc)-
Acts as T dependent squared mass term in λɸ4 theory, 
α(Tc)>0. For the stability of ground state we also need 
m*(Tc)>0, and self-interaction β>0.

Minimization of F[ψ, T] yields order parameter 

except coefficient proportional  to | ψ|2  , since experiment shows that in case of 

(L1)

68in linear approximation

F=- α2(T-Tc)2/4β.



In superconductors field ψ interacts with electromagnetic field. Static magnetic 
field enters in combination

Ginzburg-Landau phenomenological theory of superconductivity

is the Cooper pairing  gap, q=2e charge of pair. 

Cf. response of charged complex scalar field on external magnetic field which we 
have considered above in slides 47-58. 
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Energy variance                                  , where C is specific heat,   Fluctuation 
contribution to C diverges in critical point of second-order phase transition.

Probability of fluctuation W~exp(-δF(T)Vfl/T), 
where free energy loss δ FMF~ α2(T-Tc)2/β,  in minimal volume 
 Vfl ~l0

3 , l0~1/(Tc-T)1/2  is coherence length.  At T~Tfl the fluctuation formed 
in a minimal volume ~l0

3 is probable (W~1). Fluctuations are dominant for 
T near Tc  , |Tc –Tfl |/Tc <1 . 

Fluctuation  region  is estimated by Ginzburg number      Gi = |Tc –Tfl |/Tc
In clean metalic superconductors Gi ~10-8, fluctuation  region is narrow, in He4 , in 
color superconductors, at quark-hadron and hadron liquid-gas phase transitions, 
(strong interaction) fluctuation region is broad Gi >0.1-1.

Fluctuation region near Tc . Ginzburg criterion 70



In presence of singularities assumption that free energy is analytical function fails. 
Therefore Taylor expansion, which we used to construct free energy density F 
becomes invalid in vicinity of critical point, in  fluctuation region.
In case of 4He fluctuation region proves to be broad and inclusion of fluctuations is  
important at all T. Free energy density can be presented now as

Assuming that  dependence on T-Tc should disappear from the Ginzburg criterion 
provided long-range fluctuations are properly incorporated and that 
specific heat  does not diverge at least as power-low  (experimental fact) we find 
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being in good agreement with data.



Galilei transformation

Galilei transformation for  nonrelativistic superfluid: 72

In order Shroedinger eq. would not change in lab. system 

m is here effective quasiparticle mass.

Relation between energies in rest and lab. frames  E´=E - 
Landau necessary condition of superfluidity fails for  ω (p)- pV<0,

holds for Goldstones and gapped modes, does not hold for ω (p)=p2/2m 



We studied nonrelativistic limit and phenomenology of superfluidity and 
superconductivity.
Now study condensation of Bose excitations in non-uniform state  in uniformly 
moving  media.



Condensation of Bose excitations in non-uniform state  in uniformly 
moving  media

The spectrum of excitations in the 4He is shown in Fig. 1.
Landau critical velocity
For V>VL

c excitations may form condensate at k≈k0 .
at k≈k0≠0. 

In Fermi liquids at V>vF where vF is  Fermi velocity, zero 
sound excitations may form condensate, shown in Fig.2.
Cf. levons in cold atomic gases.

Related phenomena in open systems: 
shock wave after airplain at V>vsound, Cherenkov radiation 
for  V>cmed
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ω



The key idea: When a medium moves as a whole with velocity higher than VL
c 

respectively  laboratory frame, it may become energetically favorable to transfer a 
part of the momentum from ``normal’’particles of the moving medium or from 
moving walls to Bose condensate of excitations  with k0≠0 , if the spectrum of 
excitations is soft for k~k0≠0. In absence of excitations energy density of

mass density.

Seek field of condensate of excitations in the form 

condensate of excitations:
Energy density after condensation has occurred, is 

A part of initial momentum can be transferred to 

74

rectilinearly moving superfluid:



. Minimization yields

At λ→0, for arbitrary initial velocity V>VL
c resulting speed of medium tends to VL

c 
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Second-order phase transition. 



Thanks for attention!

Vacuum instabilities and  some phase transition phenomena have been studied on 
example of the scalar field theory. 





Dynamical symmetry breaking. Quantum fluctuations
In theories dealing with massless particles symmetry breaking may appear, as 
consequence of radiative corrections, S. Coleman, E. Weinberg  (1973).
Consider massless scalar field:

is the long-range scaled classical field, 
describes quantum fluctuations. In new variables

We are interested in quantities averaged over vacuum, such as 
Then linear and cubic terms can be dropped due to averaging of oscillations and



For constant fields

expanded up to quadratic terms.



Integration is associated with the loop,
-line-Green function of massless particle, 

corresponds to identical two external lines outgoing from each vertex, factor 
1/n in each closed diagram counts number of vertices.

½ since integration is done over the half-space (real ɸ was  expanded in  Fourier 
complex integral). Taylor series of ln- allows for  diagrammatic  presentation

(CW1)



So, taking into account quadratic fluctuations is equivalent to summation of all 
one-loop contributions in  effective potential:

Loop-expansion is equivalent to expansion over  a formal parameter a, 

Number of loops:

Each internal line brings one momentum integration, each vertex brings  δ-function 
of conservation of the entering momenta, besides one δ –function, common for all 
diagrams, and L coincides with the number of remaining integrations. Thus

Each propagator brings the factor a, since in Lagrangian it is inversely proportional 
to the operator                                      , vertex enters together with the factor 1/a.

(CW2)



The loop expansion is convenient in a sense that  result is not changed under  shift 
of fields, since expansion goes over the pre-factor in front of the Lagrangian. So, 
expansion in L can be constructed independently, whether the vacuum is realized 
on  the symmetry broken mode or not.

Employing Wick rotation

Renormalization can be performed adding to Lagrangian infinite contr-terms.

Using that

(CW3)

(CW4)



To get the renormalized Green function we put A=0. In order to have zero  
renormalized mass we require

Condition of the renormalization of the coupling constant can be rewritten as

M cannot be taken zero, since it enters as ln M.



Finally

Minimization in ɸc yields

thereby two-loop correction terms are not small and cannot be dropped.

For massive particles (CW3) holds after performing replacement
Results (CW1), (CW4) hold after replacement 
In the limit 

(CW6)

(CW5)



Employing Eq. (CW6) and sum

and taking derivative we get and recover

for the theory with potential 

at μ2<0 the free energy density 

Cf. slide 35.



Return to model 

Let now μ2=α(T-Tc)<0. Then Fourier component of free energy density is  

Separating fluctuation term (CW6) we have

Since fluctuations are important near critical point we have put T=Tc in coefficient
 at Matsubara summation. 

including fluctuations perturbatively.





Calculate contribution to specific heat 

Equating

we find width of fluctuation region



Fluctuation contribution for 4He



END
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