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Part II: • Fermi liquids
• Green’s function technique



We consider degenerate Fermi liquids in which both effects are important. 

In some systems, the nature of the degenerate gas is drastically modified by the particle 

interactions.  Such is the case, for instance, in a superconducting electron gas. 

Frequently, the interacting liquid retains many properties of the gas: it is then said to be 

normal. 

A normal Fermi liquid at T = 0 has a sharply defined Fermi surface  SF 

Its elementary excitations may be pictured as quasiparticles outside SF and quasiholes inside 

SF in close analogy with the single-particle excitations of a noninteracting Fermi gas. 

Such a resemblance explains why so many properties of the liquid can be interpreted in 

terms of a "one-particle approximation."

Fermi liquids

quasiparticles

quasiholes

For real fermion systems, the particle interaction and the exclusion principle act simultaneously. 



Let us now turn to the case of an interacting Fermi liquid. We are interested in the nature of its elementary excitations.

 

A "frontal“ attack on the problem involves the introduction of Green's functions, and the mathematical apparatus of many-

body perturbation theory. 

We start with an alternative approach, which consists in comparing the interacting "real" liquid with the noninteracting 

"ideal" gas; we establish a one-to-one correspondence between the eigenstates of the two systems.

Consider an eigenstate of the ideal system, characterized by a distribution function np. In order to establish a connection with the 

real system, we imagine that the interaction between the particles is switched on infinitely slowly. Under such "adiabatic" 

conditions, the ideal eigenstates will progressively transform into certain eigenstates of the

real interacting system. 

However, there is no a priori reason why such a procedure should generate all real eigenstates. For instance, it may well happen 

that the real ground state may not be obtained in that way (superconductors!)

We assume that the real ground state may be adiabatically generated starting from some ideal eigenstate with a distribution n0
p. 

This is the definition of a normal fermion system.

Excitation in Fermi liquids

For reasons of symmetry, the distribution n0
p of an isotropic system is spherical. As a result, the spherical Fermi surface is not 

changed when the interaction between particles is switched on: the real ground state is generated adiabatically from the ideal 

ground state. 

[David Pines, Philippe Nozieres, The Theory of  Quantum Liquids]



Let us now add a particle with momentum p to the ideal distribution n0
p  and, again, turn on the interaction between the 

particles adiabatically. We generate an excited state of the real liquid, which likewise has momentum p, since momentum is 

conserved in particle collisions. 

As the interaction is increased, we may picture the bare particle as slowly perturbing the particles in its vicinity; if the change 

in interaction proceeds sufficiently slowly, the entire system of N + 1 particles will remain in equilibrium. 

Once the interaction is completely turned on, we  find that our particle moves together with the surrounding particle

distortion brought about by the interaction. In the language of field theory, we would say that the particle is "dressed“ with a 

self-energy cloud. We shall consider the "dressed" particle as an independent entity, which we call a quasipartide. 

The above excited state corresponds to the real ground state plus a quasiparticle of momentum p.

Let SF be the Fermi surface characterizing the unperturbed distribution n0
p from which the real ground state is built up. 

Because of the exclusion principle, quasipartide excitations can be generated only if their momentum p lies outside SF. The 

quasipartide distribution in p space is sharply bounded by the Fermi surface SF.

Using the same adiabatic switching procedure, we can define a quasihole, with a momentum p lying inside the Fermi surface SF; 

we may do likewise for higher configurations involving several excited quasipartieles and quasiholes. The quasiparticles and 

quasiholes thus appear as elementary excitationsof the real system which, when combined, give rise to a large class of eicited 

states. We have established our desired one-to-one correspondence between ideal and real eigenstates.

[David Pines, Philippe Nozieres, The Theory of  Quantum Liquids]



interacting fermions system of quasi-particles

quantized excitations in the system

quasi-particles =/= original “bare” fermions [constituents of the system]

Landau wrote the Boltzmann eq.  for q.p distribution function:

equations of motion for q.p.

“generalized” velocity Newton’s law

[G.E. Brown, RMP 43, 1]
“I am indebted to Professor I. M. Khalatniltov for 

explaining this (Landau’s reasoning) to me.”



momentum flux density

Aim is to obtain conservation of total quasiparticle momentum

momentum conservation in collisions

[G.E. Brown, RMP 43, 1]



momentum conservation

E = energy density of the system

single particle mechanism of excitation!
[G.E. Brown, RMP 43, 1]

Assuming P, to be zero on the surfaces of the spatial volume integrated over



Now the energy of the system is a functional of occupation number of all of the quasiparticles.

If one varies many of the n(p) away from their equilibrium value by, e.g., exciting a collective excitation, then the resulting 

energy is a functional



Distribution function for quasiparticles

For any variation about thermodynamic equilibrium at finite temperature V is constant

Particle density Entropy density



Quasiparticle energy Some complicated function of p

Close to the Fermi surface

Fermi velocity Effective mass of the quasiparticle

Fermi momentum is related to the density

with the same precision O(p-pF) 

Density of states

at the Fermi surface

Heat capacity



Amplitude of particle transition from a point (x,t) to a point  (x’,t’)

N-body system: wave function of the whole system (x1,x2,…,xN)
                          encodes  the dynamics of all particles and is very complicated

Introduce the object which describes the dynamics of the reduced number of particles of interest

one-particle propagation

Green’s functions



If (x,t) obeys the  Schrödinger equation 

for homogeneous system :

eigenfunctions:

annihilation and creation operator



© Zagoskin

no interaction

infin

infin

finin



G(,p)particle

Gh(,p)=G(- ,p)

hole



particle density in the homogenous system

Particle momentum distribution

Momentum distribution of particles

Free Green’s function



Ground state:

in interaction picture:

transition from the ground state to the ground state under action of evolution operator

time ordering

Only one type of Green’s functions
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Coupling of the external field to a particle

and a hole



V

U

W

W

UT

VT

Tpp

Tph

2p-, 2h-irreducible interaction

[Wambach, Ainsworth,Pines NPA555]

vacuum NN potential



Parquet diagrams. 6th order

Jackson, Lande, Smith PR86



diagonal in spin-space

analogously for the hole-line

particle-line

particle-particle, particle-hole hole-hole interactions



pole residue

q.p. energy

q.p. effective mass

q.p. width

small for  T<<TF

complicated background part



Fermi surface is a topological object.

ideal gas

In 4D space (w,p) there is a singularity at (w=0,p=pF) [singular hyperline]
where this function is not defined! 

The phase of the Green’s function changes by 2p when 
one goes along a contour encircling this singular line. 
One can define a topological invariant [see book y G.E. 
Volovik, The Universe in a helium droplet] The singular-
line is topologically protected  and thus robust against 
perturbations

(normal) Fermi liquid



Migdal  jump

a
Fermi surface exists even for the strongly interacting systems!



UU



singular pole term

complicated

background

particle-hole propagator ….

UU



1 2

complicated dynamics is here:

parameterize Landau-Migdal parameters

UU

extracted from experiment



In nuclear physics one uses also the normalization on the nuclear Fermi surface

constant, independent of density

density of states at the Fermi surface

number of fermion types

neutron matter:

nuclear matter:

(1 parameter in each channel) 

(3 parameters in each channel) 

In matter of arbitrary isospin composition these parameters are independent.

Fermi-liquid renormalization is different for these parameters.

small isospin disballance 

(2 parameters in each channel) 

Density dependence? Residual momentum dependence                     ?



In general Landau parameter are to be fitted to empirical information (nucleus properties)

effective mass

compressibility

symmetry energy

There are relations between some Landau parameters and bulk properties of the system



particle-hole interaction

Sounds in Fermi liquid

single-particle excitation mechanism

system of strongly interacting fermions (no pairing)

quasiparticle 

short-range long-range

Landau parameters

n n’
on Fermi surface

particle-hole propagator

pole parts



Solutions for zeroth harmonics

keep only zeroth harmonics

Lindhard function



Lindhard function

Imaginary part

Results of expansions depends on the expansion order:

Temperature corrections



Particle-hole interaction in the scalar channel

Lindhard function

solutions of equation: 
spectrum of excitations in

the scalar channel w(k)

for

with

(zero-sound modes)

scalar channel zeroth harmonics



Scalar modes in Fermi liquid

I. zero-sound modes

residual momentum dependence



the mode growth rate is determined by 

III.

II. “diffuson”

stable mode k/p<<1F expansion



Nucleon-nucleon interaction

several scales are involved

1

2

rp1

p2

non-relativistic description

vector mesons:              mw,r~800 MeV ,         r~0.24 fm

correlated 2p exchange: m~200-600 MeV   r~0.3—1fm

1-pion  exchange:         m¼=140 MeV              r~1.4 fm

Equilibrium density of an atomic nucleus n0=0.16 fm-3       
 inter-nuclear distance  (n0)-1/3=1.8 fm

+

relativistic description



Weizsäcker’s semiempirical mass formula

1932 Liquid-drop model of a nucleus:

volume e. surface e. symmetry e. Coulomb e. pairing e.



Neglect electric charge of protons: isospin symmetry.

We want to distribute A nucleons

neutrons protons

0

A

neutrons protons

A/2 A/2

Two Fermi seas are better than one Fermi sea!
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Infinite nuclear matter

Energy density of the infinite nuclear matter as function of the proton and 

neutron densities:

Binding energy per nucleon:

Pressure:

chemical potentials:

where, total density, proton fraction

1) make A, V, big by keep         ing                                                     fixed 

2) switch off electromagnetic interaction

3)  

T=0



Symmetry energy:ISM energy:

Two definitions of the symmetry energy: 

(1) and (2)

local NS applications

If the derivative                      is very small, then both definitions are equivalent

Infinite nuclear matter. Symmetry energy



symmetry energy

There is a correlation among parameters: J, L, Ksym

Equation of state of nuclear matter



• Correlations among parameters

n0 vs E0 –Coester line problem: role of TNF, 

relativistic effects, chiral forces 

low-density parameters

• Stiffness of EoS

frequently characterized by  compressibility modulus K

saturation density  n0 and binding energy E0

Giant Monopole Resonance (GMR)



Correlations among parameters L-J

J (MeV)

Masses: UNEDF0 Skyrme DF+BHF

[Kortelainen et al., PRC 82, 024313 (2010)]

Isobaric analog states+isovector skin:

[Danielewicz et al. NPA 958, 147 (2017)]

Pb dipole polarizability: 

[Roca-Maza et al., PRC 88, 024316 (2013)]

Sn neutron skin:

[Chen et al., PRC 82, 024321 (2010)]

GDR:

[Trippa et al., PRC 77, 061304 (2008)]

Isospin defusion in HIC

[Tsang et al., PRL 102, 122701 (2009)]

Behind all calculation are particular models for NN interactions and  many-body techniques 

Lattimer Lim plot



[Dong, et al PRC85, 034308 (2012)]

If we assume some model for the density dependence of the symmetry energy

Analysis of 36 RMF models gives

Eliminate C1 and C2



Relativistic mean-field models

vacuum: one boson-exchange for NN-potential 
+ Lippmann-Schwinger equations 

nucleon-nucleon interaction

a model

nucleon sources 

for meson fields



medium: mean-field approximation

pion dynamics falls out completely in this approx.[Serot, Walecka]

(vector) density

scalar density

nucleon spectrum in MF approximation



Energy-density functional

evaluated for s-field followed from the equation

If we add gradient terms this energy density 
functional can be used for 
a description of properties of atomic nuclei.



(pure) Walecka model U(s)=0

Hardest EoS among RMF models 

modified Walecka U(s)=as3+bs4

maximal mass of NS

weak dependence on K !
strong dependence on m*N

PSR J1614-2230





pion with residual (irreducible in NN-1 and  N-1) s-wave p N 
interaction and pp scattering``

Part of the interaction involving  isobar is  analogously constructed:



Graphically, the resummation is straightforward and yields:

full pion propagator

Poles yield zero-sound modes in scalar and spin channels

dressed vertex



quasi-particle modes

“pion gap”

pion propagator has a complex pole 

when 

pion condensationinstability

[A.B.Migdal et al, Phys. Rept. 192 (1990) 179]
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