QCD matter on a lattice

V. Braguta

JINR
30 January, 2024

Outline:

- Introduction
- Statistical mechanics
- QED as a gauge theory
- Building gluodynamics and QCD
- Lattice gluodynamics
- Lattice QCD
- Numerical methods of lattice QCD
- Applications

Partition function

- Partition function:
$Z=\sum_{n} e^{-\frac{E_{n}}{T}}=\sum_{n}\langle n| e^{-\frac{\hat{H}}{T}}|n\rangle=\operatorname{Tr}\left[e^{-\frac{\hat{H}}{T}}\right]$
- Free energy:

$$
F=-T \log Z=E-T S, \quad Z=e^{-\frac{F}{T}}
$$

- Probability to find a system at the n-th level:
$P_{n}=\frac{e^{-\frac{E_{n}}{T}}}{Z}$
- $\langle O\rangle=\sum_{n} P_{n}\langle n| \hat{O}|n\rangle=\frac{1}{Z} \sum_{n}\langle n| O|n\rangle e^{-\frac{E_{n}}{T}}$
- Z contains an important information about system:
- $\langle E\rangle=T^{2} \frac{\partial \log Z}{\partial T}=-T^{2} \frac{\partial}{\partial T}\left(\frac{F}{T}\right)$
- $p=-\frac{\partial F}{\partial V}$
- $S=\frac{\partial T \log Z}{\partial T}=-\frac{\partial F}{\partial T}$

Path integral formulation for partition function

- $Z=\operatorname{Tr}\left[e^{-\frac{\mathscr{H}}{T}}\right]=\sum_{q}\langle q| e^{-\frac{\mathscr{H}}{T}}|q\rangle=\int d q\langle q| e^{-\frac{\mathscr{H}}{T}}|q\rangle$
- Quantum evolution in time: $\left\langle q^{\prime}\right| e^{-i \frac{\hat{H}}{\hbar} t}|q\rangle, q(0)=q, q(t)=q^{\prime}$
- Z looks like quantum evolution in Euclidean time
$t=-i \tau=-i \frac{1}{T}, q(0)=q, q\left(\tau=\frac{1}{T}\right)=q$
- $Z \sim \lim _{N \rightarrow \infty} \int \prod_{\tau=1}^{N} d q(\tau) e^{-S_{E}}$

$$
S_{E}=\int_{0}^{1 / T} d \tau\left(\frac{m \dot{q}(\tau)^{2}}{2}+V(q(\tau))\right), \quad q(0)=q\left(\tau=\frac{1}{T}\right)=q
$$

N degrees of freedom

- $q_{i}(\tau), i=1 . . N$
- $Z \sim \int \prod_{\tau} \prod_{i=1}^{N} d q_{i}(\tau) e^{-S_{E}}$

$$
S_{E}=\int_{0}^{1 / T} d \tau\left(\frac{m \sum_{i} \dot{q}_{i}(\tau)^{2}}{2}+V\left(q_{i}(\tau)\right)\right), \quad q_{i}(0)=q_{i}\left(\tau=\frac{1}{T}\right)=q_{i}
$$

Partition function for φ^{4}-theory

- Field theory:
- $q_{i}(\tau) \rightarrow \varphi(\vec{x}, \tau)$
- $i \rightarrow \vec{x}$
$>\sum_{i} \rightarrow \int d^{3} x$
- $S=\int d t d^{3} x\left(\frac{1}{2}\left(\nabla_{t} \varphi\right)^{2}-\frac{1}{2}(\vec{\nabla} \varphi)^{2}-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4}\right)$
- Mechanics:

$$
\begin{aligned}
& Z \sim \int \prod_{\tau} \prod_{i=1}^{N} d q_{i}(\tau) e^{-S_{E}} S_{E}=\int_{0}^{1 / T} d \tau\left(\frac{m \sum_{i} \dot{q}_{i}(\tau)^{2}}{2}+V\left(q_{i}(\tau)\right)\right), \\
& q_{i}(0)=q_{i}\left(\tau=\frac{1}{T}\right)=q_{i}
\end{aligned}
$$

- Field theory:
$Z \sim \int \prod_{\tau} \prod_{\vec{x}} d \varphi(\tau, \vec{x}) e^{-S_{E}}$
$S_{E}=\int d \tau d^{3} x\left(\frac{1}{2}\left(\nabla_{\tau} \varphi\right)^{2}+\frac{1}{2}(\vec{\nabla} \varphi)^{2}+\frac{m^{2}}{2} \varphi^{2}+\frac{\lambda}{4!} \varphi^{4}\right)$,
$\varphi(\vec{x}, 0)=\varphi\left(\vec{x}, \tau=\frac{1}{T}\right)=\varphi(\vec{x})$

Elementary particles

Standard Model of Elementary Particles

Building QED

- Interaction of charged particles
- Gauge transformation:

$$
\psi(x) \rightarrow S(x) \psi(x), S(x)=e^{i f} \in U(1)
$$

- Covariant derivative:

$$
\begin{aligned}
& \partial_{\mu} \psi \rightarrow S \partial_{\mu} \psi+\left(\partial_{\mu} S\right) \psi=S\left(\partial_{\mu}+\left(S^{-1} \partial_{\mu} S\right)\right) \psi \\
& A_{\mu} \rightarrow A_{\mu}-i \partial_{\mu} S S^{-1}=A_{\mu}+\partial_{\mu} f \\
& \partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i A_{\mu}, D_{\mu} \psi \rightarrow S D_{\mu} \psi
\end{aligned}
$$

- $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, F_{\mu \nu} \rightarrow F_{\mu \nu}$ electric field: $F_{0 x}=E_{x}, F_{0 y}=E_{y}, F_{0 z}=E_{z}$ magnetic field: $F_{x y}=-H_{z}, F_{y z}=H_{x}, F_{x z}=-H_{y}$
- QED action: $S=\int d^{4} x\left[-\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi\right]$
- Coupling constant: $\alpha_{e m}=\frac{e^{2}}{4 \pi \hbar c} \simeq \frac{1}{137} \ll 1$

Maxwell equations

$$
\begin{aligned}
\operatorname{div} E & =4 \pi \rho \\
\operatorname{div} H & =0 \\
\operatorname{rot} E & =-\frac{1}{c} \frac{\partial H}{\partial t} \\
\operatorname{rot} H & =\frac{4 \pi}{c} j+\frac{1}{c} \frac{\partial E}{\partial t}
\end{aligned}
$$

- Maxwell equations are linear

Building QCD

- New quantum number: $\psi=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)$
- Interactions of particles with the color
- Gauge transformation: $\psi(x) \rightarrow S(x) \psi(x), \quad S(x) \in S U(3)$
- Covariant derivative:

$$
\begin{aligned}
& \partial_{\mu} \psi \rightarrow S \partial_{\mu} \psi+\left(\partial_{\mu} S\right) \psi=S\left(\partial_{\mu}+\left(S^{-1} \partial_{\mu} S\right)\right) \psi \\
& \hat{A}_{\mu} \rightarrow S \hat{A}_{\mu} S^{-1}-i \partial_{\mu} S S^{-1} \quad \hat{A}_{\mu}=t^{a} A_{\mu}^{a}, a=1 \ldots 8 \\
& \partial_{\mu} \rightarrow \hat{D}_{\mu}=\partial_{\mu}+i \hat{A}_{\mu}, \hat{D}_{\mu} \psi \rightarrow S \hat{D}_{\mu} \psi
\end{aligned}
$$

Generators of $S U(3)$

$$
\begin{gathered}
\hat{A}_{\mu}=t^{a} A_{\mu}^{a}, \quad t^{a}=\frac{\lambda^{a}}{2}, a=1 \ldots 8 \\
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \\
\lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{gathered}
$$

Building QCD

- $\hat{F}_{\mu \nu}=t^{a} F_{\mu \nu}^{a}=\partial_{\mu} \hat{A}_{\nu}-\partial_{\nu} \hat{A}_{\mu}+\left[\hat{A}_{\mu}, \hat{A}_{\nu}\right], \hat{F}_{\mu \nu} \rightarrow S^{-1} \hat{F}_{\mu \nu} S$ chromo-electric field: $F_{0 x}^{a}=E_{x}^{a}, F_{0 y}^{a}=E_{y}^{a}, F_{0 z}^{a}=E_{z}^{a}$ chromo-magnetic field: $F_{x y}^{a}=-H_{z}^{a}, F_{y z}^{a}=H_{x}^{a}, F_{x z}^{a}=-H_{y}^{a}$
- QCD action: $S=\int d^{4} x\left[-\frac{1}{2 g^{2}} \operatorname{Tr} \hat{F}_{\mu \nu} \hat{F}^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \hat{D}_{\mu}-m\right) \psi\right]$
- Coupling constant: $\alpha_{s}=\frac{g^{2}}{4 \pi \hbar c} \sim 1$

Maxwell equations in QCD

$$
\begin{aligned}
\operatorname{div} E^{a} & =4 \pi \rho^{a}+f_{1}(E, H, \ldots) \\
\operatorname{div} H^{a} & =0+f_{2}(E, H, \ldots) \\
\operatorname{rot} E^{a} & =-\frac{1}{c} \frac{\partial H^{a}}{\partial t}+f_{3}(E, H, \ldots) \\
\operatorname{rot} H^{a} & =\frac{4 \pi}{c} j^{a}+\frac{1}{c} \frac{\partial E^{a}}{\partial t}+f_{4}(E, H, \ldots)
\end{aligned}
$$

- Maxwell equations for QCD are nonlinear

Quantum chomodynamics(QCD)

- Degrees of freedom: Quarks q, gluons A
- QCD Lagrangian

$$
L=-\frac{1}{4} \sum_{a=1}^{8} F_{a}^{\mu \nu} F_{\mu \nu}^{a}+\sum_{f=u, d, s, \ldots} \bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q_{f}+g \sum_{f=1}^{N_{f}} \bar{q}_{f} \gamma^{\mu} \hat{A}_{\mu} q_{f}
$$

- Nonlinear equation of motion with $\alpha_{s} \sim 1$
- The most complicated physical theory
- QCD Lagrangian is well known but the calculations are not possible
- In particular: Confinement from QCD lagrangian is a millenium problem
- Reliable results can be obtained on modern supercomputers

Lattice simulation of QCD

- Allows to study strongly interacting nonlinear systems
- Based on the first principles of quantum field theory
- Most effective approach due to supercomputers and algorithms

Lattice set up

- Lattice coordinates $x_{\mu}=a\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$
- $n_{i} \in\left[0, L_{s}-1\right], i=1,2,3 \quad n_{4} \in\left[0, L_{t}-1\right]$
- a-lattice spacing, the size of lattice $L_{s}^{3} \times L_{t}$
- $\varphi(x)$ "live" at the lattice nodes
- Impose periodic boundary conditions for spatial directions
- Bosons: Impose periodic boundary condition for τ-direction
- Fermions: Impose antiperiodic boundary condition for τ-direction

Lattice φ^{4}-theory

- Derivatives on the lattice ($\hat{\mu}$ unit vector in μ direction)

$$
\begin{aligned}
\Delta_{\mu}^{f} f(x) & =\left.\frac{1}{a}(f(x+a \hat{\mu})-f(x))\right|_{a \rightarrow 0}=f^{\prime}(x) \\
\Delta_{\mu}^{b} f(x) & =\left.\frac{1}{a}(f(x)-f(x-a \hat{\mu}))\right|_{a \rightarrow 0}=f^{\prime}(x)
\end{aligned}
$$

- Lattice action for φ-theory

$$
\begin{array}{r}
S_{l}=\frac{1}{2} \sum_{\mu=1,2,3,4} \sum_{x} a^{4}\left(\Delta_{\mu}^{f} \varphi\right)^{2}+\frac{m^{2}}{2} \sum_{x} a^{4} \varphi^{2}+\frac{\lambda}{4!} \sum_{x} a^{4} \varphi^{4}= \\
=\frac{1}{2} \sum_{\mu=1,2,3,4} \sum_{x} a^{2}(\varphi(x+a \hat{\mu})-\varphi(x))^{2}+\frac{m^{2}}{2} \sum_{x} a^{4} \varphi^{2}+\frac{\lambda}{4!} \sum_{x} a^{4} \varphi^{4}
\end{array}
$$

- $Z_{l} \sim \int \prod_{\tau} \prod_{\vec{x}} d \varphi(\tau, \vec{x}) e^{-S_{l}}$
- Continuum limit $a \rightarrow 0: Z_{l} \rightarrow Z_{\varphi^{4}}$

Building lattice gluodynamics

- Suppose one has a gauge theory
- $\psi(x) \rightarrow S(x) \psi(x)$
- How one can build lattice derivative?

$$
\begin{aligned}
& \Delta_{\mu}^{f} \psi(x)=\frac{1}{a}(\psi(x)(x+a \hat{\mu})-\psi(x)) \\
& \Delta_{\mu}^{f} \psi(x) \rightarrow \frac{1}{a}(S(x+a \hat{\mu}) \psi(x+a \hat{\mu})-S(x) \psi(x))
\end{aligned}
$$

- We would like to have

$$
\begin{aligned}
& \Delta_{\mu}^{f} \psi(x) \rightarrow S(x) \Delta_{\mu}^{f} \psi(x) \\
& \left.\Delta_{\mu}^{f} \psi(x)\right|_{a \rightarrow 0}=D_{\mu} \psi
\end{aligned}
$$

- Parallel transporter $U(C)$:

$$
\Delta_{\mu}^{f} \psi(x)=\frac{1}{a}(U(x, x+a \hat{\mu}) f(x+a \hat{\mu})-f(x))
$$

Parallel transport in gauge theory

$$
\psi(y)=U\left(C_{y x}\right) \psi(x), \quad U\left(C_{x y}\right) \in S U(3)
$$

- $U(0)=1$
- $U\left(C_{2} * C_{1}\right)=U\left(C_{2}\right) \cdot U\left(C_{1}\right)$
- $U(-C)=U(C)^{-1}$
- $\psi^{\prime}(y)=S(y) \psi(y), \quad \psi^{\prime}(x)=S(x) \psi(x)$ $\psi^{+}(y) U\left(C_{y x}\right) \psi(x)$ is gauge invariant $U\left(C_{y x}\right) \rightarrow S(y) U\left(C_{y x}\right) S^{-1}(x)$

Parallel transport in gauge theory

- Covariant derivative:

$$
\begin{aligned}
& D_{\mu}^{l} \psi(x) d x^{\mu}=U\left(C_{x, x+d x}\right) \psi(x+d x)-\psi(x) \\
& \left.D_{\mu}^{l} \psi(x)\right|_{a \rightarrow 0}=\left(\partial_{\mu}+i A_{\mu}\right) \psi(x)
\end{aligned}
$$

- $U\left(C_{x+d x, x}\right)=1-i \hat{A}_{\mu} d x^{\mu}=1-i t^{a} A_{\mu}^{a} d x^{\mu}$,
- $d U\left(C_{s}\right)=\left(-i A_{\mu} d x^{\mu}\right) U\left(C_{s}\right)$
$U(C)=P \exp \left(-i \int_{C} d x^{\mu} A_{\mu}\right)=$
$U\left(x_{N}, x_{N-1}\right) \ldots U\left(x_{2}, x_{1}\right) U\left(x_{1}, x_{0}\right)$

Building lattice gluodynamics

- Lattice spacing- a
- Degrees of freedom:

$$
U_{\mu}(n)=\left.P \exp \left(-i \int_{C} d x^{\mu} \hat{A}_{\mu}\right)\right|_{a \rightarrow 0}=e^{i a \hat{A}_{\mu}(n)}
$$

Building lattice gluodynamics

- $U_{\mu \nu}(x)=U_{\nu}^{-1}(n) U_{\mu}^{-1}(x+\hat{\nu}) U_{\nu}(x+\hat{\mu}) U_{\mu}(n)$
- $\left.U_{\mu \nu}(n)\right|_{a \rightarrow 0}=\exp \left(i a^{2} \hat{F}_{\mu \nu}\right)$
- $S_{l}=\left.\frac{2}{g^{2}} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(n)\right]\right|_{a \rightarrow 0}=$ $\frac{a^{4}}{2 g^{2}} \sum_{n} \sum_{\mu \nu} \operatorname{Tr} \hat{F}_{\mu \nu}^{2} \rightarrow \frac{1}{2 g^{2}} \int d^{4} x \operatorname{Tr} \hat{F}_{\mu \nu}^{2}$

Building lattice gluodynamics

- $S_{l}=\frac{\beta}{3} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(n)\right]$
- Inverse coupling constant: $\beta=\frac{6}{g^{2}}$
- Partition function of gluodynamics

$$
Z_{l}=\int \prod_{n, \mu} d U_{\mu}(n) e^{-S_{l}}
$$

- Gauge theory: $U(n)_{\mu} \rightarrow S(x+a \mu) U_{\mu}(n) S^{-1}(x)$
- One can prove that $\left.Z_{l}\right|_{a \rightarrow 0} \rightarrow Z_{\text {gluodynamics }}$

Haar measure

- $\int_{G} d U f(U)=\int_{G} d U f(V U)=\int_{G} d U f(U V)$
- $\int_{G} d U=1$
- $\int_{G} d U f(U)=\int_{G} d U f\left(U^{-1}\right)$

Gauge fixing

- $U_{\mu}^{\prime}(n)=S(n+\mu) U_{\mu}(n) S^{-1}(n)=1$
- Temporal gauge: $U_{4}(n)=1, \quad A_{4}=0$

Phase transition in gluodynamics

Experience from φ^{4}-theory

- Local order parameter: $\langle\varphi\rangle$
- Low temperature phase: $\langle\varphi\rangle \neq 0$
- High temperature phase: $\langle\varphi\rangle=0$

Phase transition in gluodynamics

- $S_{l}=\frac{\beta}{3} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(n)\right]$
- Try local order parameter: $\left\langle U_{i j}\right\rangle$, but $\int_{G} d U U_{i j}=0$

Wilson loop

- Wilson loop
$W(C)=\operatorname{Tr} P \exp \left(i \int_{\mathrm{C}} d x^{\mu} \hat{A}_{\mu}\right)=\operatorname{Tr} \prod_{C} U_{\mu}(x)$
- Nonlocal gauge invariant object
- Low temperature phase: $\langle W(C)\rangle \sim e^{-\sigma S}$
- High temperature phase: $\langle W(C)\rangle \sim e^{-\kappa P}$

Wilson loop

- Gauge $U_{i}(x)=1$
- $W(C)=\operatorname{Tr} P \exp \left(i \int_{0}^{T} d \tau \hat{A}_{4}(0, \tau)\right) P \exp \left(-i \int_{0}^{T} d \tau \hat{A}_{4}(r, \tau)\right)$
- Experience from QED: $S_{i n t}=\int d \tau d^{3} x J^{\mu} A_{\mu}$
- $J^{\mu}=\delta^{3}(\vec{x}) \delta_{\mu 4}-\delta^{3}(\vec{x}-\vec{r}) \delta_{\mu 4}$

$$
S_{i n t}=\int d \tau A_{4}(0, \tau)-\int d \tau A_{4}(\vec{r}, \tau)
$$

Wilson loop

- $\langle W\rangle=\left\langle e^{-S_{i n t}}\right\rangle \sim e^{-T V(r)}$
- $V(r)=-\lim _{T \rightarrow \infty} \frac{1}{T} \log \langle W(C)\rangle$
- Confinement phase(low temperature):
$V(r)=-\lim _{T \rightarrow \infty} \frac{1}{T} \log e^{-\sigma r T}=\sigma r$

Confinement potential

Polyakov line

φ^{4}-theory

- $V(\varphi)=-\frac{m^{2}}{2} \varphi^{2}+\frac{\lambda}{4!} \varphi^{4}$
- Order parameter: $\langle\varphi\rangle$
- Z_{2}-symmetry: $\varphi \rightarrow(\pm 1) \varphi$
- $V(\varphi)$ is invariant but not the $\langle\varphi\rangle$
- Low temperature phase Z_{2} is broken
- High temperature phase Z_{2} is restored

Polyakov line

Gluodynamics

- $S_{l}=\frac{\beta}{3} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(n)\right]$
- Polyakov line: $\langle P(\vec{x})\rangle=\operatorname{Tr} P \exp \left(i \int_{0}^{T} d x^{4} \hat{A}_{4}\left(\vec{x}, x^{4}\right)\right)$
- It is gauge invariant because periodic boundary conditions
- Z_{3} symmetry: $U \rightarrow e^{2 \pi k / 3 i} U, k=0,1,2$
- S_{l} is invariant but not the $\langle P(\vec{x})\rangle$
- $P=e^{-F_{Q} / T}$
- Low temperature phase: $\langle P(\vec{x})\rangle=0, F_{Q}=\infty$, i.e. Z_{3} is restored
- High temperature phase $\langle P(\vec{x})\rangle \neq 0, F_{Q}=$ finite, , i.e. Z_{3} is broken

Polyakov line

*hep-lat/0506019

Building lattice QCD

- 4-dimensional lattice: $L_{s} \times L_{s} \times L_{s} \times L_{t}=L_{s}^{3} \times L_{t}$
- Lattice spacing-a
- $S=\frac{\beta}{3} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(n)\right]+\bar{\psi}(\hat{D}(U)+m) \psi$
- $Z_{l}=\int \prod d U d \bar{\psi} d \psi e^{-S_{l}}=$
$\int \prod d U e^{-S_{G}(U)} \prod_{i=u, d, s \ldots} \operatorname{det}\left(\hat{D}_{i}(U)+m_{i}\right)=$ $\int \prod d U e^{-S_{e f f}(U)}$

Lattice simulation of QCD

- We study QCD in thermodynamic equilibrium
- The system is in the finite volume
- Calculation of the partition function
$Z \sim \int D U e^{-S_{G}(U)} \prod_{i=u, d, s \ldots} \operatorname{det}\left(\hat{D}_{i}(U)+m_{i}\right)=\int D U e^{-S_{e f f}(U)}$
- Monte Carlo calculation of the integral
- Carry out continuum extrapolation $a \rightarrow 0$
- Uncertainties (discretization and finite volume effects) can be systematically reduced
- The first principles based approach. No assumptions!
- Parameters: g^{2} and masses of quarks

Modern lattice simulation of QCD

$$
Z_{l} \sim \int D U e^{-S_{e f f}(U)}
$$

- Lattices
- 96×48^{3}
- Variables: $96 \cdot 48^{3} \cdot 4 \cdot 8 \sim 300 \cdot 10^{6}$
- Matrices: $100 \cdot 10^{6} \times 100 \cdot 10^{6}$
- Dynamical u, d, s, c-quarks
- Physical masses of u, d, s, c-quarks
- Lattice spacing $a \sim 0.05 \mathrm{fm}$

Monte Carlo method

- We calculate the integral: $I=\int_{+\infty}^{-\infty} d x \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}=\int_{+\infty}^{-\infty} d x f(x)=1$
- Generate the sequence of random numbers: $\left(x_{1}, x_{2}, x_{3}, \ldots x_{N}\right)$ in the region $x \in[-c, c]$
- $I_{N}=\frac{2 c}{N} \sum_{i=1}^{N} f\left(x_{i}\right)$
- $\lim _{N \rightarrow \infty} I_{N}=I$
- $I_{10}=0.8836, \quad I_{100}=1.0708, \quad I_{1000}=0.9807, \quad I_{10000}=0.9983$, $I_{100000}=1.0018$

Monte Carlo method

- We calculate the integral: $I=\int_{+\infty}^{-\infty} d x \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}=\int_{+\infty}^{-\infty} d x f(x)=1$
- Generate the sequence of random numbers: $\left(x_{1}, x_{2}, x_{3}, \ldots x_{N}\right)$ in the region $x \in[-c, c]$
- $I_{N}=\frac{2 c}{N} \sum_{i=1}^{N} f\left(x_{i}\right)$
- $\lim _{N \rightarrow \infty} I_{N}=I$
- $I_{10}=0.8836, \quad I_{100}=1.0708, \quad I_{1000}=0.9807, \quad I_{10000}=0.9983$, $I_{100000}=1.0018$
- Not very effective!

Metropolis algorithm

Calculation of the $\int d x e^{-S(x)}, \quad S(x)=\frac{x^{2}}{2}$

- The first approximation $x_{0}=0$
- Choose randomly $\Delta x \in[-c, c]$
- $x^{\prime}=x_{k}+\Delta x$
- Metropolis algorithm(accept/reject procedure):
$\Delta S=S\left(x^{\prime}\right)-S\left(x_{k}\right)$. If $\Delta S<0, \quad S\left(x^{\prime}\right)<S\left(x_{k}\right)$, then $x_{k+1}=x^{\prime}$. Else, x^{\prime} is accepted with probability: $e^{-\Delta S}$.
- In practice: generate a random number $r \in[0,1]$. If $r<e^{-\Delta S}$, then $x_{k+1}=x^{\prime}$, else $x_{k+1}=x_{k}$.

Metropolis algorithm

Figure 2: The distribution of $x^{(1)}, x^{(2)}, \cdots, x^{(n)}$, for $n=10^{3}, 10^{5}$ and 10^{7}, and $\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$.

Metropolis algorithm for gluodynamics

- We calculate $Z=\int \prod d U e^{-S_{l}}$

$$
S_{l}=\frac{\beta}{3} \sum_{n} \sum_{\mu<\nu} \operatorname{ReTr}\left[1-U_{\mu \nu}(n)\right]
$$

- The first approximation: $\left\{U_{0}\right\}=\hat{1}$
- Choose randomly $V \in S U(3)$
- $U^{\prime}=V U_{k}$
- Metropolis algorithm(accept/reject procedure):
$\Delta S_{l}=S_{l}\left(U^{\prime}\right)-S_{l}\left(U_{k}\right)$. If $\Delta S<0$, then accept U^{\prime}. Else, U^{\prime} is accepted with probability: $e^{-\Delta S_{l}}$ (quantum fluctuations).

Hybrid Monte Carlo method (HMC)

- HMC method is brownian motion
- accept/reject procedure:
with probability $p \sim e^{-\Delta S}, \quad \Delta S=S_{\text {eff }}\left(U_{\text {new }}\right)-S_{\text {eff }}\left(U_{\text {old }}\right)$

Hybrid Monte Carlo method

- For sufficiently large number of steps the distribution is
$\sim \exp \left(-\mathbf{S}_{\mathrm{eff}}(\mathbf{U})\right)$

Applications

- Spectroscopy
- Matrix elements and correlations functions
- Thermodynamic properties of QCD
- Transport properties of QCD
- Phase transitions
- Nuclear physics
- Properties of QCD under extreme conditions (magnetic field, baryon density, relativistic rotation,...)
- Topological properties
- ...

