QCD matter on a lattice

V. Braguta

JINR
1 February, 2024

Applications

- Spectroscopy
- Matrix elements and correlations functions
- Thermodynamic properties of QCD
- Transport properties of QCD
- Phase transitions
- Nuclear physics
- Properties of QCD under extreme conditions (magnetic field, baryon density, relativistic rotation,...)
- Topological properties
- ...

Wilson loop at strong coupling

- $S_{l}=-\sum_{p} \frac{\beta}{6}\left(\operatorname{Tr} U_{P}+\operatorname{Tr} U_{P}^{+}\right), \beta=\frac{6}{g^{2}}$
- Strong coupling limit $g \rightarrow \infty$, i.e. $\beta \rightarrow 0$
- $Z=\int D U e^{-S_{l}}=\int D U\left(\sum_{n} \frac{1}{n!}\left(-S_{l}\right)^{n}\right)$ $\langle W(C)\rangle=\frac{1}{Z} \int D U \prod_{C} U_{\mu}(n)\left(\sum_{n} \frac{1}{n!}\left(-S_{g}\right)^{n}\right)$
- $\int d U=1, \quad \int d U U_{i j}=0, \quad \int d U U_{i j} U_{k l}^{-1}=\int d U U_{i j} U_{k l}^{+}=\frac{1}{3} \delta_{i l} \delta_{j k}$
- $W(C)=\left(\frac{\beta}{18}\right)^{S_{l}}=e^{-\sigma_{l} S_{l}}, \quad \sigma_{p h y s}=\frac{\sigma_{l}}{a^{2}}=-\frac{1}{a^{2}} \log \left(\frac{\beta}{18}\right)$

Wilson loop at strong coupling

- $W(C)=\left(\frac{\beta}{18}\right)^{S_{l}}\left(1+4 S_{l}\left(\frac{\beta}{18}\right)^{4}\right)=\left(\frac{\beta}{18}\right)^{S_{l}} e^{4 S_{l}(\beta / 18)^{4}}$
- $W(C)=\left(\frac{\beta}{18}\right)^{S_{l}}\left(1+4 S_{l}\left(\frac{\beta}{18}\right)^{4}+12 S_{l}\left(\frac{\beta}{18}\right)^{5}+\right)=\left(\frac{\beta}{18}\right)^{S_{l}} e^{4 S_{l}(\beta / 18)^{4}+12 S_{l}(\beta / 18)^{5}}$

Wilson loop at strong coupling

- $\sigma_{p h y s} a^{2}=-\log u-4 u^{4}-12 u^{5}+10 u^{6}+\ldots, \quad u=\frac{\beta}{18}$
- $V(r)=\sigma_{p h y s} r$
- There is confinement at strong coupling

Renormalization group at strong coupling

- RG: different lattice spacings give the same physics $\left\{\beta_{1}, a_{1}\right\},\left\{\beta_{2}, a_{2}\right\},\left\{\beta_{3}, a_{3}\right\}, \ldots$ but $\sigma_{p h y s}=\frac{\sigma_{l}(g(a))}{a^{2}}$
- $\sigma_{\text {phys }} a^{2}=-\log u-4 u^{4}-12 u^{5}+10 u^{6}+\ldots, \quad u=\frac{\beta}{18}=\frac{1}{3 g^{2}}$
- β-функция: $\left.\frac{d \sigma_{\text {phys }}}{d a}\right|_{a \rightarrow 0}=0$
$\frac{d g^{2}}{d \ln a^{2}}=g^{2} \ln 3 g^{2}$
- g decreases in the continuum limit $\left.g\right|_{a \rightarrow 0} \rightarrow \frac{1}{\sqrt{3}}$

Correct continuum limit

- Weak coupling limit $g \rightarrow 0$
- $\sigma_{p h y s}=\frac{1}{a^{2}} f(g),\left.\quad \frac{d \sigma_{p h y s}}{d l_{0} a^{2}}\right|_{a \rightarrow 0}=0$
$>-f(g)+\frac{d f}{d g} \frac{d g}{d \log a^{2}}=0, \quad \frac{d g}{d \log a^{2}}=\frac{11}{6} \frac{N}{16 \pi^{2}} g^{3}$
- $\sigma \sim \frac{1}{a^{2}} \exp \left(-\frac{6 \pi^{2}}{11} \beta\right), \quad \beta=\frac{4}{g^{2}}$

Confinement in lattice simulation

- Small distances: $V(r)=-\frac{4}{3} \frac{\alpha_{s}(r)}{r}$

Asymptotic freedom $\alpha_{s}(r) \sim-\left.\frac{1}{\log \Lambda r}\right|_{r \rightarrow 0} \rightarrow 0$

- Large distances $V(r)=\sigma_{\text {phys }} r$ - Confinement $F=\sigma \simeq 160000 \mathrm{~N}$
- To separate quarks one needs infinite energy

Confinement in lattice simulation

String breaking

String breaking

- The string is not broken
- The string is broken

Polyakov line

- Fermions violate Z_{3} symmetry

QCD vacuum

- Is vacuum an empty space $(\epsilon=0)$?

QCD vacuum

- Is vacuum an empty space $(\epsilon=0)$?
- Vacuum is the state with the smallest energy

QCD vacuum

- Is vacuum an empty space $(\epsilon=0)$?
- Vacuum is the state with the smallest energy
- QCD vacuum: $\epsilon \simeq-(265 \mathrm{MeV})^{4},\left\langle H^{2}+E^{2}\right\rangle \neq 0$

QCD vacuum

Quantum (ultraviolet) fluctuations in QCD vacuum

- Classical vacuum is distorted by UV fluctuations
- The fluctuations take place at distances $\sim a$

Model of dual superconductor

Condensate of the Cooper pairs
Condensate of MOOOPOLES

What is a monopole in $\mathrm{SU}(\mathrm{N})$?

- Consider $\mathrm{SU}(2)$ as an example
- $2 \hat{A}_{\mu}=\sigma^{1} A_{\mu}^{1}+\sigma^{2} A_{\mu}^{2}+\sigma^{1} A_{\mu}^{3}=\left(\begin{array}{cc}A_{\mu}^{3} & A_{\mu}^{1}-i A_{\mu}^{2} \\ A_{\mu}^{1}+i A_{\mu}^{2} & -A_{\mu}^{3}\end{array}\right)$
- $\mathrm{SU}(2) \rightarrow \mathrm{U}(1)$
- $2 \hat{A}_{\mu}=\sigma^{3} A_{\mu}^{3}=\left(\begin{array}{cc}A^{3} & 0 \\ 0 & -A^{3}\end{array}\right)$
- One can introduce: \vec{E}^{3}, \vec{H}^{3}
- Diagonalization in the whole space is impossible
- Maximal Abelian gauge: $\min _{S} \int d^{4} x\left[\left(A_{\mu}^{1}\right)^{2}+\left(A_{\mu}^{2}\right)^{2}\right]$

Condensation of monopoles

Abelian dominance

- $W(C)=\operatorname{Tr} P \exp \left(i \int_{\mathrm{C}} d x^{\mu} \hat{A}_{\mu}\right) \rightarrow \exp \left(i \int_{\mathrm{C}} d x^{\mu} A_{\mu}^{3}\right)$

The other variants of QCD vacuum

- Spaghetti vacuum
- Fluctuation of topology
- Self-dual fields (Sergey Nedelko)

Chiral symmetry breaking

- Left and right sectiors of the theory do not interact

$$
\mathcal{L}=\bar{\Psi} i \hat{D} \Psi=\bar{\Psi} i \hat{D}\left(\frac{1+\gamma_{5}}{2}+\frac{1-\gamma_{5}}{2}\right) \Psi=\bar{\Psi} i \hat{D} \frac{1+\gamma_{5}}{2} \Psi+\bar{\Psi} i \hat{D} \frac{1-\gamma_{5}}{2} \Psi=\bar{\Psi}_{R} i \hat{D} \Psi_{R}+\bar{\Psi}_{L} i \hat{D} \Psi_{L}
$$

- For N_{f} quarks chiral symmetry is $S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right) \times U_{V}(1) \times U_{A}(1)$
- Chiral condensate $\langle\bar{\Psi} \Psi\rangle=\left\langle\bar{\Psi}_{L} \Psi_{R}\right\rangle+\left\langle\bar{\Psi}_{R} \Psi_{L}\right\rangle$ breaks chiral symmetry
- Dynamical chiral symmetry breaking $S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right) \rightarrow S U_{V}\left(N_{f}\right)$
- The mechanism of chiral symmetry breaking is unknown
- Some ideas can be gained from NJL model

$$
\begin{aligned}
\mathscr{L}_{S}=\bar{\psi}\left[i \partial+g\left(\sigma+i \pi \cdot \tau \gamma_{5}\right)\right] & \psi+\frac{1}{2}\left[(\partial \pi)^{2}+(\partial \sigma)^{2}\right]- \\
& -\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)-\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} .
\end{aligned}
$$

Chiral symmetry breaking

- NJL models are based on BCS theory
- The interaction term $(\bar{\psi} \psi)^{4}$
- $\alpha_{N J L}<1$ no solutions, $M=0, E^{2}=\vec{p}^{2}$
- $\alpha_{N J L}>1$ there is solution $M \neq 0, E^{2}=\vec{p}^{2}+M^{2}$
- Gap equation for the dynamical mass
- Dynamical symmetry breaking
- The condensate of Cooper pairs: $\langle\bar{\psi} \psi\rangle \neq 0$
- Too simple model: no confinement

What is matter composed of?

- The following law is well satisfied in nature $M \simeq \sum_{i} M_{i}$
- In QCD
$p(u u d) \quad M_{p} c^{2}=938 \mathrm{MeV} \gg\left(m_{u}+m_{u}+m_{d}\right) c^{2}=12 \mathrm{MeV}$

$$
n(u d d) \quad M_{n} c^{2}=940 \mathrm{MeV} \gg\left(m_{u}+m_{d}+m_{d}\right) c^{2}=15 \mathrm{MeV}
$$

What is matter composed of?

- The following law is well satisfied in nature $M \simeq \sum_{i} M_{i}$
- In QCD
$p($ uud $) \quad M_{p} c^{2}=938 \mathrm{MeV} \gg\left(m_{u}+m_{u}+m_{d}\right) c^{2}=12 \mathrm{MeV}$
$n(u d d) \quad M_{n} c^{2}=940 \mathrm{MeV} \gg\left(m_{u}+m_{d}+m_{d}\right) c^{2}=15 \mathrm{MeV}$
- Where is the rest of mass?

Chromoelectric fields in proton

- We are composed of gluons to 98% !

Spectroscopy: Mesons

Spectroscopy: Baryons

Static potential at finite temperature

- One needs the temperature $T \sim 150 \mathrm{MeV} \sim 1.5 \times 10^{12}$ degrees

QCD under extreme conditions

- Modern experiments: LHC(Switzerland), RHIC(USA), FAIR(Germany), NICA(Russia, Dubna, JINR)

QCD under extreme conditions

- Temperature $T \sim 150 \mathrm{MeV} \sim 1.5 \times 10^{12}$ degrees
- Baryon density $n>n_{0}$
- Magnetic fields $e B \sim 10^{13} \mathrm{~T}$
- Rotation with angular velocity $\omega \sim 10^{22} \mathrm{c}^{-1}$

QCD equation of state

- Low temperature: HRG
- High temperature: SB - Stefan Boltzmann: $p=\sigma T^{4}$
- At very high temperature QGP is gas of quarks and qluons?

High temperatures

- Consider a limit $T \rightarrow \infty$
- $g(T) \rightarrow 0 \Rightarrow$ QGP is a free gas of quarks and gluons?
- Matsubara frequency:
- For bosons: $p_{0}=2 \pi T n$
- For fermions: $p_{0}=\pi T(2 n+1)$
- The propagator at nonzero temperature $G_{0}(x, y)=T \sum_{n=-\infty}^{+\infty} \iint \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{i p(x-y)}}{(2 \pi T n)^{2}+\vec{p}^{2}+m^{2}}$
- Fermions and $n \neq 0$ bosons can be integrated out

High temperatures

- We are left with A_{4}, A_{i} at $n=0$
- Propagator
$G_{0}(x, y)=\left.T \sum_{n=-\infty}^{+\infty} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{i p(x-y)}}{(2 \pi T n)^{2}+\bar{p}^{2}+m^{2}}\right|_{T \rightarrow \infty} \rightarrow$
$\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p}(\vec{x}-\vec{x})} \overrightarrow{\bar{p}}^{2}+m^{2}$
- Modes with $n=0$ becomes tree dimentional
- Dimensional reduction $D=4 \rightarrow 3$
- Effective action for A_{4}, A_{i}

$$
S=\int d^{3} x\left(\frac{1}{2} \operatorname{Tr}\left(F_{i j}^{2}\right)+\operatorname{Tr}\left(\left(D_{i} A_{4}\right)^{2}\right)+m_{D}^{2} \operatorname{Tr}\left(A_{4}^{2}\right)+\ldots\right)
$$

- $\langle P(\vec{x})\rangle=\operatorname{Tr} P \exp \left(i \int_{0}^{T} d x^{4} \hat{A}_{4}\left(\vec{x}, x^{4}\right)\right) \neq 0$
- A_{4} is like a Higgs: $\left\langle A_{4}\right\rangle \neq 0$

High temperatures

- Debye mass $m_{D} \sim g(T) T$ is a scale for A_{4}
- In the limit $T \rightarrow \infty$ magnetic scale $g^{2}(T) T$
- A_{4} can be integrated out
- 4D QCD is equvivalent to 3D Yang-Mills with chromo-magnetic degrees of freedom

$$
S=\int d^{3} x\left(\frac{1}{2} \operatorname{Tr}\left(F_{i j}^{2}\right)+\ldots\right)
$$

- Nonperturbative theory with spatial confinement
- The scale is determined by spatial string tension σ_{s}
- QCD in nonperturbative at any temperature! It never becomes a gas of quarks and gluons!

- Spatial string tension $W(C) \sim e^{-\sigma_{s} S}$
- Confinement of magnetic field
- In the region $T>T_{c}, \sigma_{s}$ rises as $\sim T$

Shear viscosity of QGP

- QGP is close to the ideal liquid $\left(\frac{\eta}{s}=(1-3) \frac{1}{4 \pi}\right)$
- Considerable deviation from gas of quarks and gluons
- The result is close to the $\mathrm{N}=4 \mathrm{SYM} \frac{\eta}{s}=\frac{1}{4 \pi}$

Shear viscosity of QGP

- QGP is the most superfluid liquid

THANK YOU!

